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Abstract: Existing large-signal control schemes for DC/DC converters formulate control strategies
based primarily on nonlinear control theory, and the associated design and implementation are
relatively complex. In this work, a decomposition modeling and inverse-system decoupling control
method is proposed for DC/DC converters that operate under large-signal disturbances. First, a
large-signal circuit-averaged model for DC/DC converters is established. The proposed control
system has a double closed-loop control structure composed of a voltage loop and a current loop.
Then, the voltage-loop and current-loop controlled subsystems are decoupled and compensated to
first-order integral elements using the inverse system method. Several linear feedback controllers
are designed for first-order integral systems under various optimization criteria using the optimal
control theory. Simulation and experiment were performed on buck–boost converters with resistive
and constant power loads. The results show that under the control of the proposed controller, all
systems exhibited excellent dynamic and steady-state performance. The proposed method allows the
disturbance control of the DC/DC converter, the dynamic behavior control of the voltage loop, and
the current loop to become independent processes. The local controller design follows the classical
linear control design method and is a simple and effective large-signal control strategy.

Keywords: DC/DC power conversion; modeling; decoupling of systems; control systems; constant
power load

1. Introduction

Currently, small-signal modeling of DC/DC converters with linear feedback control is a mature
method [1]. The model of a DC/DC converter using this method has three independent input
variables, of which the duty cycle, d̂(s) is a control input variable and both the DC power supply
voltage, v̂i(s), and the load current, îo(s), are disturbance input variables (variables marked with “ˆ”
are small-signal perturbation ac variables). The open-loop output voltage, v̂o(s), can be expressed as
v̂o(s) = Gvd(s)d̂(s) + Gvi(s)v̂i(s) + Z(s)îo(s), where both Gvd(s) and Gvi(s) are linear transfer functions.
However, one or more product terms exist in averaged equations for converters. A small-signal model
of a converter is constructed by perturbing and linearizing its large-signal about a certain steady-state
operating point. The nonlinear product terms are ignored, thereby requiring that the magnitude of
small ac variables be much smaller than the steady-state dc values and that the modulation frequency
be much lower than the switching frequency. When designing a feedback controller, it is often
necessary to ignore disturbance inputs and treat the system as a single-input single-output system.
Consequently, the designed controller has a large margin, and the performance of the system cannot be
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guaranteed upon large-signal disturbances such as sudden load changes and power supply fluctuations.
Furthermore, when the output capacitor voltage is used as an output variable, the small-signal
disturbance models of voltage-boosting DC/DC converters have zeros on the right half of the complex
plane [2] and are non-minimum phase (NMP) systems. NMP zeros can cause undershoots and
oscillations in a step response [3]. If the controller is designed using linear system theory, the way to
handle the NMP problem is usually to limit the system bandwidth to avoid the influence of the NMP
characteristic on the system’s stability. However, due to the low bandwidth, the speed and robustness
of the system’s dynamic response are limited.

With the development of new-energy distributed DC power supply systems, DC/DC converters
must meet the requirements of intermittent and random energy conversions and will always operate
in a non-steady state at dynamically changing operating points. The small-signal assumptions are no
longer applicable. Additionally, a distributed power supply system often contains multiple power
sources, and there are major changes in the way that DC/DC converters are connected, bringing the
following new challenges to control system design. (1) The variable coupling problem of multiport
integrated DC/DC converters [4–8]. Because of the presence of multiple power sources or loads, the
control system of a multiport integrated converter is often composed of multiple closed voltage and
current loops. These closed loops share the same output filter, resulting in coupling occurring between
the closed loops. Thus, the coupling factor cannot be ignored when designing control systems. (2) The
nonlinear load problem of cascaded DC/DC converters. The second-stage converter can often be
treated as a constant power load (CPL) on the first-stage converter. Because of its negative impedance,
the CPL will affect the stability of the cascaded system [9,10]. In summary, DC/DC converters in
distributed power supply systems have varied and complex inputs and loads. Large-signal modeling
should be adopted to fully describe the nonlinear characteristics of systems, and the problems of
decoupling, should be addressed.

To date, multiple large-signal modeling methods have been formulated [11–14]. Large-signal
models of DC/DC converters are often nonlinear, and system analysis and synthesis require nonlinear
control theory such as feedback linearization, Lyapunov control, sliding-mode control, passivity-based
control, and optimal control [15–24]. Analysis and design of a control system using nonlinear theory
involve a relatively constrained mathematical basis and complex mathematical transformations often
lead to unclear physical meaning. All of these methods are time-domain methods. While they can
ensure the stability of a closed-loop control system, they are incapable of taking into account specific
performance indices, such as steady-state accuracy and dynamic response, and they discard the
advantages of frequency-domain methods.

