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Abstract: This study addresses the feasibility of modeling wind-farm wake-turbulence autospectra
and coherences from a database: flow velocity points from experimental and computational fluid
dynamics (CFD) investigations. Specifically, it first applies an earlier-exercised framework to construct
the autospectral models from a database and then it adopts a recently proposed framework to
construct the coherence models from a database. While this proposed framework has not been
tested against a database, the methodology has been completely formulated with a theoretical basis.
These models of autospectrum and coherence are interpretive, and in closed form. Both frameworks
basically involve the perturbation series expansion of the autospectra and coherences. The framework
for modeling autospectra is tested against a demanding database of wake turbulence inside a wind
farm over a complex terrain from a full-scale test. The suitability of these autospectral models for
simulation through white-noise driven filters is also demonstrated. Finally, coherence models are
generated for assumed values of the perturbation series constants, and these coherence models
are used to demonstrate how the coherence models of homogeneous isotropic turbulence deviate
from the coherence models of non-homogeneous non-isotropic turbulence such as wind-farm wake
turbulence. This feasibility of extracting both the one-point statistics of autospectral models and the
two-point statistics of coherence models from a database represents a research avenue that is new
and promising in the treatment of wind-farm wake turbulence. This paper also demonstrates the
feasibility of fruitfully exploiting the wake treatment methods developed in other fields.

Keywords: turbulence; statistical modelling

1. Introduction

During the past thirty years, wake turbulence and its effects on wind turbines and wind farms have
been extensively investigated, primarily analytically and to some extent experimentally. The extensive
literature up to 2010 has been well covered in the widely used text of Manwell et al. [1]. As for the
extensive analytical investigations since, suffice it to mention, as representative samples, Keck et al. [2]
for wake-turbulence modeling from the low-fidelity CFD treatment of the Navier-Stokes (NS) equations,
and Carrion et al. [3] for wake-turbulence modeling from the high-fidelity treatment of NS equations.
The work of Carrion et al. [3] for example, includes a concise account of the state of the art of modeling
wind-farm wake turbulence.

An overview of these investigations [1–3] is included here; although extremely brief, this should
help appreciate how the present work serves as a desirable adjunct of experimental and high-fidelity
CFD based investigations, and why it represents a new and promising avenue of wake-turbulence
modeling. Wake-turbulence modeling falls into three categories:
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1. Semi-empirical models: These models are based on conservation of momentum and such
simplified assumptions; and they typically contain an empirical constant. For example, the widely
used model due to Katic et al. [1] belongs to this category; therein, the empirical constant is
referred as wake decay constant. A recent work of Ge M. et al. [4] merits mention: it gives
a thorough account of the key features of this class of models and their continual evolution
as well as their utility base in the treatment of wind energy applications such as design of
wind-farm layout.

2. Low-fidelity CFD solutions: Several numerical schemes have been continually proposed
(e.g., dynamic wake meandering model [2]); these are based on a wide range of physics-based
approximations to NS equations. As more and more experimental databases become available,
they are being continually updated and they merit further validation.

3. High-fidelity CFD solutions: Despite the severe CPU-hour constraint, these high-fidelity
approaches are indispensable in generating a database that serves as a reference point and
in supplementing databases from experiments.

While major strides have been made in generating databases and in providing a much-improved
understanding of wake turbulence, the current capability for modeling the one-point statistics of
autospectrum, much more so, for modeling the two-point statistics of coherence, merits significant
improvement. In fact, empirical exponential coherence functions are still being used [1]. Accordingly,
the present study explores the feasibility of extracting the one-point statistics of autospectrum and the
two-point statistics of coherence from a database.

