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Abstract: In the current framework, a model is constituted to explore the impacts of high suction
and partial slip on Fe3O4–water nanoliquid flow over a porous moveable surface in a parallel
free stream. The mechanisms of heat transfer are also modeled in the existence of Newtonian
heating effect. The obtaining PDEs are transformed into a non-linear ODE system employing
appropriate boundary conditions to diverse physical parameters. The governing ODE system is
solved using a singular perturbation technique that results in an analytical asymptotic solution as
a function of the physical parameters. The obtained solution allows us to carry out an analytical
parametric study to investigate the impact of the physical parameters on the nonlinear attitude of the
system. The precision of the proposed method is verified by comparisons between the numerical and
analytical results. The results confirm that the proposed technique yields a good approximation to the
solution as well as the solution calculation has no CPU time-consuming or round off error. Numerical
solutions are computed and clarified in graphs for the model embedded parameters. Moreover,
profiles of the skin friction coefficient and the heat transfer rate are also portrayed and deliberated.
The data manifests that both solid volume fraction and slip impact significantly alter the flow
profiles. Moreover, an upward trend in temperature is anticipated for enhancing Newtonian heating
strength. Additionally, it was found that both the nanofluid velocity and temperature distributions are
decelerated when the solid volume fraction and suction parameters increase. Furthermore, a rise in
slip parameter causes an increment in velocity profiles, and a rise in Biot number causes an increment
in the temperature profiles.

Keywords: moving surface; nanofluid; partial slip; Newtonian heating; high suction; singular
perturbation techniques

1. Introduction

Recently, the investigation of solutions of nonlinear ordinary/partial differential equations is
quite popular area of study. Such equations manifest in several physical, engineering and industrial
applications. Most of nonlinear differential equations have no exact solution and then the numerical
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techniques have predominately been applied to handle such equations. The significance of gaining the
analytical approximate solutions of nonlinear differential equations in mathematics and physics is yet
still defying that requires novel techniques. Various researchers fundamentally had paid attention to
investigate solutions of nonlinear differential equations by applying semi-analytical numerical methods
such as Homotopy perturbation method [1], differential transform method [2], Homotopy analysis
method [3], etc. The convergence of the series solutions obtained using these semi-analytical numerical
methods are mainly dependent upon the initial guess and the smoothness of the solution. However for
discontinuous or singularly perturbed nonlinear problems there does not exist a general theory or an
efficient approach to find a good enough initial guess. Recently a new treatment of nonlinear boundary
layer problems is introduced in [4,5] using singular perturbation techniques. The advantage of this
method over other semi-analytical numerical methods is that as the boundary layer thickness decreases
and the problem becomes much stiffer the accuracy of the obtained asymptotic solution increases.

The investigation of heat transfer over moveable surfaces is of great interest to researchers due
to its engineering and industrial applications, such as glass fiber, the manufacture and drawing of
plastics and rubber sheets, the cooling of continuous stripes and an infinite metallic sheet, paper
production, continuous casting, the polymer extrusion process, food processing, and heat-treated
materials travelling on conveyer belts. Sakiadis [6] initiated work on the analysis of boundary layer
flow on a moving surface, which was later extended by Crane [7] by considering a linearly stretching
surface. A theoretical and experimental investigation was done on the flow past a moveable surface
by Tsou et al. [8]. Magyari and Keller [9,10] studied heat and mass transfer in the boundary layers on
an exponentially stretching continuous surface. El-Kabeir et al. [11] investigated the unsteady MHD
combined convection over a moving vertical sheet. Bataller [12] considered the radiation effects in the
blasius flow over the moving surface. Ishak [13] reported the flow and heat transfer over a moving
plate in a parallel stream. EL-Kabeir et al. [14] investigated unsteady MHD three dimensional by
natural convection from an inclined stretching surface saturated porous medium. Rashad et al. [15]
analyzed the viscous dissipation and ohmic heating effects on MHD mixed convection along a vertical
moving surface. EL-Kabeir et al. [16] explored Heat transfer in a micropolar fluid flow past a permeable
continuous moving surface.

