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Abstract: The pseudosteady state productivity index is very important for evaluating the production
from oil and gas wells. It is usually used as an objective function for the optimization of fractured
wells. However, there is no analytical solution for it, especially when the proppant number of the
fractured well is greater than 0.1. This paper extends the established fitting solution for proppant
numbers less than 0.1 by introducing an explicit expression of the shape factor. It also proposes a
new asymptotic solution based on the trilinear-flow model for proppant numbers greater than 0.1.
The two solutions are combined to evaluate the pseudosteady state productivity index. The evaluation
results are verified by the numerical method. The new solution can be directly used for fracture
geometry optimization. The optimization results are consistent with those given by the unified
fracture design (UFD) method. Using the analytical solution for the pseudosteady state productivity
index, optimization results can be obtained for rectangular drainage areas with arbitrary aspect ratios
without requiring any interpolation or extrapolation. Moreover, the new solution provides more
rigorous optimization results than the UFD method, especially for fractured horizontal wells.

Keywords: asymptotic solution; pseudosteady state productivity index; fractured wells; proppant
number; fracture geometry optimization

1. Introduction

Hydraulic fracturing is an important method currently used for low-permeability oil and gas
reservoir stimulation and development. It can be used for vertical and horizontal wells. This paper
focuses on well production within closed rectangular drainage areas. In this case, the well works under
the transient and pseudosteady state.

Gringarten and Ramey [1] proposed a list of instantaneous Green’s and source functions that can
be used with Newman’s product method to generate solutions for a wide variety of reservoir flow
problems. These source functions have been used to study the unsteady-state pressure distributions
created by wells with a single vertical fracture [2]. By dividing the fracture length into multiple
segments, the non-uniform flux along the fracture can be considered. However, the pressure drop
along the fracture has been neglected in previous studies and the conductivity of the fracture has been
assumed to be infinite. Pressure-transient behavior and inflow performance of horizontal wells with
multiple fractures have been studied using source functions [3,4]. However, the flux along the fracture
was assumed to be uniform. To consider the pressure drop and non-uniform flux in the fracture, the
fracture was considered as discrete infinite sink points and the flow in the fracture was assumed to be
a steady Darcy linear flow [5–7]. Lord Kelvin’s point-source solution and superposition principle were
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used to construct flux equations for all sink points. Cinco-Ley et al. [8] divided the fracture length into
multiple segments and coupled a reservoir flow equation with a fracture flow equation to solve the
pressure-transient behavior in finite-conductivity fractures.

Gringarten and Ramey provided instantaneous Green’s and source functions. However, if the
source is continuous and the flow rate is variable, then the source function must be integrated with
respect to time, which is not easy to handle in the time domain. These problems can be solved by
performing the Laplace transform of the integration [9–11]. Chen et al. [12] extended Newman’s
product method into the Laplace domain. However, it was only valid for a limited range of conditions.
Laplace transform and Fourier transform have been used directly to solve reservoir and fracture flow
equations [13–20]. However, these equations must be solved differently for different reservoir and
fracture configurations.

Ozkan [21] proposed an extensive list of solutions for point, line, and slab sources in terms of
the Laplace transform variable. These solutions were used to obtain pressure distributions and well
responses for a wide variety of wellbore configurations and reservoir conditions. Without the use of
integration with respect to time, it becomes easier to consider variable rate conditions such as constant
pressure production [22,23]. Laplace inversion can be done through the Stehfest algorithm [24].
The line-source solution has been widely used for complicated applications of multiple fractured
horizontal wells [25–28]. Slab sources [29–35] and distributed volumetric sources (DVS) [36–40] have
recently been proposed for pressure-transient analysis and productivity prediction. More generally,
numerical methods have also been used for well performance evaluation, such as the finite element
method (FEM) [41], the extended finite element method (XFEM) [42], the finite difference method
(FDM) [43], and the boundary element method (BEM) [44].

However, in the above methods, the fracture must be divided into points or small segments.
Thus, calculation is time consuming and it is difficult to obtain analytical or asymptotic solutions.
Another generic method is to assume linear-flow in both the reservoir and fracture. Flow equations
can be simplified and solved by Laplace transforms. Cinco-Ley and Samaniego [45] first proposed
bilinear-flow theory in an infinite reservoir. Lee and Brockenbrough [46] extended it to the trilinear-flow
model. Ozkan et al. [47,48] obtained trilinear-flow solutions for closed reservoirs. Brown et al. [49]
used the model in unconventional shale reservoirs and introduced many asymptotic solutions for
pressure and its derivative. Wang et al. [50] incorporated fractal theory into the trilinear-flow
model. Wang et al. [51] considered asymmetric configurations in multi-fractured horizontal wells.
The trilinear-flow model has been further extended to the five-linear-flow model for more complex
reservoirs [52–55].

For closed reservoirs, wells work under transient and pseudosteady states. During the
pseudosteady state, the productivity index remains constant. So, it is usually used as the objective
function to be maximized for the optimization of fractured wells [56–58]. However, it is difficult to
obtain an analytical formula for the productivity index under the pseudosteady state. Most approximate
analytical formulas [59–61] neglect flow in the fracture. Guo et al. [62] divided the flow system into
four regions and coupled the radial flow in the non-fractured region of the reservoir, linear flow
toward the fractures in the fractured region, linear flow in the fracture, and radial flow in the fracture
toward the horizontal wellbore. Zhang et al. [63] extended the above work to consider non-Darcy flow
and fracture heterogeneity. However, the pressure condition was not rigorously continuous between
adjacent regions and the flux distribution along the boundary was assumed to be uniform.