The autospectral model extraction from a database of the present study is based on the framework
due to Schau, Gaonkar and Polsky [5]. This framework guarantees that the extracted model and
the autospectral data points have the same mean square value (a measure of turbulence energy),
time scale and the Kolmogorov−5/3 spectral decay. For completeness, an earlier study by Gaonkar [6]
should be mentioned as well; therein, the autospectral model extraction from a database is based on
the framework of reference [7], in which the −5/3 spectral law is bypassed. Now it is expedient to
address the development of a framework for extracting the two-point statistics models from a database.
This can be approached either through cross-spectrum, which is a complex quantity involving the
magnitude and phase or through coherence, which, as a spectral correlation coefficient, is a real quantity.
The first approach generally leads to modeling the magnitude and not the phase, as was the case in
Ref. [7]. The second approach through coherence is relatively more convenient and provides a means
of capturing the two-point statistics from a database completely. The recent study due to Krishnan and
Gaonkar [8] follows this second approach; although not tested against a database, the framework is
formulated with a mathematical basis and the present study adopts this framework [8].

By design, these autospectral and coherence models are in closed form and they have a simple
analytical structure to facilitate interrogation and interpretation of voluminous data points on
autospectra and coherences. And they lend themselves well to routine use as a predictive tool.
Compared to a description through such voluminous, numerically generated, autospectral and
coherence data points, they describe wake turbulence analytically with better transparency and
bring better understanding. Thus, these interpretive models broaden the scope and utility base of the
database that invariably involves enormous resources. While the extracted models are database-specific
(thus they are not predictive by themselves), the framework can be applied to any database and the
model extraction is a routine exercise.

In the treatment of coherence for homogeneous isotropic turbulence for which the frozen
turbulence hypothesis is applicable (HIT), the present study is motivated by and built on the earlier
studies of Burton et al. [9], Houbolt and Sen [10], Frost et al. [11] and Irwin [12]. This treatment of
coherence for HIT is found to show differences among these studies [9–12], and the present study,
after an in-depth examination, follows Frost et al. [10] for cross-spectra and Irwin [12] for coherences.
Given this background, the present study seems to provide a unified account of coherence for HIT in
the treatment of wake turbulence.
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To sum up: These interpretive models complement the experimental and CFD-based
investigations as surrogate analytical models for both the one-point statistics of autospectrum and the
two-point statistics of coherence. Moreover, this paper also demonstrates the feasibility of fruitfully
exploiting the methodologies from other fields to the treatment of wind-turbine wake turbulence.
And these methodologies offer promise towards providing a foothold on a formidably complex flow
field inside a windfarm for engineering analysis.

Basic of Modeling

A comparison of the measured autospectra of ambient atmospheric boundary layer turbulence
(ABL) and wake turbulence shows that the ABL autospectrum has gone through changes in energy
distribution with respect to frequency. Figure 1 [13] should help bring a better understanding of this
comparison; specifically, it shows measured dimensionless longitudinal autospectrum f Šuu/σ2

u versus
dimensionless frequency f z/U, where z is the mast height and U is the mean wind speed. These
autospectra were experimentally generated at the same location in a wind farm over a complex
terrain. Figure 1a refers to ABL with a turbulence intensity of 0.103, when the turbines were
under stand-still conditions. Furthermore, Figure 1b refers to wake turbulence with a turbulence
intensity of 0.204, when the turbines were fully operational. This change in the shape of the wake
turbulence autospectrum cannot be realized through a linear superposition of a series of independently
occurring changes at different frequencies on the ABL autospectrum. Thus, the autospectral morphing
must be due to a nonlinear transformation of ABL. Stated otherwise, wind-farm wake turbulence
could be idealized as nonlinearly transformed ABL and in turn, an earlier-developed mathematical
framework for autospectral modeling of airwake-downwash turbulence could be adapted to modeling
wind-farm wake turbulence as well [5,14]. (Airwake-downwash turbulence refers to the coupled
flow-field of ship’s airwake shed from the superstructure and the helicopter downwash. Therein [5,14],
the mathematical framework “posits” that airwake-downwash turbulence is nonlinearly transformed
ABL. Regarding the coherence, the framework of Ref. 8 is adopted with the same justification that is
used for the autospectrum.)
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2. Methodology of AutoSpectra

The Lateral component v(t) is selected for providing details of the autospectral model extraction
methodology [5]. The methodology remains the same for the vertical component with minor changes in
the parameters used in the constraint equations. However, for the Longitudinal component, additional
changes in the constraint equations are also required [14]. One-sided autospectrum is used throughout.

