
energies

Review

Prevention of Potential Hazards Associated with
Marine Gas Hydrate Exploitation: A Review

Fangtian Wang 1,2, Bin Zhao 1,2,* and Gang Li 1,2

1 State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology,
Xuzhou 221116, China; wangfangtian111@cumt.edu.cn (F.W.); Lgang_27@cumt.edu.cn (G.L.)

2 School of Mines, Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China,
China University of Mining and Technology, Xuzhou 221116, China

* Correspondence: 01120120@cumt.edu.cn

Received: 20 August 2018; Accepted: 7 September 2018; Published: 10 September 2018
����������
�������

Abstract: Marine gas hydrates (MGHs), which have great potential for exploitation and utilization,
account for around 99% of all global natural gas hydrate resources under current prospecting
technique. However, there are several potential hazards associated with their production and
development. These are classified into four categories by this paper: marine geohazards, greenhouse
gas emissions, marine ecological hazards, and marine engineering hazards. In order to prevent
these risks from occurring, the concept of “lifecycle management of hazards prevention” during the
development and production from MGHs is proposed and divided into three stages: preparation,
production control, and post-production protection. Of these stages, economic evaluation of the
resource is the foundation; gas production methods are the key; with monitoring, assessment, and
early warning as the guarantee. A production test in the Shenhu area of the South China Sea
shows that MGH exploration and development can be planned using the “three-steps” methodology:
commercializing and developing research ideas in the short term, maintaining economic levels of
production in the medium term, and forming a global forum to discuss effective MGH development
in the long term. When increasing MGH development is combined with the lifecycle management of
hazards prevention system, and technological innovations are combined with global cooperation to
solve the risks associated with MGH development, then safe access to a new source of clean energy
may be obtained.

Keywords: marine gas hydrate; submarine landslide; greenhouse gas emission; lifecycle
management; hazard prevention

1. Introduction

As the global economy develops, the demand for energy is increasing and with the resultant rise
in consumption of fossil fuels, there is a need to find alternative forms of energy to maintain sustainable
development [1,2]. As a non-traditional fossil fuel, natural gas hydrates (NGHs) are the subject of
increasing research since their discovery in the 1960s [3,4], because of their high calorific value and
potential utilization. NGHs (combustible ice) are non-stoichiometric crystalline compounds that form
ice-like solid structures of gas (i.e., usually methane, ethane, propane and lower order hydrocarbons [5])
and water in a low-temperature (2–18 ◦C) or high-pressure (3.5–14.5 MPa) environment [6–8]. These
conditions occur in near-surface, deep-water marine sediments and in terrestrial permafrost areas
that are widely distributed around the world (Figure 1). Currently, NGH reserves are believed to be
in the order of 3.0 × 1015 m3 (3.0 × 1012 t oil equivalent), which is approximately twice the world’s
known supply of fossil fuels (coal, oil, natural gas) [9]. Of the NGH reserves, marine gas hydrates
(MGHs) account for more than 99% of these reserves, which if developed could provide many years
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of production [10,11]. As a result, research on the development of MGHs has become an important
research issue.
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Figure 1. Distribution of NGH deposits on Earth [8]. (1) “Production test” represent the places where
have been successfully tested NGH production; (2) “Sampling studies” represent the places just where
the hydrate samples are taken but not production tested; (3) “Speculated area” represent the places
where there may be hydrates under current prospecting technique.

NGHs are only stable within a specific range of temperature and pressure conditions (Figure 2)
and understanding these is crucial to the development of NGH reserves. At present, there are five NGH
production methods: depressurization, thermal activation, chemical agent injection, CO2 replacement
and solid fluidization [12,13].

Energies 2017, 10, x FOR PEER REVIEW 2 of 18 

 

developed could provide many years of production [10,11]. As a result, research on the development 

of MGHs has become an important research issue. 

 

Figure 1. Distribution of NGH deposits on Earth [8]. (1) “Production test” represent the places where 

have been successfully tested NGH production; (2) “Sampling studies” represent the places just 

where the hydrate samples are taken but not production tested; (3) “Speculated area” represent the 

places where there may be hydrates under current prospecting technique. 