For decoupling the control of converters, the impact of load disturbances on the output voltage is
eliminated by adding a nonlinear feedback element [25]. State space decoupling methods have been
reported in [26,27] that use disturbance input decoupling and decoupling state feedback to eliminate
the cross-coupling among states in converters. In the control system of a multiport converter, energy
management and decoupling of the control and output variables are essential elements [28–30].

The inverse system method is a linear decoupling control method. The basic idea of this method is
as follows: Based on a mathematical model of the controlled object, an α-order integral inverse system
that can be realized using the feedback method is generated, and the controlled object is compensated
to a pseudo-linear system, which is then synthesized using the linear system theory [31,32]. To reduce
the dependence of the inverse system method on an accurate mathematical model of the controlled
object, Widrow and Walach developed a self-adaptive inverse control theory [33]. The physical
concept of the inverse system method is clear and intuitive, and the involved mathematical analysis is
simple. However, the inverse system method cannot be directly used for DC/DC converters, mainly
because the application of the inverse system method requires calculation of the inverse-system
compensation matrix of the controlled object based on a mathematical model. A large-signal model
of a DC/DC converter is a nonlinear strongly coupled system, and the analytical solution of the
inverse system cannot be easily found. Thus, in this work, it is proposed that a model is first
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divided into several sub-modules and that these sub-modules are then decoupled individually to
reduce decoupling complexity. For a DC/DC converter with a double closed-loop control system, a
large-signal averaged model is established using the three-terminal pulse width modulation (PWM)
switch modeling method [12]. The current-loop and voltage-loop sub-modules are individually
decoupled and compensated to first-order integral elements using the inverse system method, thereby
allowing the disturbance control, the dynamic behavior control of the voltage loop and the dynamic
behavior control of the current loop to become independent processes that do not affect one another.
Linear feedback controllers for the voltage and current loops can then be designed.

Most of the aforementioned decoupling methods are based on linearized small-signal models.
The proposed model is a large-signal model that does not ignore any nonlinear terms. It is applicable
for designing a controller for DC/DC converters with linear load or with nonlinear load, and it is
suited to different operating points. The proposed method not only ensures the accuracy of the system
model but also improves the characteristics of the controlled objects, simplifies the controller design,
and enhances the stability, rapidity, disturbance resistance, and robustness of the system.

The rest of this paper is organized as follows: Section 2 describes the process of establishing
large-signal models for DC/DC converters. Section 3 discusses the decomposition of large-signal
models and the inverse-system decoupling of the voltage and current loops. Section 4 presents several
linear controllers designed as controllers for the voltage and current loops using the optimal control
method under various optimization criteria. Section 5 details the application of the proposed method
in the design of control systems for buck–boost converters and validates the proposed method through
simulation and experimentation. Section 6 provides the conclusion.

2. Large-Signal Models of DC/DC Converters

The three-terminal PWM switch modeling method [12] establishes an equivalent circuit model for
a DC/DC converter by treating the basic switching units of the converter—power-switching transistors
and diodes—as a three-terminal switching network and by averaging the voltages and currents at the
terminals. A three-terminal switch can be represented by a single-pole double-throw switch, as shown
in Figure 1a (a-p and c-p are defined as voltage and current ports, respectively), which can be treated
as a two-port network.
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Figure 1. Three-terminal pulse width modulation (PWM) switch model: (a) three-terminal switching 
network; (b) large-signal averaged circuit model. 
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Figure 1. Three-terminal pulse width modulation (PWM) switch model: (a) three-terminal switching
network; (b) large-signal averaged circuit model.

In the continuous conduction mode (CCM), the average terminal current and the average port
voltage within a switching cycle T are ia = dic and vcp = dvap, respectively, where d represents the duty
cycle. Thus, the large-signal circuit-averaged model of a three-terminal PWM switch is composed of
two controlled sources, as shown in Figure 1b. The large-signal averaged models of a buck converter, a
boost converter, and a buck–boost converter are established using this method, as shown in Figure 2.