Statistical independence of velocity components is assumed [9]. The mean square value, time scale
and autospectral asymptotic limit law are different for each component of non-homogeneous turbulence
according to Kolmogorov’s −5/3. The framework combines four elements: (1) A mathematical
formulation based on a perturbation series expansion of the autocorrelation/autospectrum functions;
(2) Extraction of time scale and autospectral asymptotic limit from the database; (3) Development of
constraint equations in closed form to ensure that the developed model satisfies the requirements related
to normalization, time scale, and autospectral asymptotic limit; and (4) Evaluation of the constants in
the series expansion subject to satisfying the constraint equations and fitting a curve on a set of selected
autospectral data points in a least squares sense.

2.1. Lateral Wake Turbulence

The perturbation series for the autocorrelation of lateral wake turbulence velocity v(t) can be
expressed as in Equation (1).

R̃vv(τ) = β1vRvv(τ) + β2vR2
vv(τ) + β3vR3

vv(τ) + . . . + βnvRn
vv(τ) (1)

The calculated autocorrelation as well as series expansion autocorrelation follow the properties of
normalized autocorrelations, that is, R̃vv(0) = Rvv(0) = 1. The Fourier transform of Equation (1) gives
the series expansion for the autospectrum S̃vv( f ):

S̃vvvv( f ) = β1vSvv1( f ) + β2vSvv2( f ) + β3vSvv3( f ) + . . . + βnvSvvn( f ) (2)

where Svvn( f ) is the Fourier transform of Rn
vv(τ).

Svvn( f ) = 4
∫ ∞

0
Rn

vv(τ) cos(2π f τ)dτ (3)

The autospectrum is typically normalized with respect to dimensional time scale Tv, which is
traditionally defined as Tv =

∫ ∞
0 R̃vv(τ)dτ. With σ2

v , the mean square value, Equations (4) and (5)
typify the normalization:

S̃vv(0) = 4σ2
v

∫ ∞

0
R̃vv(τ)dτ = 4σ2

v Tv (4)

1
σ2

v

∫ ∞

0
S̃vv( f )d f = R̃vv(0) = 1 (5)

According to Kolmogorov’s spectral law, the autospectrum model should decay as given
in Equation (6), where Av is a scaling parameter determined from the data, and fh f represents
high frequencies.

f Svv

(
fh f

)
σ2

v
= Av( f Tv)

−2/3 (6)

The basis function Rvv(τ) on the right-hand side of Equation (1) is the von Karman lateral
correlation function as given in Equation (7).

Rvv(x) =
22/3

Γ(1/3)

(
αvτ

Tv

)1/3[
K1/3

(
αvτ

Tv

)
− 1

2

(
αvτ

Tv

)
K2/3

(
αvτ

Tv

)]
(7)

The scaling parameter αv in Equation (7) ensures that the relation in Equation (4) is satisfied.
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2.2. Constraint Equations

The autospectrum model is constrained by Equations (4)–(6). The extracted model as given
in Equation (1) is substituted to obtain the constraint Equations (8)–(10) for the expansion series
co-efficients [5].