NGHs are only stable within a specific range of temperature and pressure conditions (Figure 2) 

and understanding these is crucial to the development of NGH reserves. At present, there are five 

NGH production methods: depressurization, thermal activation, chemical agent injection, CO2 

replacement and solid fluidization [12,13].  

 

Figure 2. Pressure-temperature equilibrium curves for MGHs [2]. 

There have been three important production tests of MGHs in the 21st century [14], namely 

within the Nankai Trough, Japan (2013, 2017) [15,16] and in the Shenhu area of the South China Sea 

(2017) [10]. Production tests of NGHs in terrestrial permafrost have been undertaken in the 

Mackenzie Delta, Canada (2002, 2007, 2008) [17] and the North Slope of Alaska, United States of 

1600

1400

1200

1000

800

600

400

200

0

-20 -10 20 300 10
Temperature(℃)

Depth(m) Sea level

Curve of
temperature

Curve of MGH
stability

Seabed

S
table reg

io
n

 o
f M

G
H

BSR

MGH deposits

Figure 2. Pressure-temperature equilibrium curves for MGHs [2].

There have been three important production tests of MGHs in the 21st century [14], namely within
the Nankai Trough, Japan (2013, 2017) [15,16] and in the Shenhu area of the South China Sea (2017) [10].
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Production tests of NGHs in terrestrial permafrost have been undertaken in the Mackenzie Delta,
Canada (2002, 2007, 2008) [17] and the North Slope of Alaska, United States of America (2012) [18];
other countries such as Germany, India and South Korea have also conducted sampling studies
on MGHs [19–21]. The results of the production tests and sampling studies have found that the
crystal structure, sediment morphology and occurrence characteristics of NGHs show great diversity
(Figure 3). This difference means that development of these resources will be complicated [6]. There is
the potential for submarine landslides, climate warming, marine ecological damage and other hazards,
if MGHs are not developed carefully. Current levels of technological development still face many
technical and environmental challenges before the economic benefits of MGHs can be realized [10,14].
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sand; (b) Massive lenses and nodules in muds; (c) Disseminated in muds; (d) Contained in the pore
spaces of fine-grained marine sand; (e) Thin veins in muds; (f) Massive mounds on sea-floor.

This paper classifies and summarizes the different types of potential hazards in the development
of MGHs based upon research to date, and proposes a comprehensive prevention and control strategy
for these hazards, based on the concept of “lifecycle management”. Additionally, the key challenges
and lessons learned from a production test in the Shenhu area of the South China Sea are presented.

2. Classification and Causes of Potential Hazards from MGHs

The development of MGH reserves is controlled by the environment and the geology of the
sediments at the location, so development of these reserves is complex and the production methodology
is location specific [14]. Four categories of potential hazards have been identified which may affect the
development of MGHs: marine geohazards, greenhouse gas emissions, marine ecological hazards, and
marine engineering hazards.

2.1. Marine Geohazards

2.1.1. Submarine Landslide

Submarine landslides are the most important type of marine geohazard that may be encountered
during the development of MGH reserves. As the pressure-temperature conditions change during
development of MGH reserves, methane is released, and the filling and cementation of the reservoirs
is reduced [22,23]. This results in a decrease of effective stress and an increase in pore pressure,
which reduces the shear strength and bearing capacity of the sediments and can lead to reduced slope
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stability (Figure 4). Geohazards, such as sediment deformation, slumping, and even debris flows may
occur. The submarine landslides of Storrega (Norway), at Cape Fear (USA) and in the Beaufort Sea
(Canada) may have been related to the decomposition of MGHs [24–26]. Three criteria for the potential
occurrence of submarine landslide have been identified [26,27]: (1) hydrates are widely distributed
within the landslide areas; (2) the initial position of the landslide zone must be located at the phase
boundary of the pressure-temperature field, (3) there is a low-permeability deposit under the hydrates
which can maintain high pore pressure. The criteria suggest that submarine landslides caused by
MGH decomposition are more likely to appear on shallow submarine slopes.
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2.1.2. Earthquakes and Other Geohazards