Energies 2019, 12, 179 4 of 19

Energies 2018, 11, x FOR PEER REVIEW  4 of 19 

 

v
++

V __

i L

o

i o

v
++

i

V
__ o

i L

C

i o

Lid dV

L L

C v
+
_C

r C

r Lr L i C

C v
+
_C

r C

S

Di

a c

p

a c

p

i iz z

 
(a) 

v
++

V
__

i L

o

i o

L r L i C

C v
+
_C

r C

S

D

i v
++

V __

i L

o

i o

L r L i C

C v
+
_C

r C
i

Li

ov

-d

-d

a

c p c p

a

z z

 

(b) 

v
+

+
V

_

_

a c p

i L

o

i o

L

r L

i C

C v
+

_
C

r C

i

S D

v
+

+
V

_

_

a

c

p

o

i o

L

r L

i C

C v
+

_
C

r C

i

id L

d( vo )Vi

i L

+

z z

 

(c) 

Figure 2. Main circuits and large-signal averaged models of DC/DC converters in the continuous 
conduction mode (CCM): (a) buck converter; (b) boost converter; (c) buck–boost converter. 
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Figure 2. Main circuits and large-signal averaged models of DC/DC converters in the continuous
conduction mode (CCM): (a) buck converter; (b) boost converter; (c) buck–boost converter.

The equations for the main circuit of the above converters are listed in Table 1. Here, Vi represents
the input DC voltage; vo represents the output voltage; iL represents the inductive current; iC represents
the capacitive current; io represents the output current; Z represents the load impedance, for a resistive
load, Z(s) = R; and rL and rC represent the equivalent series resistance (ESR) of the inductor and
capacitor, respectively. The voltage and current variables in the above equations are average values.
Note that the load impedance Z does not appear in the equations; thus, these models are applicable to
any load type, including nonlinear load. Based on Table 1, block diagrams of the large-signal averaged
models of the three converters can be produced, as shown within the black dotted boxes (excluding
the transfer function of the PWM modulator, 1/VM) in Figure 3.

Table 1. Equations for main circuit of DC/DC converters.

Buck Boost Buck–Boost L diL
dt + rLiL = −vo + dVi

iC = iL − io
vo = 1

C
∫

iCdt + rCiC

 L diL
dt + rLiL = (d− 1)vo + Vi

iC = (1− d)iL − io
vo = 1

C
∫

iCdt + rCiC

 L diL
dt + rLiL = (d− 1)vo + dVi

iC = (1− d)iL − io
vo = 1

C
∫

iCdt + rCiC
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Figure 3. Block diagrams of the inverse-system decoupling control systems for DC/DC converters: (a) 
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feedback elements, respectively. The feedback current and voltage are directly proportional to the 
current and voltage in the designed path, therefore, H1(s) = h1, H2(s) = h2, where h1 and h2 are constant. 
Variables marked with “~” are estimation or measure variables. Each control system is decomposed 
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buck converter; (b) boost converter; (c) buck–boost converter.

3. Feedback Linearization Based on the Inverse System Method

A voltage and current double closed-loop control system is selected for each of three types of
converter (buck, boost, and buck–boost). Figure 3a–c show the block diagrams of the control systems.
Within the black dotted box in each of Figure 3a–c is the controlled objects, including the main circuit
of the converter and a PWM modulator. G1(s) and G2(s) are the current-loop and voltage-loop linear
feedback controllers, respectively. H1(s) and H2(s) are the current-loop and voltage-loop feedback
elements, respectively. The feedback current and voltage are directly proportional to the current
and voltage in the designed path, therefore, H1(s) = h1, H2(s) = h2, where h1 and h2 are constant.
Variables marked with “~” are estimation or measure variables. Each control system is decomposed
into four sub-modules, namely, a disturbance input decoupling sub-module (red), a decoupling state
feedback sub-module (purple), a current-loop sub-module (blue) and a voltage-loop sub-module
(green). Disturbance input decoupling is achieved to offset the impact of the disturbances of power
supply and load. Decoupling state feedback is employed to eliminate cross-coupling of the controlled
loops and independently control these loops. An inverse-system decoupler and a linear feedback
controller are designed for the voltage-loop and current-loop controlled objects, respectively, with the
aim to compensate these two objects to two pseudo-linear systems. The following section focuses on
finding a solution for the inverse-system decoupler.
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3.1. Definition of an α-Order Integral Inverse System

“Inverse” is a concept of universal significance. The relationship between a dynamic system and
its inverse system can be viewed as a relationship between mapping and inverse mapping. A system
that can form an identity mapping relationship with the original system is referred to as the unit
inverse system of the original system. However, generally, this structure includes a pure differentiation
element. It is an unphysical structure that cannot be implemented in engineering practice. Therefore,
there is a need to introduce a control structure that can be implemented, i.e., an α-order integral inverse
system, which is defined as follows [31]:

For a given system, Σ, its input vector, output vector, and state variable are denoted by u(t) ∈
Rr, y(t) ∈ Rm and x(t) ∈ Rn, respectively, and the initial condition is set as x(t0) = x0. The mapping
relationship of Σ is described with an operator, θ, as y = θu. If an r-dimensional input m-dimensional
output system with a mapping relationship of u = θa ϕ (φ is the α-order derivative of y, i.e., φ (t) =
y(α)(t)), Σα, exists, when the initial state of Σα is the same as that of Σ, if operator θα meets the following
condition: θθa ϕ = θ(θay(a)(t)) = θu = y, then Σα is referred to as the α-order integral inverse system
of Σ.