Because R̃vv(0) = Rvv(0) = 1, Equation (1) gives:

1 = β1v + β2v + · · ·+ βnv (8)

Satisfying Equation (4), and integrating both sides by Equation (1) gives [5,14]

αv = 0.373417β1v + 0.199591β2v + 0.12236β3v + · · · (9)

Similarly, satisfying Equation (6) leads to [5,14]

Av

α2/3
v

= 0.186176(β1v + 2β2v + 3β3v + · · ·) (10)

3. Database

The database is generated from a full-scale experimental study of wake turbulence by
Mofiadakis et al. [13]. Specifically, data is collected at several points along a complex windy terrain
at an altitude of 320–330 m with seven Vestas (27–225 kW) installed in a row. The thirty cases
of autospectra that were generated from the database represent free stream to fully wake affected
conditions. The autospectral decay was found to be in the range of −1.36 to −1.75 for free stream
conditions (all wind turbines at stand-still condition). Moreover, for notational simplicity, βiu, βiv and
βiw are simply referred to as β coefficients in this section.

The database typically comprises the temporal flow velocity points. In this case, however,
the database [13] has already been transformed from the temporal to the frequency domain and
normalized to dimensionless form f Sii( f )/σ2

i . Moreover, the temporal autocorrelation is not available,
and the dimensionless autospectra are presented on a log-log scale and in turn Sii( f = 0) is not
available. This limitation is overcome by assuming that Sii(0) = Sii( f ) as f approaches zero. It is
emphasized that the framework is designed to develop autospectral models from a database; thus the
lack of a temporal database ceases to be a major issue. Having extracted σ2

i from Equation (5),
key information to be extracted from the database is Ti, the time scale. As for Ti, it is calculated
using Sii( f ) at the lowest frequency in a log-log plot; see Equation (4). Finally, the autospectral decay
constant Ai is graphically evaluated from Equation (6).

Having thus generated time scale Ti and autospectral asymptotic limit Ai, the numerical scheme
now focuses on computing the series expansion β coefficients. It is emphasized that these β coefficients
determine the scaling parameter αi; see Equation (9). As an iterative procedure, the scheme involves
selecting the β coefficients, beginning with the von Karman model (e.g., β1v = 1 for the lateral
component) and strictly enforcing the constraint as typified by Equation (8). For completeness, the gist
of the iterative procedure is included; for details see [14].

The numerical scheme minimizes the sum of two errors in a least squares sense: model’s deviation
from the autospectral data and the Ai constraint error. That is, a selected set of β coefficients gives a
model with a value of Ai; stated otherwise, these β coefficients carry a least squares error with respect
to the measured autospectral data and an error with respect to the graphically measured Ai value.
The resulting Ai error is expected to be within acceptable limits for wind turbine applications (<<10%).
This error is perhaps acceptable, after all, Ai is not rigorously defined with respect to the data sets,
nor is there a standard method of determining when a computed autospectrum has reached its point of
asymptotic decay. This lack of precision also means Ai will vary somewhat from user to user. The Ai
constraint typified by Equation (10) also merits one final comment. For some isolated cases of data
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sets, the high frequency limit does not exhibit accurately the −5/3 spectral decay [13]. For these cases,
it is sensible to exclude this constraint. The next section elaborates this scenario.

Computationally, the above numerical scheme is found to be inexpensive. For example, a gradient
based search algorithm (MATLAB SQP) starting with the von Karman model does not require large
iteration counts for a converged model. The reason is that the computational cost, now, depends only
on the length of the discrete data array, as an error between the model and this data array, and this
error has to be calculated at each iteration of the search algorithm. Given the thoughtful selection of
search parameters such as step size in β-space and convergence criteria, this numerical scheme should
prove inexpensive computationally.

4. Result of Autospectra

For illustration, just one example of the vertical component w(t) is selected. Modeling is presented
based on both first-order (two-term series) and second-order (three-term series) correction. And in
each case, modeling covers two approaches. In the first approach, the Kolmogorov −5/3 law is
not enforced; that is, by satisfying only the first two constraints, typified by Equations (8) and (9).
In the second approach, all three constraints are satisfied; that is, in addition to satisfying these two
constraints, the model also satisfies the Kolmogorov −5/3 law (see Equation (10)) by a minimized
error. This enforcement is identified in the respective figures by “A error = xx%”, where xx% indicates
the percentage error in satisfying the −5/3 law. Typically, an “A error” of less than 10% is considered
satisfactory. Throughout, the dimensionless autospectrum f S̃ii( f )/σ2

i is presented against frequency
f (Hz). Furthermore, in each figure, the corresponding von Karman model (e.g., β1v = 1 for the
lateral) is also included; this helps assess how far the developed model is an improvement over the
von Karman, a widely used model for the free-stream case [13]. For additional results, see Schau [14].