Economides et al. [64] proposed a fitting formula of the productivity index based on Cinco-Ley
and Samaniego’s work [45]. However, the formula is only valid for square drainage areas and proppant
numbers less than 0.1. Since the trilinear-flow model can provide analytical solutions in the Laplace
space, asymptotic solutions can be obtained for short or long time periods, which is the basis of this
paper. Solutions in the time space can then be readily derived by analytical Laplace inversions [49].
Nevertheless, the flow in the reservoir-fracture system becomes pseudo-radial rather than trilinear with
proppant numbers less than 0.1 [65]. In other words, the trilinear-flow model is no longer valid with
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small proppant numbers. To this end, this paper extends the established fitting solution for proppant
numbers less than 0.1 by introducing an explicit expression of the shape factor [66] and proposes a
new asymptotic solution based on the trilinear-flow model [49] for proppant numbers greater than 0.1.
The two solutions are combined to evaluate the pseudosteady state productivity index.

Ozkan [21] proposed an asymptotic solution for line sources in the Laplace space under the
pseudosteady state. This solution has been used to obtain the productivity index of fractured
horizontal wells [67]. However, with this method, the fracture must be dispersed and large linear
equations must be solved, which is time consuming. Nevertheless, the results of this method have been
plotted as curves. Fitting formulas of the optimal dimensionless fracture conductivity and maximum
dimensionless productivity index have been obtained for a given proppant number and reservoir
aspect ratio [68–70]. This optimization method is referred to as unified fracture design (UFD) [64].

Since no simple analytical formula of the productivity index exists for proppant numbers greater
than 0.1, the fitting formulas of the optimal dimensionless fracture conductivity and maximum
dimensionless productivity index given by the UFD method are rather complex. In particular,
when the reservoir aspect ratio does not equal 1, several parameters in the fitting formulas must
be extrapolated [65] and become incorrect if they are far away from the existing parameter values.
Using the analytical solution of the pseudosteady state productivity index proposed in this work,
optimization results can be obtained for rectangular drainage areas with arbitrary aspect ratios without
any interpolation or extrapolation.

For fractured horizontal wells, the flow near the wellbore in the fracture becomes radial and
an additional skin factor can be incorporated into the productivity index formula for corresponding
vertical wells [71]. Wei and Economides [72] used this skin factor for the fracture geometry optimization
of horizontal wells in the UFD method. However, in the above work, this skin factor was assumed
to be constant, yet it actually varies with the permeability of the reservoir and fracture, the fracture
height and width, and the wellbore radius. Therefore, the existing fitting formulas for the optimal
dimensionless fracture conductivity and maximum dimensionless productivity index given by the
UFD method are no longer accurate for fractured horizontal wells. With the analytical solution of the
pseudosteady state productivity index proposed in this work, more rigorous optimization results for
fractured horizontal wells can be derived.

2. Analytical Solution of the Pseudosteady State Productivity Index

2.1. The Model

In this section, we propose an analytical solution of the dimensionless pseudosteady state
productivity index for rectangular drainage areas with arbitrary aspect ratios, given a certain proppant
number and dimensionless fracture conductivity. The proppant number can be determined once the
proppant volume injected into the well is known [64]. The proppant volume can be determined by the
optimization method proposed in our previous paper [57]. Thus, the proppant number is considered
as a known constant in this work. Using the function of the dimensionless pseudosteady state
productivity index, the optimal dimensionless fracture conductivity can be determined to maximize
the dimensionless productivity index.

For proppant numbers less than 0.1, we extend the established fitting equation of the productivity
index for rectangular drainage areas by introducing the equivalent proppant number and analytical
expression of the shape factor, which are detailed in Appendix A.

For proppant numbers greater than 0.1, we derive a new asymptotic solution based on the
trilinear-flow model. We first define the related dimensionless variables, and then start the derivation
from the analytical solution of the dimensionless wellbore pressure in the Laplace space. Using some
approximate relations, we obtain the asymptotic solution of dimensionless wellbore pressure for long
time periods (i.e., the Laplace-transform parameter with respect to dimensionless time is small). Next,
applying the analytical inversion of Laplace transform, we can obtain the expression for dimensionless
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wellbore pressure in the time space. According to the definition of the dimensionless productivity
index, we can obtain its analytical form under the pseudosteady state.

In order to derive the relationships between the dimensionless productivity index, proppant
number, and dimensionless fracture conductivity, we extend the definition of proppant number
for rectangular drainage areas, which is given in Equation A40. Using the relationship between
proppant number and dimensionless drainage size, we can obtain the final asymptotic solution of
the dimensionless productivity index under the pseudosteady state for rectangular drainage areas
with arbitrary aspect ratios, given a certain proppant number and dimensionless fracture conductivity
value. The detail derivation is described in Appendix B.

The analytical solution of the productivity index can be summarized as follows.