The development of MGH reserves may cause other geohazards (Figure 5), such as earthquakes,
active faulting, mud diapirism, and turbidity currents. Rapid venting of MGH reservoirs may cause
the development of active faults which could provide a further conduit for methane escape, which
would lead to a further decrease of reservoir pressure and thereby increase the rate of methane
production [28]. Once the reservoir is drained, secondary hazards such as earthquakes may occur as a
result of sediment settlement into the produced voids. Mud diapirism caused by plastic sediment flow
around over-pressurized sand layers may also occur [22,29,30].
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It should be noted that the release of MGHs and the associated marine geohazards triggered by
this release are a normal process under natural conditions; the commercial development of MGHs
could alter the balance and trigger these marine geohazards as an unnatural response [14]. Further
studies are required to understand the causation of marine geohazards due to MGH development to
ensure safe access to these resources.

2.2. Greenhouse Gas Emissions

One of the main impacts on the Earth’s climate of increased greenhouse gases emissions is
global warming. Methane is a greenhouse gas whose global warming potential index is twenty-five
times that of carbon dioxide by unit mass and is an accelerator for environmental change [31,32].
Both the Paleocene-Eocene Thermal Maximum (PETM), with a global temperature rise of 4–8 ◦C
that occurred 55.5 million years ago, and the global warming during the Quaternary interglacial
periods were possibly caused by the large-scale decomposition of MGHs [23,33,34]. It suggested that
during the Quaternary there was a cyclical link between the decomposition of MGHs (formation
of methane) and global warming resulting in the glacial/intra-glacial cycle. As Figure 6 shows,
(1) global cooling in the glacial epoch and sea-level decline leads to lower hydrostatic pressure, which
results in the decomposition of MGHs as a result of the loss of stable pressure-temperature conditions;
(2) the resulting methane enters the atmosphere which causes global warming, and an interglacial
period ensues. As the glaciers melt as a response to the warmer conditions (interglacial period), the
subsequent sea-level rise leads to increased hydrostatic pressure, and the MGHs restabilize until the
next interglacial [35–37].
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At present, there is extensive research into establishing links between sudden releases of methane
from MGH decomposition and specific changes in the global climate at certain times in the geological
past, as well as the impact that these events had on geological history. One of the major problems with
determining these effects is the fact that MGH-derived methane is dissolved and oxidized by seawater,
so the amount entering the atmosphere is not representative of the release event or period [36]. Hence,
the greenhouse gas emissions effect of MGH decomposition under normal conditions needs further
observation and research [37].

2.3. Marine Ecological Hazards

In this paper, marine ecological hazards refer to the adverse effects on marine organisms and other
components of the marine environment caused by the MGH decomposition. Under normal conditions,
the gases from MGH decomposition reach the surface in a cold spring via a variety of means, including
migration up fault planes and pore space expansion, where they form autotrophic chemosynthetic
communities that consume methane, hydrogen sulfide, and other substances to provide the basic
driving force for the entire marine community [38]. Inorganic carbon is also formed when MGH
decompose and react with seawater to form carbonate minerals, providing a habitat for marine
plankton and other biological communities (Figure 7). Uncontrolled releases from MGH may lead
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to faulting, eruptions at the seabed, and the collapse of the carbonate deposits and chemosynthetic
communities, which may adversely affect the health of the marine environment. Meanwhile, some
of the methane derived from the MGH will be regenerated as new hydrates and return to the seabed
while the rest will react with the dissolved oxygen in the seawater to form CO2. If excessive amounts
of methane enter the seawater, large volumes of oxygen are consumed to form CO2 so that the growth
and evolution of marine animals and plants are prevented which could lead to extinction in extreme
cases [39–41]. Marine faunal extinctions at the end of the Permian, Triassic, and Cretaceous may have
been caused by the release of methane and subsequent changes to the marine environment [42,43].
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Methane release by decomposition of MGH is a natural process and is part of the marine
environment. Further research is needed into the effects on the marine environment that which
might happen if MGH are developed as a commercial resource.

2.4. Marine Engineering Hazards

Two types of marine engineering hazards can be caused by the development of MGH: (1) MGH
instability induced during drilling, (2) the risks associated with drilling or installing submarine
structures in MGH areas. These hazards are inter related and the links and differences are
discussed below.

