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Abstract: The efficiency of oil shale pyrolysis is directly related to the feasibility of in-situ mining
technology. Taiyuan University of Technology (China) proposed the technology of in-situ convective
heating of oil shale, which uses superheated steam as the heat carrier to heat the oil shale’s ore-body
and transport the pyrolysis products. Based on the simulated experiments of in-situ oil shale
pyrolysis using superheated steam, the changes in fracture characteristics, pyrolysis characteristics
and mesoscopic characteristics of the oil shale during the pyrolysis have been systematically studied
in this work. The Xinjiang oil shale’s pyrolysis temperature ranged within 400–510 ◦C. When the
temperature is 447 ◦C, the rate of pyrolysis of kerogen is the fastest. During the pyrolysis process,
the pressure of superheated steam changes within the range of 0.1–11.1 MPa. With the continuous
thermal decomposition, the horizontal stress difference shows a tendency to first increase and then,
decrease. The rate of weight loss of oil shale residue at various locations after the pyrolysis is found
to be within the range of 0.17–2.31%, which is much lower than the original value of 10.8%, indicating
that the pyrolysis is more adequate. Finally, the number of microcracks (<50 µm) in the oil shale after
pyrolysis is found to be lie within the range of 25–56 and the average length lies within the range of
53.9636–62.3816 µm. The connectivity of the internal pore groups is satisfactory, while the seepage
channel is found to be smooth. These results fully reflect the high efficiency and feasibility of in-situ
oil shale pyrolysis using superheated steam.
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1. Introduction

As an unconventional oil and gas resource, oil shale is a fine-grained sedimentary rock, which is
rich in solid organic matter (kerogen) and has fine bedding [1,2]. Oil shale can generate shale oil
through retorting. After shale oil’s hydrocracking, refined oil, such as gasoline, kerosene and diesel oil
can be obtained, which is of great significance to alleviate the current oil shortage. The reserves of oil
shale resources in China are huge and can be converted into 47.6 billion tons of shale oil [3,4].

At present, most countries around the world use in-situ retorting to exploit oil shale [5,6]. In-situ
mining of oil shale only needs to pass the heat-injection well to the ore-body and directly heat the
ore-body. After the oil shale ore-body is fully pyrolyzed, the organic matter is also pyrolyzed to
generate oil and gas, whereas the hydrocarbon is discharged to ground through production well [7].
According to different forms of heating, the in-situ mining of oil shale can be divided into three
classifications, namely heat conduction, convection heating and radiation [8,9]. Furthermore, in-situ
conversion process [10] uses high temperature of electrode to heat the ore-body, whereas the heater
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temperature can reach up to 1000 ◦C. However, the thermal conductivity of the oil shale is extremely
poor, and the heating efficiency is low. Therefore, it takes a long time for the oil shale to reach the
effective pyrolysis temperature. Han et al. [11] found that it takes about 10 years or more to reach
the initial pyrolysis temperature of oil shale in the area of 400 m2. Kyung et al. [12] simulated the
effect of electric heating on the behavior of pyrolysis products and concluded that, after pyrolysis,
almost 60% of the shale oil was trapped in mineral matrix because of poor fluidity. Raytheon’s radio
frequency/critical flow (RF/CF) technology [13] uses (RF) transmitters to heat the oil shale’s ore-body,
and then, extract oil and gas, which is produced from pyrolysis, using supercritical carbon dioxide.
Yang et al. [14] proposed an in-situ oil shale recovery method, which combines microwave heating and
hydraulic fracturing, and then, simulated the thermal decomposition of oil shale under microwave
irradiation. Compared with the conventional heating method, microwave heating requires shorter
time, and has lower energy consumption, higher oil production and quality. Radiation produces
strong heat penetration and faster heating, though the technology is not yet mature enough [15,16].
The in-situ fracturing and heating technology using nitrogen injection [17,18] uses high-temperature
and high-purity nitrogen to pyrolyze the oil shale’s ore-body. Therefore, high-temperature nitrogen
can play an important role in the recovery of oil and gas. Allawzi et al. [19,20] found that the solubility
of organic matter increased due to the interaction of supercritical carbon dioxide and cosolvent.
Zhang et al. [21] studied the changes in shale oil composition and yield after bioleaching the oil shale,
and found that, after bioleaching, the yield of shale oil increased by 15.38%, whereas the contents of
high molecular weight and low molecular weight hydrocarbons in shale oil also increased.