(1) When Nprop ≤ 0.1:

JD =
1

−0.629− 0.5 ln
(

Nprop
CA

30.88

)
+
(

0.5 ln C f D + f
) , (1)

where Nprop is the proppant number and C f D is the dimensionless fracture conductivity. The
fitting function f is given in Equation (A7) and the analytical expression of the shape factor CA is
given in Equation (A9).

(2) When Nprop > 0.1:

JD =
1

π
3C f D

+
πky

6

( C f D
Npropky

)0.5
+ π

6ky

(
1−

(
Npropky

C f D

)0.5
)3 , (2)

where ky is the aspect ratio of the rectangular drainage area defined in Appendix A.

In the preceding derivations, we have assumed 1D (linear) flow within the hydraulic fracture; that
is, we have ignored the radial convergence of flow toward the wellbore within the hydraulic fracture
for horizontal wells. Mukherjee and Economides [71] provided the following equation to compute the
skin factor caused by radial flow choking within the fracture:

sc =
kh

k f w f

[
ln
(

h
2rw

)
− π

2

]
, (3)

where k f is the permeability of the propped fracture (md); k is the permeability of the reservoir (md); h
is the thickness of the reservoir (m); w f is the average width of the propped fracture (m); and rw is the
radius of the wellbore (m).

Thus, the dimensionless productivity index for fractured horizontal wells can be described
as follows:

JDH =
1

1
JD

+ sc
. (4)

2.2. Verification

Since Equation (1) is an extension of established theories, it does not need to be verified in
this section. The optimization results obtained from both Equations (1) and (2) will be verified by
comparing them with the UFD method in the next section.

Through numerical Laplace inversion [24], we obtain the exact solution in the time space for
dimensionless wellbore pressure using Equation (A22). Combining this solution with Equations (A37)
and (A38), we can obtain the dimensionless productivity index under both transient and pseudosteady
states. The productivity index under the pseudosteady state is used for the verification of the new
asymptotic solution in Equation (2).
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We take the data in Table 1 as an example. The variable values in dimensionless form, SI units,
and field units are shown in the table. Note that the values are different when using different units.
Usually, we prefer the dimensionless form to avoid unit transform issues without affecting the analysis
result. The dimensionless variables are defined in Appendices A and B.

Table 1. Variable values used for verification.

Variable Value in Dimensionless Form Value in SI Units Value in Field Units

Fracture half-length 1 138.39 m 454.03 ft
Fracture width 0.00003685 0.0051 m 0.0167 ft

Drainage area length 4.335 1200 m 3937 ft
Drainage area width 0.433/1.734/3.034/4.335 120/480/840/1200 m 393.7/1574.8/2755.9/3937 ft

Drainage area aspect ratio 0.1/0.4/0.7/1.0 0.1/0.4/0.7/1.0 0.1/0.4/0.7/1.0
Fracture conductivity 1.765 1.1095 × 10−13 m2·m 368.07 md·ft
Reservoir diffusivity 1 0.0344 m2/s 1.332 × 103 ft2/h
Fracture diffusivity 47916.477 1648.327 m2/s 6.382 × 107 ft2/h

We take four aspect ratios, namely, 0.1, 0.4, 0.7, and 1.0, for the verification. The curves of the
productivity index for the four aspect ratios under both transient and pseudosteady states are plotted
in Figure 1. The constant pseudosteady state productivity indexes calculated by the new asymptotic
solution are also plotted as dashed horizontal lines in Figure 1. The horizontal lines agree well with
the straight segments of the corresponding curves.
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Figure 1. Comparison of true values and asymptotic solutions.

Observing the horizontal lines representing the pseudosteady state productivity indexes for each
aspect ratio, we find that the productivity indexes do not increase or decrease monotonously with
aspect ratio. In Figure 1, the productivity index for aspect ratio 0.4 is the greatest, while that for aspect
ratio 0.7 is the second-largest. However, the productivity index for aspect ratios 1.0 and 0.1 are smaller
than those of the others. More interestingly, if we plot the curve of the productivity index with the
aspect ratio in Figure 2, we find that the productivity index reaches a maximum value when the aspect
ratio is about 0.3. The relationship between the productivity index and the aspect ratio is not the focus
of this paper. Nevertheless, it could be studied in future work.
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3. Fracture Geometry Optimization

3.1. Comparison with the Unified Fracture Design Method

Given a certain proppant number, we can easily obtain the optimal dimensionless fracture
conductivity to maximize the dimensionless productivity index for different aspect ratios of rectangular
drainage areas using proposed Equations (1) and (2).

When the optimal dimensionless fracture conductivity is determined, the optimal fracture
half-length and width can be obtained accordingly [57]:

xopt =

(
k f Vf

C f Doptkh

)0.5

, (5)

wopt =

(
C f DoptkVf

k f h

)0.5

, (6)

where k f is the permeability of the propped fracture (md); k is the permeability of the reservoir (md);
h is the thickness of the reservoir which, in this model, equals the fracture height (m); C f Dopt is the

optimal dimensionless fracture conductivity; Vf =
Vp
2 is the single wing volume of the propped

fracture (m3); and Vp is the total volume of the propped fracture (m3).
We compare the optimization result for the optimal dimensionless fracture conductivity and

maximum dimensionless productivity index obtained from the proposed analytical solutions with
the result of the UFD method without considering the radial flow skin factor of fractured horizontal
wells [65]. The influence of the radial flow skin factor on the optimization result will be discussed in
the next section. Both results are compared with the numerical result by the direct boundary element
method [66,67].