Nanofluids, with the insight of their thermal conductivity improvement, have been found to
be advantageous in diverse engineering and industrial applications. Working fluids have large
requirements in terms of enhancing or reducing energy release to apparatuses and of their impacts
based on thermal conductivity, heat capacity, and other physical properties in novel thermal and
manufacturing processes. A weak thermal conductivity is one of the most salient parameters that
can restrict the heat transfer performance. Additionally, conventional heat transfer fluids such as
ethylene glycol, water, and engine oil have limited heat transfer abilities due to their weak thermal
conductivity and consequently cannot assemble with modernistic cooling demands. On the other
side, the thermal conductivity of metals is extremely large in comparison to classical heat transfer
fluids. Suspending the ultrafine solid metallic particles in technological fluids leads to an enhancement
in thermal conductivity. This is one of the most modern and convenient processes for enhancing
the heat transfer coefficient. Choi and Eastman [17] were likely the first to employ a mixture of
nanoparticles and base fluids. Such fluids were designated as nanofluids. Buongiorno [18] presented
a comprehensive study concerning the heat transport in nanofluids and found an extraordinary rise
in the thermal conductivity of nanofluids. The pattern of nanofluid suggested by Buongiorno [18]
was applied as an instrument to study many nanofluids problems. Chamkha et al. [19] examined
the unsteady hydro-magnetic flow of a nanofluid past a stretching sheet. Rashad et al. [20] analyzed
the natural convection boundary layer of a non-Newtonian fluid about a permeable vertical cone
embedded in a porous medium saturated with a nanofluid. Chamkha et al. [21] discussed the natural
convection from a vertical permeable cone in nanofluid saturated porous media for uniform heat and
nanoparticles volume fraction fluxes. For getting empirical correlations for engineering simulations,
many efforts have been made on experimentally measuring the physical properties of nanofluids as



Energies 2019, 12, 198 3 of 18

well [22–26]. Choi [27] has also reported another model that examined various conventional fluids
to examine the thermal conductivity of fluids with nanoparticle properties, and another is a model
proposed by Tiwari and Das [28]. EL-Kabeir and co-authors [29,30] reported a theoretical analysis of
the flow and heat transfer in a nanofluid. Rashad [31,32] investigated the impact of thermal MHD
slip flow of a nanofluid over a nonisothermal wedge and an inclined stretching surface, respectively.
Rashidi and co-authors [33–37] presented a comprehensive review of last theoretical and experimental
studies on thermal conductivity of nanofluids. Li et al. [38] studied the effects of the Lorentz force and
the induced anisotropic thermal conductivity due to a magnetic field on the flow and the heat transfer
of a ferrofluid. Salleh et al. [39] investigated the magnetohydrodynamics flow past a moving vertical
thin needle in a nanofluid with stability analysis.

The motivation of this investigation is thus to carry out an analytical parametric study through
constructed analytical asymptotic solutions for the nanofluid passing through a moveable plane with
constant velocity, in the same trend to the free stream taking into account the partial slip velocity,
Newtonian heating and high suction effects. The accuracy of the proposed method is verified by
comparisons between the numerical and analytical results. The results confirm that the suggested
technique produces a good approximation to the solution as well as the solution calculation has no
CPU time-consuming or round off error. Moreover, a numerical study is present and the results shown
in figures confirm a high validation of the present parametric study.

The novelty of the present problem is the analysis of nanofluid flow over a moveable plane.
This type of work has not been reported previously in the open literature. Another important aspect
of this problem is the application of singular perturbation techniques for high suction condition for
which the numerical solution is difficult.