It can be said that, regardless of the mining technology used, the most important thing is to find a
way to maximize the efficiency of pyrolysis, whereas the pyrolysis temperature and the development of
pores and fractures directly determine the efficiency of pyrolysis. At present, studies have focused on
describing the evolution of pore construction in the pyrolysis of oil shale [22–26]. Geng et al. [27] have
systematically analyzed the evolution of pores and the structure of fractures in oil shale under high
temperature and high pressure using a combination of X-ray microtomography (µCT) and mercury
intrusion porosimetry. It is considered that 300–500 ◦C is the stage, where the porosity and the number
and aperture of fractures increase significantly. Bai et al. [28–30] studied the evolution characteristics
of pore structure during the pyrolysis of Huadian oil shale at the temperature of 100–800 ◦C and found
that the permeability of oil shale significantly increases within the temperature range of 350–450 ◦C.
Kang et al. [9,31] calculated the percolation probability of true three dimensional (3D) digital CT cores
of oil shale specimens under different temperatures. The results showed that, when the porosity
is higher than 12%, the connectivity of pore-connected clusters is very good and the connection of
seepage channels is smooth, which is favorable for oil and gas production and high temperature fluid
injection. Saif et al. [32–34] studied the evolution of pores and fractures during pyrolysis of Green
River oil shale and found that the critical temperature for a sharp increase in the porosity of oil shale
lies within the range of 390–400 ◦C. After the critical temperature, the porosity of oil shale rapidly
increased to 22–25%. Liu et al. [35] analyzed the evolution of pore structure of Fushun oil shale under
pressure and temperature conditions and found that the lithostatic pressure would significantly inhibit
the development of pores. Pan et al. [36,37] reported that the mineral matters have an insignificant
effect on the pyrolysis reactions of kerogen in Jimsar oil shale. Barshefsky et al. [38] reported that
the isolated kerogen of Russian oil shale was completely pyrolyzed at 420 ◦C, while the raw oil shale
decomposition was only 65% complete.

In short, many experts and scholars have done a lot of research on the relationship between
temperature and pyrolysis characteristics; however, there is little research on the study of pyrolysis
characteristics of oil shale under stress constraints. In 2005, the in-situ convection heating of oil shale
was put forward by Zhao Yangsheng’s team at the Taiyuan University of Technology, China [39].
The technology used superheated steam as the heat carrier to heat the oil shale ore-body, while
the produced oil and gas were transported using steam. During the in-situ mining of oil shale
using superheated steam, the internal pores and fractures of oil shale are not only a channel for
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the migration of steam and kerogen pyrolysis products but also a location for heat exchange and
transfer in the rock mass, which is directly related to the efficiency of pyrolysis. In this work, based on
the simulated experiments of in-situ oil shale pyrolysis using superheated steam, the cracking and
pyrolysis characteristics of oil shale samples are thoroughly studied during the pyrolysis and after
the pyrolysis, the evolutionary characteristics of pores and fractures inside the oil shale are carefully
discussed. The study provides a necessary prerequisite for the application and commercialization of
in-situ oil shale mining technology using superheated steam.

2. Experimental

2.1. Thermogravimetric Experiments

The experimental sample was taken from Jimsar County, Xinjiang, China. The oil shale was
crushed and sieved to a particle size of ≤180 µm for pyrolysis experiments. Table 1 summarizes the
results of oil shale industrial analysis and low-temperature carbonization.

Table 1. Proximate and Fischer assay analyses of the Xinjiang oil shale.