We consider the following proppant numbers: 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, and 100.0.
For aspect ratios, we divide the values into two groups. The first group comprises 0.1, 0.5, and
1.0, whereas the second comprises 0.05, 0.35, and 2.0. For the aspect ratios in the first group, all
parameter values used in the UFD method (see Appendix C) can be found in related tables and no
interpolation or extrapolation is needed. For aspect ratios in the second group, some of the parameter
values cannot be found in the given tables and interpolation or extrapolation is needed. Interpolation
or extrapolation will cause errors, which will be discussed in this section. However, fracture geometry
optimization using the proposed analytical solutions does not need any interpolation or extrapolation
and, hence, will not introduce extra errors.

Figure 3 shows the optimal dimensionless fracture conductivity (C f Dopt) and maximum
dimensionless productivity index (JDmax) obtained by three methods in the drainage area with aspect
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ratio (ky) equal to 1.0 for various proppant numbers (Nprop). Both the values of C f Dopt and JDmax from
the proposed method and the UFD method are consistent with those obtained by the numerical method.
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Table 2 lists the errors in C f Dopt obtained from the UFD and proposed methods for several
proppant numbers. The maximum error of C f Dopt with the UFD method is 6.67% and occurs when
Nprop = 1.0, whereas the maximum error of C f Dopt with the proposed method is 7.14% and occurs
when Nprop = 10.0. In this case, the errors from both methods are not high.

Table 2. Values of C f Dopt (ky = 1.0). UFD: unified fracture design.

Proppant Number 0.0001 0.001 0.01 0.1 1.0 10.0 100.0

Numerical method 1.58 1.59 1.59 1.65 2.33 10.77 100
UFD method 1.6 1.6 1.6 1.6 2.4856 11.3416 99.9016

Error (%) 1.26 0.62 0.62 3.03 6.67 5.30 0.09
Proposed method 1.64 1.64 1.64 1.64 2.29 10 100

Error (%) 3.79 3.14 3.14 0.60 1.71 7.14 0.00

Table 3 lists the errors in JDmax obtained from the UFD and proposed methods for several proppant
numbers. The maximum error of JDmax with the UFD method is 0.49% when Nprop = 10.0, whereas
that for the proposed method is 11.49% when Nprop = 1.0. Note that proposed Equation (1) is valid
for Nprop less than 0.1 and Equation (2) applies for Nprop larger than 0.1. With the increase of Nprop,
the reservoir-fracture flow system transitions from pseudo-radial flow to trilinear flow. Within the
transition region, error occurs for the optimization using the proposed method.

Table 3. Values of JDmax (ky = 1.0).

Proppant Number 0.0001 0.001 0.01 0.1 1.0 10.0 100.0

Numerical method 0.17924 0.22585 0.30507 0.46700 0.88962 1.62156 1.88518
UFD method 0.17872 0.22502 0.30371 0.46700 0.88872 1.61351 1.88794

Error (%) 0.29 0.36 0.44 0.00 0.10 0.49 0.14
Proposed method 0.17872 0.22502 0.30371 0.46700 0.78735 1.59154 1.87241

Error (%) 0.29 0.36 0.44 0.00 11.49 1.85 0.67

Figure 4 shows the curves of C f Dopt and JDmax with ky = 0.5 for various values of Nprop, while
Figure 5 shows these for ky = 0.1. Note that with the decrease of ky, the C f Dopt values obtained by
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both the proposed and UFD methods deviate from the true value given by the numerical method.
For ky = 0.1, the error becomes obvious, especially within the transition region. However, the error in
JDmax from the proposed method disappears within the transition region when ky becomes small.
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All aspect ratios considered above are from the first group, and all parameter values used in the
UFD method (see Appendix C) can be found in related tables. However, for the aspect ratios from the
second group such as ky = 0.05 or 2.0, the value of the shape factor (CA) must be extrapolated from
Table A1, and the value of parameters a, b, c, and d must be extrapolated from Table A2. For ky = 0.35,
those parameters must be interpolated from the related tables. Since we have no special explanation
for Tables A1 and A2, we use linear interpolation and extrapolation in this work.

Figure 6 shows the curves of C f Dopt and JDmax with ky = 0.05 for various values of Nprop. Since ky

is extremely small, the values of C f Dopt obtained from both the proposed and UFD methods deviate
from the result given by the numerical method, which is similar to the case presented in Figure 5.
As is shown in Table 4, the maximum error in C f Dopt with the UFD method is 153.96%, whereas it is
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160.31% with the proposed method, both of which occur within the transition region. Nevertheless,
the extrapolation used in the UFD method has no significant effect on C f Dopt.

However, because of the extrapolation of the shape factor (CA), JDmax becomes invalid when
Nprop ≤ 0.1, as listed in Table 5. Some values of JDmax are less than 0, which is also invalid when Nprop

is 0.1–10.0. Even for valid JDmax values when Nprop > 10.0, the values deviate seriously from the true
values given by the numerical method. The data deviation leads to a maximum JDmax error of 401.18%
when Nprop = 100.0. For the proposed method, although the value of C f Dopt deviates from the true
value seriously, the JDmax error is low and reaches a maximum of 15.52% when Nprop = 10.0. In this
sense, JDmax calculated by the proposed method is closer to the true value than that from the UFD
method, which suffers from extrapolation error.
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Figure 6. C f Dopt and JDmax vs. Nprop (ky = 0.05).