For the vertical component in Figure 2, the corresponding first-order-correction (a two-term
series) models represent appreciable improvement over the von Karman, particularly for f > 10−1 Hz.
Overall, modeling still merits further improvements for f > 10−1 Hz. For the vertical component
(Figure 2b), the enforcement of the Kolmogorov −5/3 law in a least squares sense involves
“A error = 23.56%”, well above the stipulated “A error” of 10%. These two features, the feasibility
of improving the correlation and reducing the “A error”, is explored in the next figure based on the
second-order-correction (a three-term series). The results of Figure 3 are extremely instructive in two
respects. First, a comparison of the respective figures (Figure 2a compared to Figure 3a, and Figure 2b
compared to Figure 3b) shows that the three-term series model improves the correlation throughout,
particularly for f > 10−1 Hz. Second, the “A error”, which is 23.56% for the two-term series model
comes down to 7.64%. Thus, this comparison shows that the three-term series model is a noteworthy
improvement over the two-term series model, without or with the enforcement of the−5/3 law. To sum
up: modeling based on first-order correction (a two-term series) is generally adequate, and further
improvement in correlation and further reduction in “A error = x” can be achieved through modeling
based on second-order correction (a three-term series).

Figure 4 shows how the autospectrum from the white-noise-driven filter for the developed vertical
model compares with the one from the database and the developed model itself (specifically, Figure 4
refers to Figure 3a). As seen from this Figure 4, the developed model and simulation are almost
indistinguishable. (The filter represents a single-input, single-output system driven by white noise;
the design is routine and thus the details are omitted [14]).
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5. Methodology of Coherence

As done for autospectra, for coherences also, a mathematical framework is developed for
extracting interpretive coherence models from a database of flow velocity points from experimental
and CFD investigations. Here as well, each velocity component is considered statistically independent
of the other two. For each velocity component, the framework begins with a perturbation series
expansion of the coherence; therein, the basis function or the first term of the series is represented by
the corresponding coherence for HIT. The perturbation coefficients are evaluated by satisfying the
theoretical constraints and fitting a curve on a set of numerically generated coherence points from
a database.

In the literature, the development of the cross-spectra and coherences for the longitudinal, vertical
and lateral components is scattered and piecemeal; what is more, the expressions for these cross-spectra
and coherences show difference among these studies. Accordingly, this section first presents the
cross-spectrum, after all, coherence is cross-spectrum that is normalized by the corresponding
autospectrum (details to follow). Then it presents the coherences and finally a perturbation theory
scheme for the wind-farm wake-turbulence coherence.

5.1. Construction of the Vertical Cross Spectrum

For illustration, vertical turbulence w(t) is considered under headwind conditions. Given V,
the mean wind velocity, τ, the elapsed time (t2 − t1) and the correlation distance x = Vτ, the von
Karman correlation function Rww(x) for vertical turbulence w(t) is given by Equation (11) [15]:

Rww(x) = σ2
w

22/3

Γ(1/3)

[
(u)1/3K1/3(u)−

1
2
(u)4/3K2/3(u)

]
(11)

where u = x/1.339L, L is the scale length and Kn is the modified Bessel function of the second kind.
Now consider the cross-correlation between vertical turbulence w1(t) at Point 1 and w2(t) at Point 2,
where these two points are separated by the across-wind distance S, as typified by Figure 5. For this
scenario, Figure 5 shows that the correlation distance changes to the expression given in Equation (12a):

u =
σ

1.339L

√
1 +

(
Vτ

S

)2
(12a)