System ΣαΣ expressed with composition operator θαθ is equivalent to an α-order integrator series
system, as shown in Figure 4. It is a pseudo-linear system, thus various linear control theories can be
employed to complete the design of the closed-loop control system.
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3.2. Inverse System of the Current-Loop Controlled Object

The current-loop controlled object model is written in the form of a state-space equation:

diL
dt

=
vLr
L
− rLiL

L
, (1)

where iL represents the state variable. With vLr as the control variable and y = iL as the output variable,
based on the inverse-system solution method, the derivative of the output equation is continuously
sought until y(α) explicitly contains vLr:

y(1) =
diL
dt

=
vLr
L
− rLiL

L
. (2)

The relative-order of the system is α = 1. Therefore, the system is first-order reversible. Let φi = y(1) be
the new input. The first-order integral inverse system of Equation (1) is, thus, obtained as follows:

vLr = Lϕi + rLiL. (3)

Thus, this inverse-system decoupler and the original system form a pseudo-linear system. Take
Figure 3c as an example, whose output is as follows:

IL(s) =
1

sL + rL
{dVi −Vo(s) +

Vo(s)
VM

ṼM

Ṽo(s)
[−d̃Ṽi + L̃Φi(s) + r̃L ĨL(s) + Ṽo(s)]}. (4)
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If the measure quantities agree closely with the true values, the open-loop transfer function of the
current loop is

IL(s)
Φi(s)

≈ 1
s

. (5)

The decoupled current-loop controlled object is equivalent to a first-order integral linear system,
y = s−1φi. If a current-loop controller is designed to allow iL to be satisfactorily capable of tracking the
changes in iref, then IL(s)/Iref(s) ≈ 1/H1(s).

3.3. Inverse System of the Voltage-Loop Controlled Object

The voltage-loop controlled object model is:

vo =
1
C

∫
iCdt + rCiC, (6)

where iC represents the state variable. With iC as the control variable and vo as the output variable, the
transfer function corresponding to Equation (6) obtained by Laplace transformation is

Vo(s)
IC(s)

=
1

sC
+ rC. (7)

Let Φv(s) = sVo(s) and IC(s) be the new input and output variables, respectively. The first-order integral
inverse-system transfer function of Equation (7) is thus obtained:

IC(s)
Φv(s)

=
C

1 + srCC
. (8)

This inverse-system decoupler is connected to the original system in series to form a pseudo-linear
system. For example, the expression of the Vo(s) of Figure 3c is

Vo(s) = (
1

sC
+ rC){−Io(s) +

(1− d)
H1(s)

H̃1(s)
1− d̃

[ Ĩo(s) +
C̃

(1 + sC̃r̃C)
Φv(s)]}. (9)

The open-loop transfer function of the voltage loop is obtained:

Vo(s)
Φv(s)

≈ 1
s

. (10)

Therefore, the control problem is converted to a problem of controlling a pseudo-linear system
that has a standard form.

4. Controller Design

After decoupling, the open-loop transfer functions of the current and voltage loops are both 1/s.
While multiple theories and methods exist for linear system control, the controlled objects involved
here are a type of simple, standard special system—a first-order pure integral system. Therefore,
the design of proportional–integral–derivative (PID) controllers for first-order pure integral systems
based on the optimal control theory [34] is discussed here with a view to obtain simpler and more
direct results.

Each of the decoupled current-loop and voltage-loop controlled objects represented by
Equations (5) and (10), respectively, is equivalent to a first-order integral linear system, whose
state-space and output equations are { .

x = ϕ

y = hx
(11)
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where x, ϕ and y represent the state, input and output variables, respectively. Manifestly, this system is
completely controllable and observable, and an approximate optimal control for this system exists.
It is assumed that the desired system output is r. A deviation of e(t) = r − y(t) is introduced to convert
the output regulator problem to an equivalent state regulator problem. The state-space equation in
Equations (11) is then transformed to

.
e = −hϕ (12)