2.4.1. MGH Stability Hazards

The MGH stability zone shown in Figure 2 is restricted to a limited temperature and pressure
regime. Consequently, drilling through MGH is challenging as it involves changing the pressure
regime and increasing the temperature profile of the sediments immediately surrounding the well
bore (Figure 8). Furthermore, the use of organic alcohol hydrate thermodynamic inhibitors and
inorganic salts in the drilling fluid can enhance the production of methane and barite precipitates,
respectively [44]. On drilling into an MGH, large amounts of methane can be released that infiltrate into
the drill pipe, resulting in a sharp increase in the mud pressure. As the methane rises and cools, it can
reform as hydrate crystals that clog the drill pipe, potentially causing well abandonment. As drilling
continues into the underlying free-gas zone, formation pressure can rise, causing increased release of
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methane and the buildup of large amounts of high-pressure gas in the drill pipe, which could lead to
a blowout [45]. With significant releases of methane, soil formation stability is reduced through the
development of numerous voids, which could impact borehole stability if they collapse. Furthermore,
poorly consolidated sediments can result in significant sand production, which can affect the operation
of safety equipment such as blowout preventers [46].

Energies 2017, 10, x FOR PEER REVIEW 7 of 18 

 

Furthermore, poorly consolidated sediments can result in significant sand production, which can 

affect the operation of safety equipment such as blowout preventers [46]. 

 

Figure 8. Sketch of drilling engineering hazards [38]. 

2.3.2. Risks Associated with Drilling or Installing Structures in MGH Areas 

Exploration and development drilling for hydrocarbons in deep water can involve drilling 

through MGH deposits, where decomposition and regeneration of MGH may occur [47]. When 

drilling through these deposits, the formation properties will change [48]. The risks such as changes 

in drilling fluid properties, borehole stability issues, well cleaning, and cementation problems will 

follow. However, these issues can be successfully mitigated by appropriate drilling techniques just 

like we can adjust the drilling fluid according to the formation properties change. Secondary 

generation of MGH within blowout preventers, as well as changes in the rheology of the drilling fluid 

through the formation of barite scale and the subsequent blockage of pipework within the blowout 

preventer, may occur, but these effects can be reduced by appropriate composition of the drilling 

muds [49]. If foundations have to be piled into or laid on top of these deposits, then the seabed 

stability can be reduced if the pressure–temperature regime is disrupted with the subsequent 

damaged to the structures, associated pipelines, and communication cables [50]. 

3. Control and Prevention of Potential Hazards in MGH Development 

Many methods have been proposed to reduce the potential hazards associated with the 

development of MGH as a resource. A concept of “lifecycle management of hazards prevention” 

(LMHP) in the development of MGH is proposed to cover the different stages of MGH development. 

These stages are: preparation; control during development; and post production protection. Each 

stage requires research into specific issues (Figure 9) and these are discussed below. 

3.1. Preparation 

The preparation phase is the primary step and the LMHP covers the mechanism of MGH 

formation, appraisal methodology and gas production methods. 

Sea level

Borehole
Free gas layer

Drilling fluid

Blowout

Hydrate
regeneration

MGH
Decomposition

Casing failure

Decomposition

Collapse

Gas
leakage

Cased borehole

Figure 8. Sketch of drilling engineering hazards [38].

2.4.2. Risks Associated with Drilling or Installing Structures in MGH Areas

Exploration and development drilling for hydrocarbons in deep water can involve drilling through
MGH deposits, where decomposition and regeneration of MGH may occur [47]. When drilling through
these deposits, the formation properties will change [48]. The risks such as changes in drilling fluid
properties, borehole stability issues, well cleaning, and cementation problems will follow. However,
these issues can be successfully mitigated by appropriate drilling techniques just like we can adjust
the drilling fluid according to the formation properties change. Secondary generation of MGH within
blowout preventers, as well as changes in the rheology of the drilling fluid through the formation
of barite scale and the subsequent blockage of pipework within the blowout preventer, may occur,
but these effects can be reduced by appropriate composition of the drilling muds [49]. If foundations
have to be piled into or laid on top of these deposits, then the seabed stability can be reduced if the
pressure–temperature regime is disrupted with the subsequent damaged to the structures, associated
pipelines, and communication cables [50].