2. Modeling

Consider a steady 2D laminar flow of an iron oxide nanoparticle (Fe3O4)–water nanofluid passing
through a moveable plane in parallel to a free stream of constant velocity Uw in parallel with a constant
free stream velocity U∞ with high fluid suction imposed on the surface. The flow pattern and physical
coordinate system is demonstrated in Figure 1. In this coordinate frame, the x-axis extends in parallel
to the surface, while the y-axis extends upwards, normal to the surface. The temperature at the plane
surface is deemed to have a constant value Tf, which extends a heat transfer coefficient hf while the
ambient temperature has a constant value T∞. The thermophysical properties of the nanofluid are
given in Table 1. In addition, both the base fluid (i.e., water) and the nanoparticles are in thermal
equilibrium, and no slip occurs between them. With the above assumptions, the simplifying governing
equations of the problem are

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µn f

ρn f

∂2u
∂y2 (2)

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 . (3)

The associated boundary conditions of this problem can be written as

u = Uw + Nµn f
∂u
∂y

, v = Vw,−kn f
∂T
∂y

= h f (Tf − T), at y = 0 (4a)

u = U∞, T = T∞ , at y→ ∞. (4b)



Energies 2019, 12, 198 4 of 18

Here all parameters have been defined in the notation section. Additionally, ρnf, µnf, αnf, (ρCp),
and (ρβ)nf are defined as (see Tiwari and Das [28])

ρn f = (1− φ)ρ f + φρs, µn f =
µ f

(1− φ)2.5 , αn f =
kn f(

ρCp
)

n f
(5)

(
ρCp

)
n f = (1− φ)

(
ρCp

)
f + φ

(
ρCp

)
s (6)

kn f

k f
=

(
ks + 2k f

)
− 2φ

(
k f − ks

)
(

ks + 2k f

)
+ φ

(
k f − ks

) . (7)

We introduce the following non-dimensional variables:

η =

(
Uw + U∞

2υ f x

)1/2

y, ψ =
(

2υ f x
)1/2

(Uw + U∞)1/2 f (η), θ(η) =
T − T∞

Tf − T∞
(8)

where ψ is the stream function defined in the usual way as u = ∂ψ/∂y, v = −∂ψ/∂x. Substituting
variables of Equation (8) into Equations (1)–(3) produces the following ordinary differential equations:

f ′′′ (η) + (1− φ)2.5
(

1− φ + φρs/ρ f

)
f (η) f ′′ (η) = 0 (9)

1
Pr

kn f /k f

1− φ + φ(ρCP)s/(ρCP) f
θ′′ (η) + f (η)θ′(η) = 0, (10)

and boundary conditions expressed in Equation (4) become

f (0) = fw, f ′(0) = 1− γ +
δ

(1− ϕ)2.5 f ′′ (0), lim
`→∞+

f ′(`) = γ (11)

kn f

k f
θ′(0) = −Bi(1− θ(0)), lim

`→∞+
θ(`) = 0 (12)

where primes denote the differentiation with respect to η, fw is the suction parameter, γ is the velocity
ratio parameter, δ is the velocity slip parameter, Bi is the Biot number, and Pr is the Prantdl number,
which are respectively defined as follows:

fw = −2Vw(Rew+Re∞)1/2

(Uw+U∞)
, γ = U∞

(Uw+U∞)
, δ = N(x)µ f (

UW+U∞
2ν f x )

1/2
,

Bi =
h f
k f
(UW+U∞

2ν f x )
−1/2

, Pr = α f /υ f , Rew = Uwx/υ f , Re∞ = U∞x/υ f ,

α f = k f /
(
ρCp

)
f , υ f = µ f /ρ f

(13)

where Rew and Re∞ are the Reynolds numbers, υ f is the kinematic coefficient of viscosity of base fluid,
and αf is the thermal diffusivity of base fluid.

Because the parameters δ and Bi depends on x, a true similarity is not accomplished. However,
if the velocity slip coefficient N and the convection heat transfer coefficient hf are proportional to
x−1/2, δ and Bi become independent of x and a true similarity is attained. It is manifested that the
transpiration parameter fw = 0 (Vw = 0) coincides with an impermeable surface, while fw < 0 (Vw > 0)
coincides to the status of fluid injection and fw > 0 (Vw < 0) coincides to the status of the fluid suction
or withdrawal (the current work). It is also manifested that velocity ratio parameters γ = 0 and γ = 1
coincides with a fixed plate in a moving fluid and with a moving plate in a quiescent fluid, respectively.
The status 0 < γ < 1 is true when the plate and the fluid move in the same direction. If γ < 0, the free
stream tends toward the positive x-direction, while the plate moves toward the negative x-direction.
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If γ > 1, the free stream is directed across the negative x-direction, while the plate moves across the
positive x-direction. However, in this investigation, we inspect the status of γ ≤ 1, i.e., the direction of
the free stream is specified (across the positive x-direction).