Table 4. Values of C f Dopt (ky = 0.05).

Proppant Number 0.0001 0.001 0.01 0.1 1.0 10.0 100.0

Numerical method 1.58 1.57 1.46 0.63 0.23 0.8 5.56
UFD method 1.6 1.6 1.6 1.6 0.51572 0.92297 4.99547

Error (%) 1.26 1.91 9.58 153.96 124.22 15.37 10.15
Proposed method 1.64 1.64 1.64 1.64 0.44 1.03 6.23

Error (%) 3.79 4.45 12.32 160.31 91.30 28.75 12.05

Table 5. Values of JDmax (ky = 0.05).

Proppant Number 0.0001 0.001 0.01 0.1 1.0 10.0 100.0

Numerical method 0.0713 0.07769 0.08553 0.09808 0.16299 0.64295 4.56991
UFD method Invalid Invalid Invalid Invalid −0.0394 0.99229 22.9038

Error (%) - - - - - 54.33 401.18
Proposed method 0.07121 0.07757 0.08518 0.09444 0.18154 0.74274 4.78150

Error (%) 0.12 0.15 0.40 3.71 11.38 15.52 4.63

Figure 7 shows the curves of C f Dopt and JDmax with ky = 0.35 for various values of Nprop, while
Figure 8 shows these with ky = 2.0. Note that the interpolation for ky = 0.35 and the extrapolation
for ky = 2.0 used in the UFD method have no significant effects on C f Dopt, whereas they do have
serious effects on JDmax, especially when Nprop is large. Nevertheless, interpolation induces less error
than extrapolation in the UFD method. However, the proposed method does not experience any
interpolation or extrapolation problem. The only error associated with the proposed method for
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ky = 2.0 comes from the transition region, which is similar to that in Figure 3. This is the disadvantage
of the proposed method, especially when ky is large.
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Summarizing from the above analyses, we can compare the performances of the two methods
under different conditions:

(1) When ky is within the intermediate range, for example, 0.1–1.0, the UFD method suffers from
interpolation error if the value of ky is not given in Table A1 or Table A2. However, the proposed
method is applicable for arbitrary aspect ratios and the results agree well with true values
obtained by the numerical method.

(2) For ky less than 0.1 or larger than 1.0, the UFD method suffers from extrapolation error.
In particular, JDmax deviates seriously from true values given by the numerical method.

(3) For ky less than 0.1, C f Dopt values obtained by the proposed method deviate from the true values
within the transition region. On the other hand, for ky larger than 1.0, error occurs for JDmax
obtained by the proposed method within the transition region. The reason is probably that when
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the aspect ratio of the drainage area becomes too small or too large, flow in the reservoir-fracture
system deviates from the trilinear-flow model and new models should be applied together with
the current model in the future study.

3.2. Considering the Radial Flow Skin Factor

Note that from Equations (3) and (4), the dimensionless productivity index of fractured horizontal
wells depends not only on the dimensionless fracture conductivity, proppant number, and aspect
ratio, but also on the permeability of the fracture and the reservoir, the thickness of the reservoir,
the radius of the wellbore, and the average width of the fracture. Even given a certain proppant
number and aspect ratio, the dimensionless productivity index cannot be expressed as a single-valued
function of dimensionless fracture conductivity. Thus, the formulas for optimal dimensionless fracture
conductivity given by the UFD method in Equations (A45) and (A46) are no longer accurate, and no
optimization solution exists, especially for fractured horizontal wells.

However, thanks to the analytical solutions of the dimensionless productivity index proposed
in Equations (1)–(4), it is possible to obtain the optimization result for fractured horizontal wells.
The proppant number for rectangular reservoirs is defined as follows [65]:

Nprop = I2
xC f D

xe

ye
=

4k f x f w f

kxeye
=

4k f Vf

kxeyeh
, (7)

where xe is the length of the drainage area parallel to the direction of the fracture (m) and ye is the
length of the drainage area vertical to the direction of the fracture (m), as illustrated in Figure A1.
Combining Equations (6) and (7), we can obtain:

w f =

(
C f Dk2Npropxeye

4k2
f

)0.5

. (8)

Substituting Equation (8) into Equation (3), the skin factor becomes:

sc =

(
4h2

C f D Npropxeye

)0.5[
ln
(

h
2rw

)
− π

2

]
. (9)

Substituting Equation (9) into Equation (4), we can obtain the analytical formula of the
dimensionless productivity index for fractured horizontal wells expressed in terms of dimensionless
fracture conductivity and proppant number. Thus, given a certain proppant number and the
related reservoir-well parameters, the optimal dimensionless fracture conductivity and maximum
dimensionless productivity index can be obtained.