Energies 2019, 12, 120 9 of 15

where σ = S/L. Now, the cross-correlation Rw1w2(x) can be expressed as in Equation (12b) [10]:

Rw1w2(x) = σ2
w

22/3

Γ(1/3)

[
(u)1/3K1/3(u)−

1
2
(u)4/3K2/3(u)

]
(12b)
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The Fourier transform of Rw1w2(τ) is the cross-spectrum Sw1w2(ν) [10]:
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where,

z =
σ

1.339

√
1 + (1.339ν)2 (12d)

In Equation (12d), ν represents the dimensionless frequency ν = ωL/V and σ = S/L,
the dimensionless distance.

5.2. Coherence for HIT

Coherence is also referred to as spectral correlation coefficient in that it quantifies the normalized
cross-correlation between the turbulence velocities at two points as a function of frequency.
For illustration, consider the vertical turbulence velocities at two points which are separated by
a distance S, as typified by Figure 5. By definition, coherence is given by:

Cw1w2(σ, ν) =
|Sw1w2(ν)|√

Sw1w1(ν)Sw2w2(ν)
(13)

where Sw1w2(ν) is the cross-spectrum between vertical turbulence w1(t) at Point 1 and w2(t) at Point 2,
and similarly Sw1w1(ν) and Sw2w2(ν) are the corresponding autospectra of w1(t) and w2(t). For HIT,
cross-spectrum is real and Sw1w1(ν) ≈ Sw2w2(ν). Therefore, coherence from Equation (13) simplifies to
Equation (14).

Cw1w2(σ, ν) =
|Sw1w2(ν)|
Sw1w1(ν)

(14)

where Sw1w2(ν) is given by Equation (12c) and Sw1w1(ν) is the von Karman vertical spectrum as given
in Equation (15) [15].

Sw1w1(ν) =
σ2

w
π

[
1 + 8

3 (1.339)2

(1 + 1.3392)
11/6

]
(15)
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As seen from Equation (14), Cw1w2(σ, ν) is a ratio of the cross-spectrum from Equation (12c)
and the autospectrum from Equation (15). It is expedient to reiterate that this autospectrum is due
to von Karman [15] and that the cross-spectrum is due to Houbolt and Sen [10], as an extended
version of the von Karman spectral equations that accounts for the cross-correlation between vertical
turbulence velocities at two points; also see Figure 5. After some algebra, Equation (14) simplifies to
Equation (16) [8].

Cw1w2(σ, ν) =
0.597

23869(z/σ)2 − 1

[
4.781(z/σ)2z5/6K5/6(z)−

1
2

z11/6K11/6(z)
]

(16)

As for the longitudinal and lateral velocity components, the cross-spectra are given by
Equations (17a) and (18a) and the coherences are given by Equations (17b) and (18b). In the literature
(e.g., [9–12]), the expressions for cross-spectra and coherences from one set of study do not completely
agree from another set.

Su1u2(ν) = 0.1946σ2
u

z5/6(
1 + (1.339ν)2

)11/6

[
K5/6(z)−

z
2

K1/6(z)
]

(17a)

Cu1u2(σ, ν) = 0.9944z5/6
[
K5/6(z)−

z
2

K1/6(z)
]

(17b)

Sv1v2(ν) = 0.0727σ2
v

(
σ5/3

z5/6

)[
8
3

K5/6(z)−
σ2

1.3392z
K11/6(z) +

z
2

K1/6(z)
]

(18a)

Cv1v2(σ, ν) =
0.597

2.8687(z/σ)2 − 1

[
4.781(z/σ)2z5/6K5/6(z)−

1
2

z11/6K11/6(z)
]

(18b)