Of particular importance for this investigation are the local skin friction coefficient and the local
Nusselt number. These physical quantities can be defined as

C f = −
µn f (∂u/∂y)y=0

ρ f (Uw + U∞)2 , Nux =
kn f (∂T/∂y)y=0x

k f (Tw − T∞)
. (14)

Applying the non-dimensional variables of Equation (8), we obtain

C f (Rew + Re∞)1/2 = − 1√
2(1− φ)2.5 f ′′ (0), Nux(Rew + Re∞)−1/2 = − 1√

2

kn f

k f
θ′(0). (15)
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Figure 1. Flow model and physical co-ordinate system.

Table 1. Physical properties of base fluid and iron oxide nanoparticles [24,25].

Property Pure Water (Fe3O4)

ρ (kg m−3) 997.1 5200
Cp (Jkg−1 K−1) 4179 670
k (W m−1 K−1) 0.613 6

3. Analytical Solutions via Singular Perturbation Technique

For larger suction parameter value fw, the BVP (9)–(12) becomes much stiffer or singularly
perturbed and the standard numerical methods fail to handle this situation unless we use
special purpose methods or numerical routines for stiff differential equations with continuation
techniques [40–51]. In general the numerical solution of a stiff or singularly perturbed BVP will be
more difficult matter than the numerical solution of the corresponding IVPs. Hence, we prefer to
approximate the BVPs (9)–(12) by suitable IVPs. For convenience, based on singular perturbation
theory [40,41,50] and the formulation developed early by El-Zahar and EL-Kabeir [51], the BVPS
(9)–(12) can approximated by IVPs with known closed form analytical asymptotic solutions.
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3.1. An Analytical Solution of Energy Equation

Equation (10) with the boundary conditions of Equation (12) can be written as

ε θ
′′
1 (t) + f1(t) θ′1(t) = 0, θ1(0) = A , θ1(1) = 0 (16)

where ε = σ
` , σ = 1

Pr
kn f /k f

1−φ+φ(ρCP)s/(ρCP) f
, 0 < ε � 1, t = η

` , θ1(t) = θ(η), f1(t) = f (η), and f1(t) ≥
fw � 0 for every t ∈ [ 0, 1], and A is a constant to be determined. Under these assumptions,
the solution of Equation (16) has a boundary layer of width O(ε/ fw) at t = 0 [4,5,40,41].

Setting ε = 0 in Equation (16) results in a reduced solution θ0(t) = 0 that satisfies the reduced IVP:

f1(t) θ′0(t) = 0 , θ0(1) = 0, (17)

and an approximate singularly perturbed IVP to (16) is thus obtained and given by [40,41,49,50].

ε θ′1(t) + f1(t) θ1(t) = O(ε/ fw), θ1(1) = A , (18)

which has a zeroth order asymptotic solution θ1(t) given by [40,41,49,50]

θ1(t) = Ae− fw t/ε. (19)

Using Equations (19) and (12), the constant A is determined and an asymptotic solution θ(η) to
the energy equation is obtained and given by

θ(η) =
σBi k f

fw kn f + σBi k f
e− fw η/σ, (20)

which results in

θ
′
(η) = −

fwBi k f

fw kn f + σBi k f
e− fw η/σ. (21)

Theorem 1. Let θ(η) and θ(η) be respectively the solution of Equation (10) with its boundary conditions
expressed by Equation (12) and the solution given by Equation (20), respectively. Then we have the following
bounded error: ∣∣θ(η) − θ(η)

∣∣ ≤ C
(

φBi
f 2
w + fwBi

)
(22)

where C is a positive constant independent of φ, Bi and fw.