Analysis Composition

Proximate analysis (wt %, ad)
Moisture 0.56

Ash 77.89
Volatile matter 17.78
Fixed carbon 3.77

Fischer assay analysis (wt %, ad)
Oil yield 9.08

Water yield 1.50
residue 86.48

Gas + loss 2.94

The pyrolysis weight loss experiment of oil shale was conducted using DTU-2B thermogravimetric
analyzer. The device has a temperature measuring accuracy of 0.1 ◦C and a sensitivity of less than 1 µg.
The ground oil shale samples were evenly spread in the crucible. The cooling water was turned on and
high-purity nitrogen was slowly passed into the crucible. The temperature was increased from 70 ◦C
to 900 ◦C at the rate of 3.5 ◦C/min. The thermogravimetric (TG) and differential thermogravimetric
(DTG) curves of the oil shale were obtained using the thermogravimetric experiments. The TG curve
reflects the change in sample’s mass with temperature, while the DTG curve reflects the relationship
between the rate of change of sample’s mass and the temperature.

2.2. Simulated Experiments for In-Situ Oil Shale Pyrolysis Using Superheated Steam

For the simulated experiments of in-situ oil shale pyrolysis using superheated steam, the process
of preparing the samples is shown in Figure 1. Large oil shale samples were cast through concrete,
making the fabricated specimen a cube with the dimensions of 300 mm × 300 mm × 300 mm. After the
sample was fully dried, a well-shaped diversion trough was ground on the surface of the specimen
using the polisher, which facilitates the outflow of oil shale pyrolysis products. Meanwhile, core drilling
was carried out in the middle of the specimen. The diameter of the drill hole was 32 mm, whereas
the depth was 200 mm. The drill hole was used as the location for the insertion of heat injection tube.
The heat injection tube was mainly composed of a lower-end flower tube and an upper-end sleeve
tube. The flower tube was used as the channel of oil shale pyrolysis using the superheated steam and
the sleeve tube played the role of sealing and insulation.
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Figure 1. The process of specimen preparation: (a) Casting large the oil shale sample with concrete; 
(b) Drill hole and diversion groove of the processed sample; (c) Structure of the heat injection tube. 

The vertical stress of 3 MPa and the horizontal stress of 4 MPa (Figure 2) were applied to the 
specimen using a large-size true triaxial press (Figure 3) to simulate the geo-stress environment 
where the oil shale was located. The press was mainly composed of test loading frame, axial and 
lateral hydraulic cylinder loading system, numerically controlled hydraulic instrument and other 
auxiliary devices. The superheated steam, generated by the steam generator, pyrolyzed the 
specimen under the condition of stress constraint using the heat injection tube. The numerically 
controlled hydraulic instrument can monitor the stress characteristics of the specimen in real time 
during the pyrolysis process. 

 
Figure 2. Schematic of the applied horizontal stress. 

 
Figure 3. Large-size true three-axes press. 

Figure 1. The process of specimen preparation: (a) Casting large the oil shale sample with concrete;
(b) Drill hole and diversion groove of the processed sample; (c) Structure of the heat injection tube.

The vertical stress of 3 MPa and the horizontal stress of 4 MPa (Figure 2) were applied to the
specimen using a large-size true triaxial press (Figure 3) to simulate the geo-stress environment
where the oil shale was located. The press was mainly composed of test loading frame, axial and
lateral hydraulic cylinder loading system, numerically controlled hydraulic instrument and other
auxiliary devices. The superheated steam, generated by the steam generator, pyrolyzed the specimen
under the condition of stress constraint using the heat injection tube. The numerically controlled
hydraulic instrument can monitor the stress characteristics of the specimen in real time during the
pyrolysis process.
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2.3. Micro-CT Scan and the Analysis of Pyrolysis Effect