Given this background, it is emphasized that in the present study, the expressions of cross-spectra
as typified by Equations (12c), (17a) and (18a) for the vertical, longitudinal and lateral components
agree with those of Frost et al. [11]. As for coherence, the corresponding expressions given by
Equations (16), (17b) and (18b) agree with those of Irwin [12]. Figures 6–8, respectively, show vertical,
longitudinal and lateral coherence between Points 1 and 2 as a function of dimensionless frequency
ν = ωL/V for σ = S/L = 0, 0.1, 0.2, . . . 1. For σ = 0, Point 2 merges into Point 1 and in turn
the cross-spectra become the respective autospectra and thus the coherence represents the perfect
coherence. For example, as seen from Figure 6 for the vertical coherence, Cw1w2(σ, ν)→ 1 . Similarly,
as seen from Figures 7 and 8, Cu1u2(σ, ν)→ 1 and Cv1v2(σ, ν)→ 1 . Exactly the opposite happens with
increasing σ = S/L. That is, with increasing σ, the correlation between these two points decreases
and so does the corresponding coherence. For example, as seen from Figures 6–8, Cw1w2(σ, ν)→ 0 ,
Cu1u2(σ, ν)→ 0 and Cv1v2(σ, ν)→ 0 as σ→ ∞ . Moreover, as seen from these figures, the coherence
decreases rapidly for ν > 1 or so.

The longitudinal cross-spectrum Su1u2(ν) and coherence Cu1u2(σ, ν) are typified by Equations (17a)
and (17b), respectively, and Figure 7 shows coherence Cu1u2(σ, ν) as a function of dimensionless
frequency ν = ωL/V; all of this merits revisiting. The reason is that Su1u2(ν) and in turn the
corresponding coherence can become negative at high frequencies. As seen from Equations (17a)
and (17b), respectively, Su1u2(ν) and Cu1u2(σ, ν) can take on negative values for K5/6(z) ≤ z/2K1/6(z).
See Figure 9, which is a recasting of Figure 7 for a much expanded vertical scaling (1 to 10−6 in Figure 9
in comparison to 1 to 10−2 in Figure 7). The crosses (*) in Figure 9 indicate the termination of the
curve to avoid generating negative coherence values. Given the state of the art and one’s initiation
into cross-spectra and coherence, it is difficult to come up with a basis for these negative values of
cross-spectrum and coherence for HIT; a resolution of this difficulty would require further research [11].
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5.3. Coherence Modeling for Wind-Farm Wake Turbulence

Wind farm wake turbulence deviates from HIT. Accordingly, the framework for coherence
modeling from a database accounts for this deviation based on perturbation theory. Here as well,
the framework assumes the same topology that was assumed in the development of the basis functions;
for illustration vertical coherence Cw1w2(σ, ν) is selected.

Let Cw1w2(σ, ν) represent the vertical coherence of wake turbulence. The framework begins with
a perturbation series expansion of C̃w1w2(σ, ν) (essentially the same procedure applies to the other
two components):

C̃w1w2(σ, ν) = C1wCw1w2(σ, ν) + C2wC2
w1w2

(σ, ν) + · · ·+ CnwCn
w1w2

(σ, ν) (19)

The basis function or the first term of the series is given by Equation (16). Since Cw1w2(σ, ν) = 1
for σ = 0, Equation (17) is subject to the constraint:

C1w + C2w + · · ·+ Cnw = 1 (20)

The second condition that C̃w1w2(σ, ν) = 0 for σ = ∞ is automatically satisfied since
Cw1w2(σ, ν) = 0 for σ = ∞. The coefficients in the series Ciw are evaluated by satisfying the theoretical
constraint of Equation (20) and fitting a curve on a set of selected numerically generated coherence
points in a least squares sense.