Proof. For θ1(t) and θ1(t), we have [40,41,45,49,50]

∣∣θ1(t) − θ1(t)
∣∣ ≤ C1

1∫
t
|θ1(s)− θ0(s)| ds

≤ C
∣∣∣θ1(0) ε

fw

∣∣∣ (23)

≤ C

∣∣∣∣∣ σ2Bi
f 2
w kn f /k f + σBi fw

∣∣∣∣∣
Since ks > k f > 0, (ρCP)s > (ρCP) f > 0, and 0 ≤ φ < 0.5, kn f , σ ∝ φ, and changing t to η in

Equation (23) results in ∣∣θ(η) − θ(η)
∣∣ ≤ C

(
φBi

f 2
w + fwBi

)
.

�
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3.2. An Analytical Solution of the Blasuis Equation

Using the same procedure, we obtain an analytical solution to the Blasuis equation as follows.
Equation (9) with its boundary conditions expressed by Equation (11) can be written as

g′′ (η) + h(η)g′(η) = 0, g(0) = γ +
δ

(1− ϕ)2.5 g′(0), lim
`→∞+

g(`) = 1− γ (24)

where g(η) = f ′(η), h(η) = Kφ f (η) and Kφ = (1− φ)2.5
(

1− φ(1− ρs/ρ f )
)

.

Changing variable η to x = η
` , the BVP of Equation (24) becomes

κg′′1 (x) + h1(x)g′1(x) = 0, g1(0) = γ +
δ

`(1− ϕ)2.5 g′1(0), g1(1) = 1− γ (25)

where κ = 1
` g1(x) = g(η) and h1(x) = h(η).

The BVP of Equation (25) has a zeroth order asymptotic solution [40,41,49,50] given by

g1(x) = (1− γ) +
(1− φ)5/2(2γ− 1)e−Kφ fw x/κ

Kφ fwδ+ (1− φ)5/2 . (26)

Thus, we have the following approximation to f ′(η)

f
′
(η) = (1− γ) +

(1− φ)5/2(2γ− 1)e−Kφ fw η

Kφ fwδ+ (1− φ)5/2 , with f (0) = fw. (27)

The solution of Equation (23) is approximated by

f (η) = fw + (1− γ)η +
(2γ− 1)(1− φ)5/2

Kφ fw

(
kφ fwδ+ (1− φ)5/2

) (1− e− fw Kφ η), (28)

which results in

f ′′ (η) = −
(1− φ)5/2(2γ− 1)Kφ fw

Kφ fwδ+ (1− φ)5/2 e−Kφ fw η . (29)

Theorem 2. Let f ′(η) and f
′
(η) be respectively the solution of Equation (9) with its boundary conditions

expressed in Equation (11) and the solution given by Equation (27). Then we have the following bounded error:

∣∣∣ f ′(η) − f
′
(η)
∣∣∣ ≤ C

∣∣∣∣2γ− 1
δ φ f 2

w

∣∣∣∣ , φ ≤
1− 2ρs/7ρ f

1− ρs/ρ f
(30)

where C is a positive constant independent on γ, δ, φ, and fw.

Proof. For g1(x) and g1(x), we have [33,34,40,44,45]

|g(x) − g1(x)| ≤ C1

1∫
x
|g(s) + γ− 1| ds

≤ C
(
|g(0) + γ− 1|

∣∣∣ κ
Kφ fw

∣∣∣ )
≤ C

∣∣∣∣ (2γ−1)
Kφ fwδ(1−φ(1−ρs/ρ f ))+Kφ

κ
fw

∣∣∣∣.
(31)
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Since ρs/ρ f > 7/2 and φ <
1−2ρs/7ρ f
1−ρs/ρ f

, Kφ ∝ φ, and changing x to η in Equation (31) results in

∣∣∣ f ′(η) − f
′
(η)
∣∣∣ ≤ C

∣∣∣∣2γ− 1
δ φ f 2

w

∣∣∣∣ .