According to the difference of vertical distance between the outlet of heat injection tube and
the pyrolysis oil shale, the oil shale residue was divided into three locations. The thermogravimetric
analyses of the oil shale residues at different locations were carried out to analyze the pyrolysis of oil
shale. The oil shale residues at different locations were processed into cylindrical samples having the
length and diameter of 10 mm and 5 mm, respectively. The internal structure of the oil shale residue
was scanned using a µCT225kVFCB high-precision CT analysis system (Figure 4) and the mesoscopic
characteristics of the oil shale after pyrolysis were obtained. In this experiment, the scanning
voltage was 90 kV and the electric current was 70 µA. The scans were obtained in with 400 frames,
the superimposed frame rate was 2 fps and a plane image was generated after the reconstruction.
There were 1500 scanned layers and the size of the scanning cell was 2.66 µm × 2.66 µm.
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3. Results and Discussion

3.1. Thermogravimetric Analysis of Xinjiang Oil Shale

Figure 5 shows the TG and DTG curves of Xinjiang oil shale obtained using thermogravimetric
analysis. As can be seen from Figure 5, the major stage of weight loss of Xinjiang oil shale occurs in a
relatively small temperature range of 400–510 ◦C, while the rate of weight loss reaches 10.8%. During
this stage, the pyrolysis of oil shale kerogen is closer to completion and the rate of pyrolysis is faster.
The pyrolysis of oil shale is considered to be a process in which oil shale is pyrolyzed into oil, gas and
semi-coking products in two steps. Firstly, the oil shale was pyrolyzed into tar, which then, was further
pyrolyzed to obtain the final products. When the temperature is 447 ◦C, the rate of mass loss of oil
shale is the highest and the pyrolysis rate of kerogen is the fastest.
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3.2. Stress Characteristics of the Specimen during Pyrolysis

In the process of in-situ oil shale pyrolysis using superheated steam, the weak cementing surface
inside the oil shale will break under the action of high-temperature and high-pressure steam, due to
which, the heat exchange area inside the rock mass increases. The superheated steam will heat the rock
mass along the fracture surface. After the decomposition of organic matter, more pores and fractures
are formed inside the oil shale and the hydrocarbon generated by the pyrolysis will further widen the
pores and fractures in the migration process, which forms a huge seepage channel. At the same time,
due to the continuous development of internal fractures inside oil shale and the continuous injection
of superheated steam, the cohesive force of the molecular bonds of oil shale is reduced, which reduces
the tensile strength of oil shale and makes the oil shale more prone to tensile fracture. The variation in
steam pressure with pyrolysis time during the pyrolysis process is shown in Figure 6.
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It can be seen from Figure 6 that the superheated steam pressure varies between 0.1–11.1 MPa
as the oil shale pyrolysis proceeds. This is due to the reason that the thermal cracking of oil shale
is a process of gradual expansion. With the continuous injection of superheated steam, the stress
at the tip of the fracture gradually increases. When the stress value reaches the threshold point of
crack initiation, the fracture expands. The expansion process is also the process of energy release,
which shows the decrease in stress. Once the stress is lower than the threshold point of the crack,
the fracture stops expanding. Meanwhile, the stress concentration is produced again in the tip of the
fracture and the fracture continues to expand. Therefore, the fracture expansion process inside the
oil shale is characterized by the continuous cycle of stress concentration—fracture expansion—stress
reduction and stress re-centralization.

The critical state of tensile fracture of oil shale is:

p − σv ≥ T0 (1)

where T0 is the tensile strength of oil shale (MPa), p is the superheated steam pressure (MPa) and συ is
the vertical stress (MPa).

When the tensile fracture of the specimen occurs, the fracture direction is perpendicular to the
vertical principal stress direction, thereby forming multiple horizontal fractures around the heat
injection tube, as shown in Figure 7.
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The anisotropy of the oil shale is obvious. In the process of pyrolysis, the thermal expansion
coefficient of particles in different positions inside the oil shale is different, which leads to the change
in stress state in the horizontal direction.