The optimization objective is to find a function ϕ*(t) that minimizes the performance index under
the constraint of the system equation. The linear quadratic regulator (LQR) and the integrated time
absolute error (ITAE) optimization method can be used to design controllers. Three types of optimal
controllers, P, PI, and I-P regulator are discussed here. If a P regulator is selected as the controller, then
the closed-loop system is a first-order inertial system. If a PI regulator is selected as the controller,
then the closed-loop system is a second-order system with a zero. When an I-P regulator is selected
as the controller, the closed-loop system is a second-order system with no zero. Figure 5 shows the
structural diagrams of the optimal control systems, in which φ* is the optimal control. Table 2 shows
the steady-state and dynamic performance indices of the aforementioned optimal control system.
The natural frequency ωn characterizes the transient response speed of the system. Of the frequency
domain indices, the corresponding parameter is the bandwidth frequency, ωb. After determining the
ωn or ωb of the closed-loop system based on the settling time ts requirements, the suitable controller
coefficients, kP and kI can be determined to minimize the LQR or ITAE index of the system. Thereby
ensuring that the system is optimal under the functional meaning of the performance indices and
that the step response of the closed-loop system is in the desired form. Figure 6 shows the unit step
response curve of the closed-loop system.
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Table 2. Performance of closed-loop responses.

Regulator Types P PI PI I-P

Optimal criteria LQR 1 and ITAE for step response LQR 2 ITAE for ramp
response

LQR 3 and ITAE
for step response

Closed-loop transfer function
Y(s)/R(s)

ωn
s+ωn

√
2ωns+ωn

2

s2+
√

2ωns+ωn2
3.2ωns+ωn

2

s2+3.2ωns+ωn2
ωn

2

s2+
√

2ωns+ωn2

Damping ratio ξ - 0.707 1.6 0.707
Overshoot σ (%) 0 20.79 6.84 4.32

ts (s) (∆ = 2%) 3.91/ωn 4.9/ωn 5.56/ωn 5.96/ωn
ωb (rad/s) ωn 2.06ωn 3.51ωn ωn

System type I II II I
Position error, R(s) = 1/s 0 0 0 0
Speed error, R(s) = 1/s2 1/ωn 0 0

√
2/ωn
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Table 2. Cont.

Regulator Types P PI PI I-P

Acceleration error, R (s) = 1/s3 ∞ 1/ωn
2 1/ωn

2 ∞
Controller parameters kP = ωn/h kP =

√
2ωn/h kP = 3.2ωn/h kP =

√
2ωn

kI = hkP
2/2 kI = hkP

2/3.22 kI = kP
2/(2h)

1 The LQR performance index is defined as J = 1
2

∫ ∞
0 [q1e2(t) + q2 ϕ2(t)]dt = min, where q1 and q2 are weighting

factors (q1 > 0 and q2 > 0). The optimal control is φ *(t) = kPe, where kP = q1
1/2q2

−1/2. 2 The LQR performance index is

defined as J = 1
2

∫ ∞
0 {

[
e
.
e

]T

Q1

[
e
.
e

]
+ q2

.
ϕ

2}dt = min, where Q1 = diag(q1, 0) is weighting matrix. Equation (12)

is rewritten as:
[ .

e
..
e

]
=

[
0 1
0 0

][
e
.
e

]
+

[
0
−h

]
.
ϕ. The optimal control is φ *(t) = kI

∫
edt + kPe, where kI =

q1
1/2q2

−1/2 and kP = 21/2h−1/2q1
1/4q2

−1/4. Clearly kI = hkP
2/2. 3 The LQR performance index is defined as J =

1
2

∫ ∞
0 {

[
e
.
x

]T

Q1

[
e
.
x

]
+ q2

.
ϕ

2}dt = min. Equation (12) is rewritten into:
[ .

e
..
x

]
=

[
0 −h
0 0

][
e
.
x

]
+

[
0
1

]
.
ϕ.

The optimal control is φ *(t) = kI
∫

edt − kPx, where kI = q1
1/2q2

−1/2 and kP = 21/2h1/2q1
1/4q2

−1/4. Clearly, kI =
kP

2/(2h).
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V; inductance, L: 1 mH; rL: 0.005 Ω; capacitance, C: 470 μF; rC: 0.005 Ω; and rated load resistance, R1: 
30 Ω. A closed-loop buck converter control system was connected to (and behind) the 
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5. Validation through Simulation and Experimentation

The proposed inverse-system decoupling control method was validated through simulation and
experimentation based on buck–boost converters under resistive and CPL conditions.

The main circuit parameters of the designed buck–boost converter are as follows: Vi: 20 V; vo:
30 V; inductance, L: 1 mH; rL: 0.005 Ω; capacitance, C: 470 µF; rC: 0.005 Ω; and rated load resistance, R1:
30 Ω. A closed-loop buck converter control system was connected to (and behind) the aforementioned
buck–boost converter in cascades as a CPL, as shown in Figure 7. The buck converter had a rated Vi2
of 30 V, a rated vo2 of 15 V, and a load resistance R2 = 9 Ω.
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in parallel.