For example, setting the following parameters: h = 20 m, rw = 0.1 m, and xe = ye = 1200 m, we
can plot the relationship between optimal dimensionless fracture conductivity and proppant number,
as is shown in Figure 9. The optimal dimensionless fracture conductivity is compared with the results
from the UFD and numerical methods. Note that since the skin factor is taken as a constant in the
UFD method, the optimal results from the UFD method deviate seriously from the true values of
the numerical method, especially when Nprop is less than 0.1, whereas the results from the proposed
method agree well with the true values.
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4. Conclusions

This paper extended the established fitting solution for the pseudosteady state productivity index
of fractured wells when the proppant number is less than 0.1 by introducing an explicit expression
of the shape factor. It also proposed a new asymptotic solution based on the trilinear-flow model for
proppant numbers greater than 0.1. The two solutions were combined together in order to evaluate the
pseudosteady state productivity index. The new solution can be directly used for fracture geometry
optimization. Based on the analyses contained in this paper, the following conclusions can be drawn:

(1) The proposed analytical formulas provide solutions of the dimensionless productivity index for
any dimensionless fracture conductivity value and proppant number, whereas the UFD method
only provides fitting solutions of the maximum productivity index corresponding to the optimal
fracture conductivity.

(2) Using the proposed analytical solution of the pseudosteady state productivity index, optimized
fracture geometry dimensions can be obtained for arbitrary aspect ratios of rectangular drainage
areas, whereas the UFD method suffers from interpolation or extrapolation error if the value of
the aspect ratio is not given in related tables.

(3) By explicitly considering the skin factor caused by the radial flow choking of fractured horizontal
wells in dimensionless fracture conductivity optimization, the result is more accurate than that
obtained by the UFD method.

Although most of the proposed method’s optimization results agree well with the true values
given by the numerical method, there are errors associated with some ranges of rectangular drainage
area aspect ratios. Determining more accurate and adaptable analytical solutions that overcome such
shortcomings is the focus of future work.
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Appendix A. Fitting Solution for Proppant Numbers Less Than 0.1

Before we discuss the solution of the productivity index of fractured wells, we clarify the geometric
relationship of the reservoir and fracture in Figure A1. x f is the fracture half-length (m); xe is the length
of the drainage area parallel to the direction of the fracture (m); and ye is the length of the drainage area
perpendicular to the direction of the fracture (m). The aspect ratio of the drainage area is ky = ye/xe.

Figure A1a represents a fractured vertical well in a square drainage area. Figure A1b is a fractured
vertical well in a rectangular drainage area with ky < 1. Figure A1c is a fractured vertical well in
a rectangular drainage area with ky > 1. Figure A1d is a horizontal well intersected with a single
fracture in a square drainage area. Figure A1e is a horizontal well intersected with multiple fractures
in a rectangular drainage area. Each fracture is in an individual drainage area with ky ≤ 1 or ky > 1.
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where 𝑘௙ is the permeability of the propped fracture (md); 𝑘 is the permeability of the reservoir 
(md); and 𝑤௙ is the average width of the propped fracture (m). 
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where 𝑉௣ is the volume of the propped fracture (m3) and 𝑉௥௘௦ is the volume of the drainage area (m3). 
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Figure A1. Geometric relationships of reservoirs and fractures. (a) A fractured vertical well with ky = 1;
(b) A fractured vertical well with ky < 1; (c) A fractured vertical well with ky > 1; (d) A horizontal well
intersected with a single fracture with ky = 1; (e) A horizontal well intersected with multiple fractures.

We first consider the square drainage area and define the penetration ratio as [64,68]:

Ix =
2x f

xe
, (A1)

and dimensionless fracture conductivity as:

C f D =
k f w f

kx f
, (A2)

where k f is the permeability of the propped fracture (md); k is the permeability of the reservoir (md);
and w f is the average width of the propped fracture (m).

We define the proppant number as [64]:

Nprop = I2
xC f D =

4k f x f w f

kx2
e

=
2k f Vp

kVres
, (A3)

where Vp is the volume of the propped fracture (m3) and Vres is the volume of the drainage area
(m3). If the volume of the propped fracture is constant, then the proppant number is also constant.
The volume of the propped fracture is related to the injected proppant volume, which can be
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determined by the optimization method proposed in our previous paper [57]. This paper studies the
relationship between the dimensionless fracture conductivity and dimensionless productivity index
for a certain proppant number.

From Equations (A2) and (A3), the fracture half-length can be described as:

x f =

(
Npropx2

e

4C f D

)0.5

. (A4)

When the proppant number is less than 0.1, the dimensionless productivity index for the square
drainage area can be described as [64]:

JD =
1

ln
(

0.2663xe
x f

)
+ f

. (A5)

Substituting Equation (A4) into (A5), the dimensionless productivity index becomes:

JD =
1

−0.629− 0.5 ln Nprop +
(

0.5 ln C f D + f
) . (A6)

The explicit fitting expression of f is [64]:

f =
1.65− 0.328u + 0.116u2

1 + 0.18u + 0.064u2 + 0.005u3 , where u = ln C f D. (A7)

Next, we consider the rectangular drainage area and introduce the shape factor CA and equivalent
proppant number Nprop,e [65]:

Nprop,e = Nprop
CA

30.88
. (A8)

For the rectangular drainage area, the proppant number can be replaced by the equivalent
proppant number in Equation (A8).