Figure 8 shows the variation in horizontal stress difference with time during the pyrolysis process.
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In Figure 8, the horizontal stress difference is the difference between the horizontal stress in the
north-south direction and the horizontal stress in the east-west direction. When the pyrolysis time is
within the range of 0–252 min, the horizontal stress difference increases with the increase in pyrolysis
time and the maximum horizontal stress difference is found to be 2.95 MPa. During this period of time,
the north-south direction is the direction of the maximum principal stress and the fracture will expand
perpendicular to the north-south direction. Additionally, the degree of cracking will become more
obvious during this time period. This is due to the reason that, in the experiment, the direction of oil
shale bedding is perpendicular to the north-south direction, whereas the bedding plane undergoes
tensile brittle fractures, which appear to be open perpendicular to the north-south direction, resulting in
an increase in the stress in the north-south direction. When the pyrolysis time changes from 256 min to
316 min, the maximum horizontal stress difference is 0.75 MPa. During this time period, the rock mass
between the oil shale bedding surface in in-situ condition undergoes shear failure under the action of
high-temperature and high-pressure steam, which results in larger horizontal stress in the east-west
direction than that in the north-south direction. Under these conditions, the east-west direction is the
direction of the maximum principal stress. Overall, the extent of shear failure of rock mass between the
bedding planes is lower than that of the brittle fractures of the bedding plane. From the macroscopic
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point of view, a large number of cracks formed by thermal fracturing and pyrolysis of oil shale will
cause the injected heat-carrying fluid to seep into the ore-body from the injection well, which continues
to pyrolyze the oil shale and continuously extract oil and gas. Therefore, the results of this study
provide a scientific basis and technical support for the implementation of in-situ retorting of oil shale.

3.3. Microscopic Characteristics of the Specimen after Pyrolysis

The pyrolyzed sample is shown in Figure 9a. The oil shale around the heat injection tube has
been broken into many small pieces, indicating that the oil shale has been fully pyrolyzed and its color
has changed from yellow brown to black. Figure 9b shows the sampling position of the oil shale after
pyrolysis. The distance between Location A and the outlet of the heat injection tube is the smallest,
followed by Location B, whereas the distance from Location C to the outlet of the heat injection tube is
the largest.
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Figure 9. Pyrolized sample: (a) Morphology of the oil shale after pyrolysis; (b) Sampling locations.

The TG curves of oil shale at different locations after pyrolysis are shown in Figure 10. At the
temperature of 510 ◦C, the rates of weight loss of oil shale at Locations A, B and C are 0.17%, 0.72%
and 2.31%, respectively, while that of the original oil shale is 10.8%, indicating that the oil shale at each
location has been fully pyrolyzed. At the same time, the pyrolysis effect decreases with the increase in
distance from the outlet of the heat injection tube. This is because the process of oil shale pyrolysis
using superheated steam is an energy consuming process. Farther from the outlet of the heat injection
tube, lower is the temperature and worse is the pyrolysis effect.
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Xue et al. [40,41] used thermogravimetry to analyze the oil shale residue, pyrolyzed using
low-temperature dry distillation technology and found that the rate of weight loss of oil shale residue
was 6.52%.

The thermogravimetric results of oil shale at different locations after pyrolysis show that the rates
of weight loss of oil shale at Locations A, B and C are 0.63%, 2.49% and 4.61%, respectively, which are
lower than that of the oil shale residue after low-temperature dry distillation. Therefore, it can be said
that the method of oil shale pyrolysis using superheated steam can achieve a high degree of pyrolysis
of organic matter in oil shale. In order to further study the pyrolysis properties of oil shale and its
residue, the Coats-Redfern method [42] was used to analyze the pyrolysis kinetics of oil shale and its
residue. The expression of the Coats-Redfern method is given by Equation (2).

In
[
− In(1 − α )

T2

]
= In

AR
βE

− E
R
· 1

T
(2)

The equation represents a straight line with as In AR
βE . the intercept and − E

R as the slope.
The activation energy E can be obtained by fitting the least square method. The activation energy of oil
shale and its residue in the main weight loss stage (400–510 ◦C) is presented in Table 2.

Table 2. Analysis of the activation energy of oil shale and its residue.