For a buck–boost converter with a pure resistive load and a CPL connected in parallel, if the
effects of rL and rC are not considered, then the control-to-output transfer function of its voltage loop is:

Gvc(s) =
v̂o(s)
îL(s)

∣∣∣∣
v̂i(s)=0

=
D′REQ

1 + D

(1− DL
D′2REQ

s)

(1 + REQC
1+D s)

, (13)

where D′ = 1 − D, 1/REQ = 1/R1 − 1/RCPL, RCPL = Vo
2/P, P = Vo2

2/R2. This is a NMP system. When
R2 > 7.5 Ω, REQ > 0, Gvc(s) has a zero in the right half of the complex plane. When R2 < 7.5 Ω, REQ < 0,
Gvc(s) has a pole in the right half of the complex plane, the system becomes an unstable NMP system.
Therefore, a minute disturbance in the load can cause major changes in system properties.

When a PI controller G2(s) = kP + kI/s is used, the characteristic equation of the closed-loop
system is

1 + G2(s)Gvc(s)h2 = a2s2 + a1s + a0 = 0, (14)

where a2 = REQC − h2DLkP/D′, a1 = 1 + D + h2D′REQkP − h2DLkI/D′, and a0 = h2D′REQkI. According
to the Routh–Hurwitz stability criterion, the necessary and sufficient condition for stability of a
second-order system is a0 > 0, a1 > 0, and a2 > 0. Therefore, a0 > 0 is necessary for system stability.
To satisfy this condition, when REQ > 0, kI should satisfy kI > 0; when REQ < 0, kI should satisfy kI < 0.
Obviously, these two conditions are contradictory. When the load on the system is subjected to a large
disturbance, the original stable system may become unstable if a conventional linear controller is used.

For the inverse-system decoupling control system, a P controller was used in the outer voltage
loop, and a PI controller was used in the inner current loop. The unit step response speed of the first-
and second-order system is in direct proportion to ωb. In a double closed-loop system, the value of ωb
of the inner loop should be far higher than that of the outer loop. Generally, ωb for the inner current
loop is set to at least 5 to 10 times that of the outer voltage loop. The value of ωb of the inner current
loop is constrained by and required to be far lower than the switching frequency. It is generally lower
than 1/5–1/10 of the switching frequency. Here, the switching frequency of the converter is set to
50 kHz; the parameters of the PI controller for the inner current loop are set as follows: kP1 = 20,000
and kI1 = 20,000,000; the feedback factor (h1) of the inner current loop is set to 0.1; the parameters of
the P controller for the outer voltage loop are set as follows: kP2 = 2000; and the feedback factor (h2) of
the outer voltage loop is set to 0.1.

Simulations and experiments were performed under input voltage disturbance and load
disturbance conditions. The results were compared with those of a conventional double closed-loop
controller. For the conventional double closed-loop system, a PI controller was selected for the outer
voltage loop, G2(s) = kP2 + kI2/s, where kP2 = 1, kI2 = 400, and h2 = 0.1. The system phase margin was
55.3◦, and the gain margin was 94 dB. A P controller was selected for the inner current loop, kP1 = 1.
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The root loci of Equation (14) are shown in Figure 8, where D = 0.6, and REQ changes from -∞ to +∞.
The roots are given by

s1,2 =
−a1 ±

√
a1

2 − 4a0a2

2a2
. (15)

When REQ ≥ 0.32 Ω, both roots are on the left half plane and the system is stable. When REQ < 0, a pair
of complex conjugate roots cross the imaginary axis to the right half plane as |REQ| decreases. A Hopf
bifurcation occurs at REQ = −38.5 Ω (i.e., P = 53.4 W and R2 = 4.2 Ω) and the system loses its stability.
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Figure 8. Root loci for variation of REQ.

Figure 9 shows the simulated waveforms when the inverse-system decoupling control system and
the conventional double closed-loop control system were used, respectively, under the rated operating
conditions upon sudden changes in Vi. The specific disturbance process is as follows: Vi jumped
from 20 to 50 V at 0.2 s and recovered to 20 V at 0.4 s. During the starting process, the inverse-system
decoupling control system had a vo overshoot, σ(vo) of 0, and ts = ca. 15 ms. In comparison, the
conventional double closed-loop control system had a σ(vo) of approximately 46%, and a longer ts = ca.
26 ms. In addition, it had a significant vo undershoot, and vo reached the target value after multiple
oscillations. During a sudden increase (sudden decrease) in the input voltage, the maximum increase
(decrease) in conventional controlled output voltage was 15 V, and the output voltage essentially
returned to the reference value after 23 ms. In contrast, the inverse-system decoupling controlled
output voltage was virtually immune to input voltage disturbances.
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value after multiple oscillations. During a sudden increase (sudden decrease) in the input voltage, 
the maximum increase (decrease) in conventional controlled output voltage was 15 V, and the 
output voltage essentially returned to the reference value after 23 ms. In contrast, the inverse-system 
decoupling controlled output voltage was virtually immune to input voltage disturbances. 
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electronic load acted as the CPL. Figure 11 shows the overall structure of the principle prototype. A 
TMS320F2812 digital signal processor chip was used as the controller. The large-signal 

Figure 9. Waveforms of voltage and current of a buck–boost converter with a pure resistive load
under power supply disturbances: (a) inverse-system decoupling controller; (b) conventional double
closed-loop controller.