We further extend the analytical form of the dimensionless productivity index by introducing an
explicit expression of the shape factor CA [66] as:

ln CA = ln
4ye

xe
− γ− 2 ln

εye

xe
− 2a

(
xw + εye

xe
,

yw

xe
,

xw

xe
,

yw

xe
,

ye

xe

)
, (A9)

where the Euler constant is γ = 0.57721566 and ε is a suitably small positive number (e.g., 10−6).
Taking the lower left corner of the drainage area as the origin of the coordinate system, xw and yw are
the coordinates of the wellbore, which is located in the center of the drainage area while calculating
the shape factor. a is the influence function given by [66,68]:

a(xD, yD, xwD, ywD, yeD) = 2πyeD

(
1
3
− yD

yeD
+

y2
D + y2

wD
2y2

eD

)
+ ST , (A10)

where

ST = 2
∞

∑
m=1

tm

m
cos(mπxD) cos(mπxwD), (A11)

and

tm =
cosh[mπ(yeD − |yD − ywD|)] + cosh{mπ[yeD − (yD + ywD)]}

sinh(mπyeD)
. (A12)
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The infinite sum in Equation (A11) can be replaced by a finite approximation consisting of three
parts [66,68]:

ST = S1 + S2 + S3, (A13)

where

S1 = 2
N

∑
m=1

tm

m
cos[mπxD] cos[mπxwD], (A14)

S2 = − tN
2 ln

{
[1− cos(π(xD + xwD))]

2 + [sin(π(xD + xwD))]
2
}

− tN
2 ln

{
[1− cos(π(xD − xwD))]

2 + [sin(π(xD − xwD))]
2
} (A15)

and

S3 = −2tN

N

∑
m=1

1
m

cos[mπxD] cos[mπxwD]. (A16)

The first part is the usual finite approximation stopping after the Nth term in the summation. The
second and third parts are obtained from the identity,

∞
∑

m=1

1
m cos[mπxD] cos[mπxwD]

= − 1
4 ln
{
[1− cos(π(xD + xwD))]

2 + [sin(π(xD + xwD))]
2
}

− 1
4 ln
{
[1− cos(π(xD − xwD))]

2 + [sin(π(xD − xwD))]
2
} (A17)

and from the fact that tm alone converges “fast”. The advantage of this algorithm is that only a few
hyperbolic functions have to be evaluated since the number of terms, N, is usually less than 100.

Appendix B. Asymptotic Solution for Proppant Numbers Greater Than 0.1

We first define the dimensionless pressure:

pD =


2πkh(pi−p)

q f µB for oil
ZscTsc

psc

πkh(m(pi)−m(p))
q f T for gas

, (A18)

where k is the reservoir permeability (md); h is the thickness of the reservoir (m); pi is the initial
reservoir pressure (MPa); p is the pressure (MPa); q f is the production rate through one fracture (t/D,
m3/D); µ is the viscosity (mPa·s); B is the oil formation volume factor; Zsc is the Z-factor at standard
conditions; Tsc is the temperature at standard conditions (K); psc is the pressure at standard conditions
(MPa); T is the reservoir temperature (K); and m(p) is the pseudopressure function.

Assuming the reservoir is homogeneous, we define the dimensionless diffusivity as:

ηiD = 1
η f D =

η f
ηi

(A19)

and dimensionless time as:
tD =

ηit
x2

f
, (A20)

where ηi is the diffusivity of the reservoir (m2/s) and η f is the diffusivity of the fracture (m2/s).
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Taking the fracture half-length as the reference, we define the dimensionless length as:

x f D = 1

w f D =
w f
x f

xeD = xe
2x f

yeD = ye
2x f

(A21)

We start from the analytical solution of the dimensionless wellbore pressure in the Laplace
space [49]:

pwD =
π

C f Ds
√

c f (s)tanh
(√

c f (s)
) , (A22)

where the overbar symbol indicates dimensionless pressure in the Laplace-transform domain and s is
the Laplace-transform parameter with respect to dimensionless time, tD. c f (s) is given by:

c f (s) =
2

C f D

√
ci(s)tanh

[√
ci(s)

(
yeD − w f D/2

)]
+

s
η f D

, (A23)

where ci(s) is given by:
ci(s) =

√
stanh

[√
s(xeD − 1)

]
+ s. (A24)

Next, we derive the asymptotic solution of the dimensionless productivity index under the
pseudosteady state when s is small (i.e., time tD is large). Note the relation [21]:

1√
u

[
ch
√

u(yeD − ỹD)

sh
√

uyeD

]
=

2
yeD

∞

∑
k=1

coskπ
ỹD
yeD

u + k2π2

y2
eD

+
1

uyeD
. (A25)

If u is small and ỹD= 0, then Equation (A25) becomes:

1√
u

[
ch
√

uyeD

sh
√

uyeD

]
≈ 2

yeD

∞

∑
k=1

1
k2π2

y2
eD

+
1

uyeD
. (A26)

Moreover, note the relation [21]:

∞

∑
k=1

coskx
k2 =

π2

6
− πx

2
+

x2

4
, [0 ≤ x ≤ 2π]. (A27)

Then, Equation (A26) can be described as:

1√
utanh

√
uyeD

≈ yeD
3

+
1

uyeD
. (A28)

When s is small, we find that both ci(s) and c f (s) are small. Using Equation (A28),
Equation (A22) becomes:

pwD ≈
π

C f Ds

(
1
3
+

1
c f (s)

)
. (A29)

Note that w f D/2 is small and can be neglected compared to yeD. s
η f D

is small and can also be
neglected. Again, using Equation (A28), Equation (A23) becomes:

1
c f (s)