Activation Energy (kJ/mol)

Temperature Range 400 ◦C–450 ◦C 450 ◦C–510 ◦C

Original sample 24.804 25.396
Sample A 10.582 6.294
Sample B 9.532 4.151
Sample C 5.935 7.177

CT scanning technology uses the principle that X-rays have different penetration capabilities for
different density materials and therefore, the density is reflected in voxel of different gray levels. In the
grayscale image of CT, greater the brightness, higher is the density of the material. As the density of the
pores and fractures is the lowest, it appears black in the CT image [43,44]. Figure 11 shows a micro-CT
reconstructed image of the internal structure of the 500th and 1000th layers of the cross-sections of oil
shale at Locations A, B and C.Energies 2018, 11, x FOR PEER REVIEW 10 of 15 

Figure 11. CT-scan grayscale imaging of oil shale after pyrolysis. 

Start

Segmentation

2D parameters (the number, length
and aperture of fractures)

Maximum
entropy

performed in
MATLAB

Malven and
MATLAB
program

2D parameters extraction

Figure 12. The workflow for processing images from CT scan. 

Figure 13. Oil shale CT-scan imaging after the binarization processing. 

Figure 11. CT-scan grayscale imaging of oil shale after pyrolysis.



Energies 2018, 11, 2297 10 of 15

In Figure 11, the scattered white areas are the undecomposed minerals during pyrolysis. There are
less pores and fractures inside the oil shale. This is because the pores and fractures, formed by the
pyrolysis of oil shale under triaxial stress constraint, are constrained in the process of expansion and
the fracture surface may be closed. Due to these reasons, the thermal cracking of oil shale under in-situ
condition is the result of the combined effect of thermal stress of superheated steam and triaxial stress.
In order to visually obtain the distribution of pores and fractures in oil shale after pyrolysis, the CT
grayscale images of Figure 11 need to be subjected to “image segmentation” (binarization processing).
To conduct segmentation (separate the image into pore and solid phases), 288 the maximum entropy
method proposed by Kapur et al [45] was adopted. The Kapur et al [46] 289 method quantitatively
considers the gray values of all pixels of an image, and assigns a unique 290 threshold to each image
(Figure 12). Because there are a lot of noises in the binary image, the cracks less than 3 voxel are cleared
by MATLAB software. Figure 13 shows a micro-CT image of a cross-section of the sample processed
using binarization, where the white areas represent the pores and fractures (the length greater than
7.98 µm) and the black areas represent the oil shale matrix.
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In order to quantitatively evaluate the development characteristics of pores and fractures of the
oil shale after pyrolysis, the number, average length and average aperture of fractures with the length
greater than 50 µm are determined. The statistical results are presented in Table 3.

Table 3. Parameters for the fracture of oil shale after pyrolysis.

Sample Number
Parameters of Fractures

Number
Average

Length (µm)
Average

Aperture (µm)

A
500th layers 48 54.4334 24.6902
1000th layers 64 53.2752 24.4329

B
500th layers 30 59.4005 21.7064
1000th layers 28 65.3627 27.0685

C
500th layers 25 57.5110 23.8858
1000th layers 25 50.4162 23.0557

As can be seen from Table 3, the number of fractures in the 500th layer of oil shale at Location
C is the lowest (only 25), while the number of fractures of oil shale at Location A is the highest
(up to 56). The average length of fractures in oil shale at different locations lies within the range of
53.9636–62.3816 µm. Among them, the average length of fractures in the 1000th layer of oil shale at
Location C is the smallest, whereas that at Location B is the largest. The average aperture of fractures
in the 500th layer of oil shale at Location C is only 23.4708 µm and is the minimum, whereas that in
the 1000th layer of oil shale at Location A is 24.5616 µm and is the largest. The fracture parameters
of the 500th and 1000th layers of oil shale at different locations are averaged to obtain the variation
characteristics of oil shale fractures, as shown in Figure 14.
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heat injection tube, lower is the temperature of superheated steam, and worse is the effect of thermal 
cracking of oil shale, which result in fewer number of fractures. The oil and gas generated by the 
pyrolysis of oil shale will both extend and expand the formed fractures in the process of migration, 
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In general, as the distance from the outlet of heat injection tube increases, the number of fractures
continuously decreases, however the average length and the aperture of the fractures do not change
significantly. This is due to the reason that, greater the distance from the outlet of the heat injection
tube, lower is the temperature of superheated steam, and worse is the effect of thermal cracking of
oil shale, which result in fewer number of fractures. The oil and gas generated by the pyrolysis of oil
shale will both extend and expand the formed fractures in the process of migration, thus forming a
more developed fracture channel. Furthermore, there will be little change in the length and aperture
of fractures inside the oil shale at different locations. Generally speaking, oil shale is an anisotropic
and heterogeneous rock, and the effect of thermal expansion of internal particles is different under the
action of temperature. During the in-situ pyrolysis, many micron-scale cracks can be formed in oil
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shale. In this type of cracks, fluids, such as shale oil and shale gas, can migrate freely and obey the law
of hydrostatic mechanics.