�

In order to assess the accuracy of the proposed analytical solution, a comparison is presented
with the numerical solution generated using the built-in MATLAB boundary value solver, bvp4c,
which is an adaptive Lobatto quadrature scheme [51]. To assure that the bvp4c numerical solution
can be considered as a good reference solution in our computations, the bvp4c solver is set with
(Abstol = 10−12, Reltol = 10−8). The analytical solution is evaluated at the bvp4c grid points for
different values of the governing physical parameters, and the maximum absolute and relative errors
are presented in Figures 2–5. Figures 2 and 3 show that the achieved analytical solution has maximum
absolute errors within 2.2 × 10−6 and 3.9 × 10−4 in approximating the temperature and velocity
solutions, respectively. Figures 4 and 5 show that the maximum relative error is within 0.0008% and
0.045% in approximating the Nusselt number and skin friction parameter, respectively. The results
confirm that a good agreement between analytical and numerical solutions is achieved. Moreover,
Figures 2–5 show that the numerical data agree with the theoretical results (Theorems 1 and 2), which
confirms the validity of the analytical approach and reveals that the method is sufficiently accurate for
engineering applications.
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4. Analytical Parametric Study

Using the obtained analytic solutions in Equations (20), (21) and (27)–(29), an analytical parametric
study was carried out analyzing the impact of the system physical parameters on the solution behavior.
The following was found:
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• Solutions in Equations (20) and (21) show that the temperatures profiles have
exponential distributions.

• We notice that the solutions in Equations (20) and (21) do not contain the velocity ratio parameter
γ or the slip factor δ, which indicates that, for high suction, the effect of these parameters on
the temperature profiles and the local Nusselt number can be neglected compared to other
existing parameters.

• Since we have ks > k f > 0, (ρCP)s > (ρCP) f > 0, and 0 ≤ φ < 0.5, kn f , σ > 0, and the solution
in Equation (21) results in a positive local Nusselt number.

• Additionally, since we have ks > k f > 0, (ρCP)s > (ρCP) f > 0, and 0 ≤ φ < 0.5, kn f ∝ φ, σ ∝ φ

and θ(0) ∝ 1/φ . This means that, as the solid volume fraction φ increases the initial temperature
of the wall layer, θ(0), decreases, while the thermal boundary layers thickness O(σ/ fw) increases,
which suggests that there are intersections points among θ(t) curves and the temperature profiles
decrease non-monotonically.

• Moreover, the solution in Equation (20) shows that, as the suction parameter fw increases or the
Biot number Bi decreases, the temperature profiles decrease monotonically.

• Additionally, the solution in (21) shows that as the suction parameter fw or the Biot number Bi
increases the wall temperature gradients (at η = 0) and the local Nusselt number increase.

• The solution in Equation (20) shows that, as the suction parameter fw increases the wall
temperature and the temperature profile decrease; therefore, the thermal boundary layers
thickness decreases, while the Biot number Bi has a neglected effect on the temperature layer’s
thickness compared to other parameters.

• The solutions in Equations (27)–(29) do not contain the Biot number Bi, which indicates that it has
no effect on the fluid velocity and the Local skin friction coefficient.

• Since we have ρs > ρ f > 0 and 0 ≤ φ < 0.5, Kφ > 0, and the solution in Equation (29) always
results in a negative local skin friction coefficient for γ < 0.5 and a positive one for γ > 0.5.

• Since we have ρs/ρ f > 7/2 and φ <
1−2ρs/7ρ f

1−ρs/ρ f
Kφ ∝ φ and for γ > 0.5 (γ < 0.5), as the solid

volume fraction parameter φ increases, the velocity profiles decrease (increases).
• The value of η at which f ′(η) = 0.5 can be determined from Equation (27) and is given by

η f ′=0.5 =
1

kφ fw
ln

(
2(1− φ)5/2

kφ fwδ+ (1− φ)5/2

)
, (32)

which shows that, at fixed values of fw, φ and δ, we have one intersection point
(

η f ′=0.5, 0.5
)

of
the velocity curves regardless of the values of γ. This intersection point lies in the right (left) half
plane for σ fw < ρ f /ρn f (σ fw > ρ f /ρn f ) which confirm that for high suction, fw � 0, and positive
slip factor δ > 0, the intersection point lies in the left half plane.