=
C f D

2
1√

ci(s)tanh
[√

ci(s)yeD

] ≈ C f D

2

(
yeD
3

+
1

ci(s)yeD

)
. (A30)
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Using Equation (A28), Equation (A24) can be described as:

1
ci(s)

=
1√

stanh
[√

s(xeD − 1)
]
+ s
≈ 1

1(
xeD−1

3 + 1
s(xeD−1)

) + s
. (A31)

We cannot get more from the current form of Equation (A31). However, we can rearrange it to the
following form:

1
ci(s)

≈ (xeD − 1)3

(xeD − 1)2xeDs + 3x2
eD

+
1

xeDs
. (A32)

Equations (A31) and (A32) are essentially equivalent. Considering s is small, Equation (A32) can
be further simplified to:

1
ci(s)

≈ (xeD − 1)3

3x2
eD

+
1

xeDs
. (A33)

Substituting Equations (A30) and (A33) into (A29), we can get the following equation:

pwD ≈
π

3C f Ds
+

πyeD
6s

+
π(xeD − 1)3

6x2
eDyeDs

+
π

2xeDyeDs2 . (A34)

Thus, applying the analytical inversion of Laplace transform, we can get the expression of the
dimensionless wellbore pressure in the time space:

pwD ≈
π

3C f D
+

πyeD
6

+
π(xeD − 1)3

6x2
eDyeD

+ 2πtDA, (A35)

where:

tDA =
tDx2

f

xeye
=

tD
4xeDyeD

. (A36)

Note the definition of the dimensionless productivity index:

JD =
1

pwD − p̃D
, (A37)

and the following relation for the average reservoir pressure during the pseudosteady state:

p̃D = 2πtDA. (A38)

From Equations (A35), (A37), and (A38), we can get the form of the dimensionless productivity index:

JD =
1

π
3C f D

+ πyeD
6 + π(xeD−1)3

6x2
eDyeD

. (A39)

In order to derive the relationships between the dimensionless productivity index, proppant
number, and dimensionless fracture conductivity, we introduce the definition of proppant number for
the rectangular drainage area [65]:

Nprop = I2
xC f D

xeD
yeD

=
C f D

x2
eDky

. (A40)
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From Equation (A40), we can get:

xeD =

( C f D

Npropky

)0.5

. (A41)

Substituting Equation (A41) into (A39), we obtain the final asymptotic solution of the
dimensionless productivity index under the pseudosteady state for a given proppant number and
dimensionless fracture conductivity:

JD =
1

π
3C f D

+
πky

6

( C f D
Npropky

)0.5
+ π

6ky

(
1−

(
Npropky

C f D

)0.5
)3 . (A42)

According to the definition of xeD, the following inequality should be satisfied:

xeD ≥ 1. (A43)

Combining Equations (A41) and (A43), we can obtain the following constraint:

C f D ≥ Npropky. (A44)

Equation (A42) should be used with the constraint in Equation (A44) for the optimization of the
fracture geometry.

Appendix C. Unified Fracture Design (UFD) Method

Numerical method has been applied to create the curves showing the relationships between
dimensionless productivity index and dimensionless fracture conductivity, given various proppant
numbers and reservoir aspect ratios. Each proppant number corresponds to a maximum dimensionless
productivity index and an optimal dimensionless fracture conductivity. Thus, the function of the
maximum dimensionless productivity index or the dimensionless fracture conductivity with the
proppant number can be fit out.

We implemented the numerical method and illustrated the curves in Figure A2 for aspect
ratio = 0.5 as an example. Without loss of generality, we showed the curves for proppant
number = 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, and 100.0 [65].
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Figure A2. Relationships between dimensionless productivity index and dimensionless
fracture conductivity.

The maximum dimensionless productivity index and the optimal dimensionless fracture
conductivity in rectangular reservoirs can be described by the following equations [57,65].
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(1) When Nprop ≤ 0.1:{
JDmax

(
Nprop

)
= 1

0.990−0.5 ln Nprop,e
= 1

2.7−0.5 ln(NpropCA)
C f Dopt

(
Nprop

)
= 1.6

. (A45)

The Dietz shape factors are taken from Table A1.

Table A1. Dietz shape factors for a range of aspect ratios.

ky 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CA 0.025 2.36 5.38 9.00 16.17 21.84 25.80 28.36 29.89 30.66 30.88

(2) When Nprop > 0.1: JDmax
(

Nprop
)
= 1
−0.63−0.5 ln Nprop+Fopt

C f Dopt
(

Nprop
)
=

100ky−C f D,0.1
100 ×

(
Nprop − 0.1

)
+ C f D,0.1

, (A46)

where:

C f D,0.1 =

{
4.5ky + 0.25 0.1 ≤ ky ≤ 0.25
1.6 0.25 < ky ≤ 1

Fopt =
a + buopt + cu2

opt + du3
opt

a′ + b′uopt + c′u2
opt

uopt = ln C f Dopt

The related constants are taken from Table A2.

Table A2. Constants in F-function.

ky 1 0.7 0.5 0.25 0.2 0.1

a 17.2 17.4 21.4 38.3 35 30.6
b 54.5 55.5 54.3 46 59 89.6
c 52.5 53.3 56.3 71.1 70 70.2
d 16.9 16.9 16.9 15.84 16.3 17.8

a’ 10

b’ 36

c’ 33
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