After CT scanning of the samples, a series of two-dimensional grayscale images are obtained,
which can reflect the density distribution of different layers inside the samples. The 700th to 900th
layers are selected and imported into the AVIZO 9.0 software. The threshold segmentation of these
grayscale images is done through appropriate thresholds and a binary image characterizing fractures
inside the oil shale is obtained [47]. Then, all the binary images obtained in the foregoing operation are
successively stacked in the vertical direction, so that the reconstruction of the three-dimensional fracture
structure can be achieved. In the process of three-dimensional reconstruction, a three-dimensional
digital model of 200 × 200 × 200 voxel is obtained. In order to fully reflect the connectivity
and distribution of fractures inside the oil shale, the computing load of the computer in the
three-dimensional reconstruction is considered. Figure 15 shows a three-dimensional image of the
distribution of fractures inside the oil shale at Locations A, B and C (the color of the fracture space
is blue, while that of the matrix is gray), whereas the image is an 8-bit undefined grayscale image.
The color range is 0–255.
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From Figure 15, it can be seen that the distribution of pore and fracture groups inside the oil shale
is denser at Location A and the number of pores and fractures is large, which form a large permeate
channel, which connects the two relative surfaces. The distribution of oil shale pore and fracture groups
at Locations B and C is more scattered in the three-dimensional space and its size and number of oil
shale fractures are smaller than that of oil shale at Location A. However, the seepage channel is still
formed between the two relative surfaces, which is beneficial to the extraction of oil and gas. In general,
the pyrolysis reaction of kerogen occurs obviously and a large number of pores and cracks are formed
in the solid skeleton of oil shale, which constitute the entrance and exit channels of pyrolysis fluids
and products in the pyrolysis process of oil shale. After pyrolysis using superheated steam, the oil
shale can be regarded as a porous medium with high permeability. The results have shown that the
in-situ oil shale pyrolysis technology using superheated steam is an efficient and feasible method for
oil and gas production from shale oil.

4. Conclusions

The process of oil shale pyrolysis using superheated steam is a multi-field coupling process.
The pyrolysis process involves the crack initiation, the decomposition of organic matter and the
migration of the products. During the pyrolysis, the temperature distribution inside the oil shale
will have serious inhomogeneity, which leads to the different pyrolysis effects of oil shale at different
positions. On the basis of simulated experiments of in-situ oil shale pyrolysis using superheated steam,
the variations in steam pressure and constrained stress during the pyrolysis are obtained. At the same
time, the pyrolysis effect of the oil shale and the evolution of pores and fractures are studied after
pyrolysis, which provide a certain level of guidance for the technological design of in-situ oil shale
pyrolysis using superheated steam.

With the continuous development of pyrolysis, two forms of rupture occur inside the oil shale.
These are the brittle fractures of the bedding plane and the shear failure of the rock mass between the
bedding planes. After the pyrolysis, the rate of weight loss of oil shale residue was much lower than
that of the original sample, indicating that the pyrolysis of the oil shale was more complete. After the
pyrolysis, the pores and fractures inside the oil shale are widely distributed, whereas the oil shale can
be regarded as a porous medium with high permeability. The feasibility of in-situ mining of oil shale
using superheated steam is verified based upon an efficient pyrolysis process.
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