• Moreover, based on Equations (27)–(29), for γ > 0.5 (γ < 0.5) and f ′′ (η) < 0 ( f ′′ (η) > 0),
as the suction parameter fw or the slip parameter δ increases, the velocity profiles decrease
(increases) monotonically.

5. Numerical Results and Discussion

A numerical study was performed on the influence of solid volume fraction parameter φ, suction
parameter fw, slip factor δ, and Biot number Bi, with high values of suction parameter fw, on the
behavior of nanofluid velocity and temperature components as well as the local skin-friction coefficient
and the local Nusselt number. The results are shown in Figures 6–11. The present numerical study
was performed for iron oxide–water nanofluid as a working fluid with various values of velocity ratio
parameter γ in the range 0 ≤ γ ≤ 1. The corresponding thermo-physical properties [26] of the fluid
and nanoparticles are shown in Table 1.
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Figure 6 reveals the impacts of the nanoparticle volume fraction parameter φ and suction
parameter fw on the nanofluid velocity f’(η) and temperature profiles θ(η), respectively. The figure is
limited to the status of the suction (lateral mass withdrawal over the plate surface out of the boundary
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layer regime). From these figures, it is manifested that velocity ratio parameter γ = 0, 0 < γ < 1,
and γ = 1 coincides to a fixed plate in a movable fluid, a movable plate in a moving fluid, and a
movable plate in a quiescent fluid, respectively. However, it is depicted that the imposition of a wall
nanofluid suction (fw >> 0) tends to enhance the flow along the surface, which results in increasing the
velocity profiles for γ < 0.5, while the opposite can be observed for γ > 0.5. In a similar pattern, it is
manifested that an increase in nanoparticle volume fraction parameter φ causes an enhancement in the
nanofluid velocity for γ < 0.5, while the opposite occurs for γ > 0.5. Additionally, both the temperature
profiles and thermal boundary layer elevate constantly with the augmenting volume fraction of the
nanoparticles, while the reverse occurs with the suction parameter. This coincides with the physical
pattern whereby, after the volume fraction of iron oxide boosts thermal conductivity, the thermal
boundary layer thickness increases, as shown in Figure 7.

Figures 8a and 9b exhibit the influences of fw and φ on the local skin friction coefficient
C f (Rew + Re∞)1/2 and the local Nusselt number Nux(Rew + Re∞)−1/2, respectively, with various

values of γ for the parallel moving plate. It is manifested that all values of the C f (Rew + Re∞)1/2 are

positive as γ < 0.5 and negative when γ > 0.5, while γ = 0.5 attains C f (Rew + Re∞)1/2 = 0, since both

the fluid and plate move with the same velocity. Conversely, the values of Nux(Rew + Re∞)−1/2 are
positive for all γ. For γ < 0.5, development in fw causes a slight decline in the skin friction coefficient,
while the reverse behavior can be seen for γ > 0.5. It was also noticed that the increment in φ has a
tendency to diminish the C f (Rew + Re∞)1/2 as a result of the increment in the momentum thickness of
the boundary layers for the status γ < 0.5, and the opposite impact is manifested for γ > 0.5. Moreover,
it is evident in Figure 9a that a sufficient boosting of fw results in an increase in Nux(Rew + Re∞)−1/2

for all γ. This conduct is related to the remarkable reduction in the thermal boundary layers as fw boosts.
However, as mentioned, the rise in volume fraction parameter φ leads to an increase in the temperature
profiles and thermal boundary layers, which results in an increase in Nux(Rew + Re∞)−1/2, as shown
in Figure 9b. This is consistent with the physical manner in which the susceptibility of the thermal
boundary layer thickness to φ is concerned with the enhanced thermal conductivity of the nanofluid
(see Table 1), which in turn enhances in thermal diffusivity and, consequently, following Equation (14),
causes a significant evolution in the local Nusselt number.