3. Control and Prevention of Potential Hazards in MGH Development

Many methods have been proposed to reduce the potential hazards associated with the
development of MGH as a resource. A concept of “lifecycle management of hazards prevention”
(LMHP) in the development of MGH is proposed to cover the different stages of MGH development.
These stages are: preparation; control during development; and post production protection. Each stage
requires research into specific issues (Figure 9) and these are discussed below.
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3.1. Preparation

The preparation phase is the primary step and the LMHP covers the mechanism of MGH
formation, appraisal methodology and gas production methods.

3.1.1. MGH Formation Studies

A comprehensive study of the formation, migration, accumulation, and storage of methane within
the MGH, in conjunction with expected pressure-temperature conditions, gas source, gas migration,
and the presence of suitable reservoirs within the MGH accumulation are the main factors to be
determined [51]. The characteristics of each MGH accumulation depend on the interaction of all these
factors [52]. The degree of difficulty for the development of NGH reservoirs can be represented in
pyramidal form (Figure 10). The difficulty of developing MGH reservoirs varies in a continuum from
low in sandy reservoirs, then permeable clay reservoirs, then cold spring-related massive reservoirs,
to high in non-permeable clay reservoirs. Each reservoir-type can be subdivided into three types
according to recoverable value: Class I, Class II and Class III [6,12]. Class I is that one hydrate bearing
layer covers on a two-phase fluid zone with free gas which is considered to be the most suitable
reservoir for natural gas production. Class II is that one hydrate bearing layer covers on a mobile water
zone and Class III is that there is only one hydrate bearing layer, which are still not well defined as gas
production targets [53]. The successful production test of high-saturation diffusion-sourced hydrates
in a viscous siltstone reservoir in the Shenhu area of the South China Sea demonstrates that production
can be successfully obtained from complex MGH reservoirs [54].
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3.1.2. Appraisal Methodology

An efficient appraisal methodology is a prerequisite for effective economic development of MGH
reserves. The appraisal methodology involves the elimination of prospects with insufficient reserves,
as well as reserves which are deemed risky or too complex to develop [14]. Resources can be defined
as the total quantity of gas stored in the MGH reservoir (the sum of discovered and undiscovered gas
as well as economically recoverable and non-economically recoverable gas), while reserves can be
defined as the amount of gas that can be recovered at a reasonable level of economic return [55,56].
Currently, appraisal methodology involves four methods for volumetric estimation: (1) area/depth
method, (2) volumetric method, (3) probability statistics, and (4) material balance method, of which
the volumetric method which most widely used [57]. Figure 11 shows that as geological certainty
and economic cut-offs improve, the reserves gradually decrease. At present, the concept of “natural
gas hydrate petroleum system” [58] based on volumetric method has been proposed by researchers,
which combines the accumulation mechanism with the actual occurrence conditions, and has a higher
feasibility in the management of MGH resource appraisal system in the future [59].
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3.1.3. Gas Production Methods

Choosing the most effective method for gas production from MGHs involves assessing a variety
of factors to achieve the simplest, most practical, and environmentally safe method of production. Five
methods are mentioned in the Introduction, their production benefits and risks are presented here as
follows [6,60]:

(1) Chemical agent injection, used in permafrost NGH developments, is expensive and toxic and
application in MGH development will damage marine ecological environments.

(2) Depressurization operations of MGHs do not require continuous operation so have lower costs,
and are appropriate for large-scale production.

(3) Thermal activation methods can be used in situations of complex geology; however, these
methods require high levels of energy consumption as well as having low heat exchange efficiency.

(4) CO2 replacement methods are environmentally friendly, but are technically difficult and require
a steady supply of CO2.

(5) Solid fluidization is only applicable to deep-sea reservoirs at shallow depths, with
limited-diagenesis and poor cementation. It has only been applied in the Liwan area of the
northern South China Sea [35].

Production tests using a combination of depressurization and thermal activation methods have
been successfully applied at the highest ranked offshore prospects (the Shenhu area of the South China
Sea and the Nankai Trough of Japan) [10,15,16], and the CO2 replacement method is the most effective
onshore method to avoid potential hazards in the future (production test of permafrost in the North
Slope of Alaska, USA) [18,61].