For illustrations, longitudinal coherence of wake turbulence C̃u1u2(σ, ν) is selected with a two-
term perturbation series (also see Equation (19)):

C̃u1u2(σ, ν) = C1uCu1u2(σ, ν) + C2uC2
u1u2

(σ, ν) (21)

Specifically, consider C1u = 0.7 and C2u = 0.3 (also see constraint Equation (20)). Descriptively
stated, this case represents wake turbulence, which deviates weakly from HIT. It is plausible that this
case belongs to wake turbulence at locations that are downwind of the first two rows or so. Therein,
wake turbulence is expected to deviate only weakly from HIT as depicted in Figure 10.
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6. Conclusions

This study has shown that an earlier-exercised mathematical framework lends itself well to
extracting interpretive autospectral models of wind farm wake turbulence from a database. While these
models are database specific, the framework can be applied to any database and the model construction
is straightforward. As to the two-point statistics of wake-turbulence, this study first presents a unified
account of cross-spectrum and coherence for HIT; this account is of considerable utility in that, in the
literature, the expressions of cross-spectrum and coherence show differences from one study to the
other. Given these expressions of coherences, this study then builds a framework for extracting
wake turbulence coherence models from a database. The frameworks for autospectra and coherences
do not follow classical perturbation theory approach of a solution for a linearized problem along
with successively added corrections. Both frameworks represent a practical combination of a series
expansion, exploitation of a database, and theoretical constraints in closed form.

This study also leads to following specific findings:

1. Generally, no more than a three-term series (second-order correction) is necessary to develop
an autospectral model; in most cases, a two-term series (first-order correction) is found to be
adequate for wind engineering applications.

2. The addition of a third term to the series has significant power in reducing the “A error” between
the model and the data. Recall that the “A error” refers to minimizing the sum of the errors in a
least squares sense: the model deviation from the autospectral data points and from the measured
high frequency autospectral decay level (when applicable).

3. These developed models lend themselves well to design of filters driven by white noise; that is,
the filter design is as routine as the currently used procedure for the von Kármán models.

4. While this framework to constructing the coherence models from a database has not been tested
against a database, it has been formulated from first principles and with a theoretical basis.

5. This study has shown the feasibility of constructing both the one-point statistics of autospectral
models and the two-point statistics of coherence models from a database. These models
could serve as surrogate analytical models in the experimental and CFD investigations;
thus, this feasibility offers promise in providing an improved understanding of wake turbulence.

6. The two frameworks for the autospectrum and coherence increase the utility base of the database,
involving enormous resources. Given the simple analytical structure of these models, they bring
better understanding and transparency to a dataset.
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Nomenclature

Aw Autospectral high-frequency asymptotic limit of f S̃w1w2 ( f )/σ2
w (similarly for Av and Au)

ABL Atmospheric Boundary Layer turbulence
Cw1w2 (σ, ν) Vertical coherence between w1(t) and w2(t) for HIT

C̃w1w2 (σ, ν)
Modeled series expansion of coherence for vertical wake turbulence velocity w (likewise,
for u and v)

Ciw Constants in the perturbation series expansion of C̃w1w2 (σ, ν)

f Frequency (Hz)

HIT
Homogeneous Isotropic Turbulence for which the frozen turbulence hypothesis is
applicable

L Turbulence length scale

Rww(τ)
von Karman vertical autocorrelation function (likewise, for u and v) for HIT; also, the first
term in the perturbation series expansion of R̃ww

R̃ww(τ)
Modeled series expansion of autocorrelation for vertical wake turbulence velocity w
(similarly, for u and v)

S Separation between Point 1 and Point 2
Sww(ν) Autospectrum of vertical turbulence velocity w (likewise, for u and v) for HIT

S̃ww(ν)
Modeled series expansion of autospectrum for vertical wake turbulence velocity w
(similarly, for u and v)

Tu, Tv, Tw Times scales of longitudinal, lateral and vertical turbulence
T Time(s)
u, v, w Longitudinal, lateral and vertical turbulence (u is also used as a general variable)
V Mean Velocity
z Non-dimensional general variable
αu, αv & αw Time-scale preservation parameters for autocorrelations (or autospectra) of u, v and w
βiw Constants in the perturbation series expansion of R̃ww

σ2
u , σ2

v & σ2
w Variance of turbulence components u, v and w

ω Angular frequency (rad/s)
ν Non-dimensional frequency
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