Figure 10 shows the simulated waveforms under the rated operating conditions upon sudden
changes in R2. When R2 suddenly decreased (jumping from 9 Ω to 3 Ω, i.e., CPL power jumping
from 25 W to 75 W) at 0.2 s, the maximum decrease in vo resulting from the transition of the
inverse-system decoupling control system was 4.36 V, and vo rapidly recovered to the target value
after 8 ms. In comparison, vo sustained oscillation due to Hopf bifurcation and could not stabilize
when the conventional double closed-loop control system was used. Therefore, the proposed
controller performed significantly better than the conventional controller under input voltage and load
disturbances. This is mainly reflected by small output voltage variations and shorter restoration times.
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Figure 10. Waveforms of voltage and current of a buck–boost converter with a pure resistive load and
a CPL connected in parallel under load disturbances: (a) inverse-system decoupling controller; (b)
conventional double closed-loop controller.

To further validate the control algorithm, a principle prototype of the buck–boost converter control
system was fabricated in the laboratory. A GW Instek PEL-3031E programmable DC electronic load
acted as the CPL. Figure 11 shows the overall structure of the principle prototype. A TMS320F2812
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digital signal processor chip was used as the controller. The large-signal inverse-system decoupling
control algorithm was selected for the digital controller. The duty-cycle d was evaluated as follows:

e2(k) = vre f − h2vo(k)
ϕv(k) = kP2e2(k)
ϕo(k) =

CrC
Tsam+CrC

ϕo(k− 1) + CTsam
Tsam+CrC

ϕv(k)
ire f (k) = [io(k) + ϕo(k)] h1

1−d(k−1)
e1(k) = ire f (k)− h1iL(k)
ϕi(k) = ϕi(k− 1) + kP1[e1(k)− e1(k− 1)] + kI1Tsame1(k)
d(k) = 1

vo(k)
[Lϕi(k) + rLiL(k) + vo(k)− d(k− 1)Vi(k)]

, (16)

where Tsam is the sampling period. The parameters of the main circuit and control system of the
principle prototype were the same as those used in the simulations. The results were compared with
those of a conventional double closed-loop controller.
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Figure 11. DSP2812-based principle prototype of the large-signal inverse-system decoupling control
system for buck–boost converters.

Figure 12 shows the step response waveform of the prototype system with a resistive load during
the starting process. When a 20 V step signal was input, the vo response curve of the inverse-system
decoupling control system had no overshoot, In comparison, the conventional double closed-loop
control system had a σ(vo) of 33%. Experiments were conducted under jumping input voltage
conditions. Figure 13 shows the waveforms of vo and io when the input voltage Vi jumped from
20 V to 50 V. The maximum increase in the inverse-system decoupling controlled output voltage vo

was 3 V, and vo recovered to the target value after 12 ms. In contrast, the maximum increase in the
conventional double closed-loop control system output voltage was 14 V, and the restoration time was
25 ms.

Figure 14 shows the step response waveforms of the prototype system with a pure resistive load
and CPL connected in parallel. During startup, the CPL power was P = 25 W, and the buck–boost
converter equivalent impedance was REQ = 180 Ω. The startup characteristics of the converter were
similar to those of the system with a pure resistive load as shown in Figure 12.

Figure 15 shows the waveforms of voltage and current when the CPL jumped from 25 W to
75 W with REQ = −20 Ω. At the instant of the load jump, the inverse-system decoupling controller
effectively controlled the converter, and vo recovered to the target value within approximately 18 ms.
In comparison, the conventional double closed-loop controller did not effectively control the converter.
Under load disturbances, vo underwent oscillations due to Hopf bifurcation. The experimental results
match the root locus analysis and the simulation results. However, the Hopf bifurcation point is
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slightly different from that predicted by Equation (14). Because Equation (14) is deduced from a small
signal model which ignore nonlinear terms and ESR of the converter.
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Figure 15. Waveforms of voltage and current of a buck–boost converter with a pure resistive load
and a CPL connected in parallel under load disturbances: (a) inverse-system decoupling controller;
(b) conventional double closed-loop controller.