3.2. Production Control

Production control during MGH development is the key priority for LMHP and involves using
appropriate drilling technology, hazard monitoring during drilling and production, and suitable
monitoring systems to provide early warning of systems failure.

3.2.1. Drilling Technology Management

Drilling technology management is one of the core parts of MGH development which can avoid
potential hazards if applied correctly. There are three aspects involved: drilling, cementing, and
completion [62]. The drilling system includes drilling technology, fluid, and equipment, and their
effective integration to ensure efficient drilling. The preferred method of drilling is selected to inhibit
decomposition of MGHs by maintaining pressure or using casing. Cased drilling has been used on
all the production tests because it is quicker, cheaper, and less prone to failure. Well cementation
provides protection and support to the wellbore casing, particularly across the reservoir section. Well
completion provides further stability to the wellbore and to prevent accidents caused by excessive
sand production. Drilling has been done to date using semi-submersible drilling rigs or drill ships
(Figure 12) and downhole gas-liquid-solid separation devices [63]. The Shenhu production test used
the “Blue Whale I” semi-submersible drilling rig and a Chinese gas-water-sand tri-phase separator.
The Nankai Trough production tests used the “Chikyu (Earth)” deep ocean drilling vessel and a
Japanese gas-liquid separator. Both these systems proved effective during the respective production
tests [64,65]. During the drilling of these production wells, drilling fluids had significant quantities of
thermodynamic inhibitors added to the drilling mud to suppress or retard the regeneration of hydrates.
This also had a significant effect on the prevention and control of marine geohazards. Special cements
were used which had the following properties: low temperature, low density, low hydration heat, high
early strength, low filtrate loss, good densification, and anti-channeling in order to ensure efficient
completion of cementing operations. Appropriate well completion measures, such as mechanical sieve
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tubes and gravel packing, were used during the production tests [66]. Research is needed to improve
sand control methods during well completion to reduce sand abrasion and enhance abrasion resistance.
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3.2.2. Monitoring during Development

Monitoring the changes in the submarine environment is an important part of the MGH
development process (Figure 13). This ensures that potential hazards can be prevented during
development, as well as establishing a baseline for monitoring changes in the marine environment
during production and throughout development. Baseline monitoring is performed to detect changes
in reservoir parameters, such as temperature, pressure, permeability, porosity, saturation, as well as
in environmental parameters, such as seawater composition and submarine life that result from the
development of MGHs. It is important to obtain baseline data before production commences in order
to analyze the changes relating to production and development in the surrounding environment; these
data can be collected along with other monitoring data in the planning stage. During production and
development, it is important to have real time monitoring of seabed deformation, reservoir stability,
and methane leakage; this was undertaken during the production test in the Nankai Trough of Japan
and in the Shenhu area of the South China Sea [11,67,68]. Therefore, it is important to carry out
long term, real-time, extensive, multi-parameter, in-situ monitoring to evaluate the impact that MGH
production has on the marine environment during production, development, and afterwards.
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3.2.3. Risk Assessment and Early Warning System

The purpose of a risk assessment system is to estimate and assess the scale and impact levels
that potential hazards would have throughout the entire life cycle of a MGH development, and
then establish a quantitative assessment and early warning system for potential hazards. This paper
suggests a fuzzy comprehensive evaluation method [69] to quantitatively evaluate different types of
hazards. First, a set of assessment object factors (U) is determined (Table 1), and then a comment set
V = {High risk, medium risk, low risk, minimal risk} is determined.

Table 1. Assessment object factors set.