Figure 10 demonstrates the impacts of the velocity slip parameter δ and the Biot number Bi
on f’(η) and θ(η), respectively. It is apparent that an elevation in Bi leads to a salient increment in
the temperature distributions. In addition, an increment in δ tends to accelerate the flow along the
movable surface filled with nanofluid when γ < 0.5, while the opposite trend can be observed when
γ > 0.5. Finally, the variations in skin friction coefficient and Nusselt number (C f (Rew + Re∞)1/2,

Nux(Rew + Re∞)−1/2) versus γ, respectively, for several values of δ and Bi, respectively, are revealed
in Figure 11a,b. This reason because, as Bi increases, the convective heat transfer from the hot nanofluid
portion on the surface to the cold nanofluid portion rises leading to an increment in the temperature
gradients. Moreover, the elevation in the slip parameter δ causes a prominent enhancement in the
C f (Rew + Re∞)1/2 for the status γ < 0.5, whilst the behavior is reversed for γ > 0.5.

In fact, the present numerical study with results shown in Figures 6–11 confirms a high validation
of the present parametric study.

6. Conclusions

The influences of the impacts of high suction and partial slip on iron oxide nanoliquid flow over a
porous moving surface in a parallel free stream with Newtonian heating is investigated analytically
and numerically. The analytic solutions of the velocity function and temperature distributions are
obtained via a singular perturbation technique. The bounded errors of the proposed solutions are
derived through Theorems 1 and 2 and the accuracy of the proposed method is verified by comparisons
between the numerical and analytical results. The solution graphs are computed and clarified for
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specific range of embedded parameters. Moreover, profiles of skin friction coefficient and heat transfer
rate are also sketched portrayed and elaborated. The concluding remarks are specified as:

• The present singular perturbation technique results in a closed form asymptotic solution of the
energy and Blasuis equations as a function of the physical parameters.

• The numerical results in Figures 2–5 agree with theoretical ones (Theorems 1 and 2) and illustrate
that the proposed technique yields a good approximation to the solution as well as the solution
calculation has no CPU time-consuming or round off error.

• The rapid calculation of the system solution (dynamic response) with acceptable
accuracy demonstrates that the analytical solutions are effective for performing analytical
parametric studies.

• An analytical parametric study is carried out to predict the impact of the system physical
parameters on the temperature and velocity behaviors.

• A numerical study is performed on the influence of the system physical parameters on the system
behavior and the numerical results are present in Figures 6–11.

• The results of the numerical study confirms a high validation of the present analytical parametric
study and their main results can be summarized as follows:

i. Both the nanofluid velocity and temperature distributions are decelerated for growing the
solid volume fraction and suction parameters.

ii. The raising in slip parameter causes an increment in the velocity profiles, and the raising
in Biot number causes an increment in the temperature profiles.

iii. The local Nusselt number elevates along with boosting values of Biot number solid volume
fraction and suction parameters.
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Abbreviations

Nomenclature
Bi Biot number
Cp specific heat at constant pressure (J·kg−1·K−1)
Cf local skin-friction coefficient
fw suction parameter value
f ′ dimensionless velocity
hf convective heat transfer coefficient (W/m2 k)
k thermal conductivity (m2 s−1)
N velocity slip coefficient
Nux local Nusselt number
Pr Prandtl number, n/am

Rew, Re∞ Reynolds numbers
T temperature (K)
u, v velocity components along x and y axes (m/s)

Uw, U∞
the plate velocity and free stream velocity,
respectively (m/s)

x coordinate in flow direction (m)
y coordinate perpendicular to flow direction (m)
Vw uniform transpiration velocity (m/s)
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Greek Symbols
α thermal diffusivity (m2 s−1)
β coefficient of thermal expansion (1/K)
γ velocity ratio parameter
η similarity variable
θ dimensionless temperature
φ solid volume fraction parameter
ψ non-dimensional stream function
δ velocity slip parameter
µ dynamic viscosity (m2 s−1)
ν kinematic viscosity (m2 s−1)
ρCp heat capacity (J·kg−3·K−1)
ρ density (kg/ m3)
Subscripts
f fluid
nf ferrofluid
s nanoparticle
w condition at the wall
∞ condition at infinity
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