Based on the experimental results, under the control of the inverse-system decoupling converter,
the buck–boost converter exhibited excellent dynamic properties at the starting stage and excellent
disturbance resistance. These observations were consistent with the simulation results and the
theoretical analysis.

6. Discussion

In this work, a large-signal decomposition modeling and inverse-system decoupling control
strategy for DC/DC converters is proposed. This method has the following advantages:

(1) By taking full advantage of the parametric and structure information of the large-signal model
for a DC/DC converter, the proposed modeling method does not ignore any nonlinear terms,
which ensures the accuracy of the system model. In addition, load impedance is not included in
the model; therefore, the model is applicable for designing a controller for DC/DC converters not
only with linear load but also with nonlinear load, and it is suited to different operating points.

(2) The proposed control method improves the characteristics of the controlled objects and simplifies
the controller design. By using a combination of decoupling methods, the controlled object
was compensated into a specific first-order pure integral system, the order of the system
being controlled is reduced; some adverse factors that affected the quality of control, such
as non-minimum phase characteristics, were eliminated.

(3) Quadratic and ITAE optimal controllers are designed for first-order pure integral controlled
objects. Furthermore, the relationship among natural frequency (or bandwidth frequency) and
controller parameters are built up. Thereby ensuring that the system is optimal under the
functional meaning of the performance indices and that the step response of the closed-loop
system is in the desired form.

The experimental results demonstrate that the proposed method enhances the stability, rapidity,
disturbance resistance, and robustness of the control system. Disturbances and the cross-coupling
voltage and current loops are the basic components of a DC/DC converter control system. Thus, the
application of the proposed method can be extended in other DC/DC converter systems with linear or
nonlinear loads. This development is of importance to the realization of the modular design of control
systems for DC/DC converters under large-disturbance conditions.
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Abbreviations

CCM Continuous conduction mode
CPL Constant power load
DC/DC Direct current/Direct current
ESR Equivalent series resistance
ITAE Integrated time absolute error
LQR Linear quadratic regulator
NMP Non-minimum phase
PID Proportional-integral-derivative
PWM Pulse width modulation

Nomenclature

C capacitance
d duty-cycle
D duty-cycle at steady-state operating point
e error
e1 current error
e2 voltage error
G1(s) transfer function of current-loop controller
G2(s) transfer function of voltage-loop controller
Gvc(s) transfer function from inductive current to output voltage
Gvd(s) transfer function from duty cycle to output voltage
Gvi(s) transfer function from input voltage to output voltage
h1 feedback factor of inner current-loop
h2 feedback factor of outer voltage-loop
H1(s) transfer function of current-loop feedback element
H2(s) transfer function of voltage-loop feedback element
ia Average active terminal current of three-terminal PWM switch model
ic Average common terminal current of three-terminal PWM switch model
iC capacitive current
IC(s) Laplace transform of capacitive current
iCPL current of CPL
iL inductive current
IL(s) Laplace transform of inductive current
io output current
io1 current of pure resistive load
io2 output current of loaded buck converter
Iref (s) Laplace transform of reference current
J LQR performance index
kP proportional gain
kP1 proportional gain of controller for inner current-loop
kP2 proportional gain of controller for outer voltage-loop
kI Integral gain
kI1 Integral gain of controller for inner current-loop
kI2 Integral gain of controller for outer voltage-loop
L inductance
q1, q2 weighting factors of LQR
Q1 weighting matrix of LQR
r reference signal
rC ESR of capacitor
rL ESR of inductor
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R2 load resistance of loaded buck converter
REQ equivalent load resistance
T switching cycle
ts settling time
Tsam sampling period
u(t) input vector
vap average active-passive port voltage of three-terminal PWM switch model
vcp average common-passive port voltage of three-terminal PWM switch model
Vi input DC voltage
Vi2 input voltage of loaded buck converter
VM amplitude of triangular carrier
vo output voltage
Vo(s) Laplace transform of output voltage
vo2 output voltage of loaded buck converter
vref reference voltage
x(t) state variable
x0 initial value of x(t)
y(t) output vector
Z(s) load impedance
ξ damping ratio
σ maximum percentage overshoot
φ α-order derivative of y
φi first-order derivative of iL
Φi(s) Laplace transform of φi
φv first-order derivative of vo

Φv(s) Laplace transform of φv

φ* optimal control
ωb bandwidth frequency
ωn natural frequency
Σ, Σα a given system and its α-order integral inverse system
ˆ variables marked with "ˆ" are small-signal perturbation ac variables
~ variables marked with “~” are estimation or measure variables
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