The First Index Ui (Ai) The Second Index Uij (Aij) The Third Index Uijk (Aijk)

Climate and environmental
hazards U1 (A1)

Greenhouse gas U11 (A11) —
Biocoenosis hazards U12 (A12)

Marine geohazards U2 (A2)

Submarine landslide U21 (A21)

—
Active fault U22 (A22)
Mud diaper U23 (A23)
Sea quake U24 (A24)

Turbidity current U25 (A25)

Marine engineering
hazards U3 (A3)

Drilling engineering hazards U31 (A31)

Well blowout, leakage and borehole
instability U311 (A311)

Sand production, well plugging and hydrate
secondary generation U312 (A312)

Disused well U313 (A313)
Deep-sea drilling hydrate crossing and

other accidents U32 (A32)
submarine line accidents U321 (A321)

Oil-gas well accidents U322 (A322)
Note: the sum of Ai is 1 Note: the sum of Aij is 1 (i is the same) Note: the sum of Aijk is 1 (i, j all are the same)

Next, a second set (A) of assessment object factors is derived using a variety of methods including
expert estimation, Delphi method, and characteristic value, although they all involve subjective
analysis. The fuzzy relation matrix R is determined using a single factor fuzzy assessment. The
appropriate fuzzy synthesis operator M is selected to combine the weight set A and the matrix R to
create a weight set B. Then by comparing the weight set B with the comment set V, the potential risk
level for each potential hazard can be determined. As a result of this analysis of potential hazards, a
quantified risk assessment for potential hazard levels during MGH development can be established
and a set of corresponding early warning measures be established. Using appropriate technologies,
personnel, and equipment in a prudent way to form a complete risk assessment and develop early
warning system for hazards will prevent hazards occurring and provide a solution pathway when
they occur.

3.3. Post-Production Protection

It is important to evaluate the post-production restoration cost of the environment surrounding
an MGH development as part of the overall evaluation of the economic value of developing an
MGH resource.

3.3.1. Post-Development Handling

The cessation of production at MGH developments involves a variety of issues such as
well abandonment, reservoir protection, and monitoring of the surrounding environment. Well
abandonment is similar to that of traditional deep-sea gas production and monitoring of the
surrounding environment is concerned with whether there are anomalies in strata, seawater, or the
atmosphere. These processes can be undertaken during the risk assessment process. Post production
reservoir remediation is important to maintain seabed stability. During MGH production, large
numbers of voids may appear in the reservoir, resulting in reduced sediment strength and problems
relating to sediment collapse. A method to inject the produced voids with high-water content sediments
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under high-pressure and low-temperature is proposed, which would improve sediment stability and
remediate the marine environment after production has ceased.

3.3.2. Economic Evaluation of Production

The economic evaluation of production considers the problem of coordination between input and
output, technology and efficiency. One of the main purposes of developing MGHs is to maximize the
economic benefit by using suitable technology in a safe environment. The two important parameters
involved in the economic evaluation are the energy efficiency ratio (EER, ratio of combustion heat to
decomposition heat in unit) and the energy return on energy invested (EROI, ratio of energy output to
energy input during production) [70]. On the one hand, EER is affected by the production method,
with the depressurization having the maximum energy efficiency; on the other hand, the reservoir
type (Section 3.1.1) is also an important factor. The changes in reservoir energy efficiency and expected
production cost trends are shown in Figure 14a. EROI is mainly influenced by the technical level and the
amount of resources used during production. Generally speaking, the higher the resource value used,
the higher the hydrate production efficiency that can be achieved. The continuous improvement in
technology and constant consumption of resources indicates that the EROI has a peak value Qmax and
then declines to the breakeven line (Figure 14b). Therefore, low-efficiency technology will inevitably
consume large amounts of high-quality resources and shift the peak forward. One of the important
uses of economic evaluation of the production costs associated with technological breakthrough and
innovation is to ensure that these lie within a reasonable range on the EER and EROI graphs [71,72].
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Figure 14. Economic evaluation indices of production [70]. (a) Changes of EER and production cost
with time; (b) Change of EROI with production. The “Physical depletion component” means the trend
of gas hydrate resource depletion; the “Technological component” means the trend of technology
development; the “Technological limit” means the maximum that the technology can achieve; the
“Break even” means that the EROI is maintained at a lower level and is no longer developed.
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Based on the above analysis, all stages of LMHP are dynamic and interlinked processes. Effective
integration of these will enable MGH development to be undertaken in a safe and effective fashion;
ignoring small details may lead to significant problems during the project life cycle.

4. Key Challenges and Prospects

The development and exploitation of MGHs is undergoing rapid evolution. Between May to
July 2017, China successfully tested in the Shenhu area of the South China Sea, where natural gas
was extracted from silty clay reservoirs at a depth of 203 to 277 m below the seabed, in water depths
of around 1266 m below sea level [10,35]. The production test was carried out by the “Blue Whale
I” semi-submersible drilling rig. Firstly, the MGH in the silty clay reservoirs is decomposed by the
depressurization, and then the natural gas developed by the hydrate sediment is taken out smoothly by
using a gas-water-sand tri-phase separator which independently developed by China [10,73]. During
the 60-day stable production test, the cumulative gas production exceeded 30.9 × 104 m3, with an
average daily output of 5151 m3 and a maximum daily production of 3.5 × 104 m3. The maximum
methane content in the produced gas was 99.5% [10,72]. Several major technical breakthroughs
were achieved during this production test, such as the longest sustained production time and the
maximum volume of gas production, the duration of stable air flow and environmental safety, as well
as establishing two new world records for the gas production time and volume. However, these
production test successes are only an initial step in the process of MGH development where all
involved countries, including China, are still facing great challenges and difficulties.

4.1. Key Challenges

The potential hazards and the implementation of the prevention and control measures within
LMHP are all challenges. In this section, these are summarized into the “three-step” strategy
(Figure 15) reflecting the importance that these problems have within the different development
stages of MGH development.
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The first step: short-term challenges. This stage contains most of the major problems that
needs to be dealt with from production testing to development. These include target zone (s)
selection, the mechanism and method of increasing production, flow security mechanisms, sand
control methods, solid-gas-liquid multiphase flow monitoring, reservoir deformation and monitoring,
in-situ bio-environmental analysis, risk assessment and establishment of an early warning system.
This step is the bottleneck for the development of MGHs as large investments are required to drive
technological innovation to increase production and development breakthroughs.

The second step: mid-term challenges. These challenges are more associated with ensuring that
the economics of development are maintained to ensure successful development. Production levels
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can be maintained to ensure that costs associated with the exploration and development, production
monitoring, technological innovation, and environmental monitoring and remediation are covered.
This requires that a long-term comprehensive solution is found to guarantee the effective utilization
of MGHs.

The third step: long-term challenges. A global resource management mechanism similar to that
used in developing petroleum resources needs to be created at this stage. As a new source of energy,
MGHs have the potential to change global consumption patterns. Their successful development and
achieving maximum return on investment requires international cooperation, and exchange of ideas,
as well as developing a scheme to allow global production and shared access to these resources.

4.2. Prospects

As world energy patterns change and environmental issues become more important, the
identification and development of a new unconventional source of energy is becoming a global
issue. MGHs are possibly a great source of potentially clean energy with large reserves, wide global
distribution, and a high energy density. Production tests results from the Shenhu area of the South
China Sea and the Nankai Trough of Japan demonstrate the accumulation and application of drilling
technology to develop these reserves. The potential risks, the formation of MGHs, as well as the
production and prevention hazards during development are the key issues to solve the economic
utilization of MGHs, will be major research topics for scientists from around the world for many years.

5. Conclusions

(1) Four inter-related hazards which may occur during MGH exploitation were identified as
follows: marine geohazards, greenhouse gas emissions, marine ecological hazards, and marine
engineering hazards.

(2) Lifecycle management of potential hazards prevention in the exploitation of MGHs (LMHP)
was proposed firstly. It has three stages: preparation, which involves investigating the
accumulation mechanism, appraisal methodology and gas production methods; production
control, which includes drilling techniques, monitoring during production risk assessment and
early warning system; and post-production protection, including post-production remediation
and economic evaluation of production. All these factors are inter-related and need to be
systematically evaluated.

(3) A “three-step” strategy for the development of LMHP is proposed, which consists of commercially
applying the results of MGH research in the short-term, maintaining desired levels of economic
development in the mid-term and forming a global information sharing process associated with
hydrate in the long-term. Understanding this “three step” strategy will allow the successful
development of MGH resources.

(4) The production test in the Shenhu area of the South China Sea showed that the development of
MGHs is a complex and constantly changing problem with difficult challenges. Safe and efficient
development and production of MGHs can be achieved by innovation and breakthroughs in
the use of technology as well as through extensive international cooperation and exchange of
information around the world.
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