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Abstract: By combining together the extended Kalman filter with a newly developed C&I particle
swarm optimization algorithm (C&I-PSO), a novel estimation method is proposed for parameter
estimation of electromechanical oscillation, in which critical physical constraints on the parameters
are taken into account. Based on the extended Kalman filtering algorithm, the constrained parameter
estimation problem is formulated via the projection method. Then, by utilizing the penalty function
method, the obtained constrained optimization problem could be converted into an equivalent
unconstrained optimization problem; finally, the C&I-PSO algorithm is developed to address the
unconstrained optimization problem. Therefore, the parameters of electromechanical oscillation with
physical constraints can be successfully estimated and better performed. Finally, the effectiveness of
the obtained results has been illustrated by several test systems.

Keywords: constrained parameter estimation; extended Kalman filter; power systems; C&I particle
swarm optimization; ringdown detection

1. Introduction

Over the past few decades, there have been a lot of concerns about estimation of electromechanical
modes since it can offer a substantial amount of important information about power system
stability [1–5]. Therefore, it is necessary to track these parameters in real time to monitor the system
stability and prevent blackouts [6–8]. In general, electromechanical oscillations are divided into two
groups: local and inter-area, which refer to the oscillations between nearby generators and distant
generators, respectively [3].

Generally speaking, there are mainly two different methods for the parameters estimation
of power system oscillation: one of them is the model-based method, and the other is the
measurement-based method. In the model-based method, the governing equations of the studied
model are linearized near the present operating point. In contrast, a linear model can be estimated
directly from measurement data in the measurement-based method. Therefore, in recent years,
for complex modern power systems, the measurement-based method is generally considered easier
than the model-based method and is widely used [3,9–17]. Normally, two types of measurement
data can be obtained by using phasor measurement units (PMUs). One of them is the ambient
data, which can be sampled from a power system at a stable operating point [10]; the other one is
designed as the ringdown data, which is generated from a power system with a major disturbance.
The ringdown data contains key oscillatory information and is the main focus of this paper. In recent
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years, for ringdown data detection, several methods have been developed. In [11,12], some methods
are investigated that are mainly based on frequency estimation and harmonic detection. Furthermore,
the matrix pencil method [13], the Kung′s algorithm [14], the rotational invariance technique [15],
and the linear prediction methods such as the Prony method [16,17] were proposed and widely utilized
for ringdown detection. However, most of the aforementioned approaches cannot be used for real-time
application since they are sliding window-based methods, in which the calculations are performed only
when a window of data is received [3]. Recently, a novel method for ringdown detection was proposed
based on the traditional EKF in [3], where the damping ratio and frequency of ringdown data were
modeled in the state vector; then these parameters could be easily estimated by using EKF. However,
it should be pointed out that, in the above mentioned results, some critical physical constraints on
parameters were ignored; thus, the practical value of the proposed method could be limited.

The Kalman filter is known as an optimal estimator and has been widely used in aerospace,
the state estimation of power systems and other fields [18–23]. EKF is a famous nonlinear estimator,
which is developed by combining the conventional Kalman filter and the linearized technology-based
Taylor series expansion. Due to its advantages and convenience, it has been used in many nonlinear
state estimation problems. However, in the application of EKF, some known information of the signal is
sometimes either ignored or addressed heuristically. For example, the damping ratio and the frequency
of oscillation signal are usually meet with the positive constraint condition. In general, for a constrained
estimation problem, it is radically difficult within the recursive framework for the traditional EKF
to incorporate the constraints into system states. To deal with this problem, many approaches have
been developed, such as the projection method, the mean square method [24,25], etc., by which the
constrained estimation problem can be successfully converted to the constrained optimization problem
after each iteration of EKF [26,27].

The constrained optimization problems are common in many practical applications, such as
optimal power flow calculations, allocation problems, and structural optimizations [28]. Until now,
various solutions have been developed to address these optimization problems. The most popular
method of them is particle swarm optimization (PSO) [29–32], which has been widely used in many
optimization problems. It has the ability to solve difficult optimization problems and converge
quickly to a solution [33–36]. Although the PSO was developed primarily to address unconstrained
optimization problems; nevertheless, it performs well when applied to constrained optimization
problems. In this case, by adding a penalty term into the objective function, an equivalent
unconstrained optimization problem can be obtained; then PSO can be used to address the
unconstrained optimization problem. However, in practice, although the traditional PSO algorithm
can converge quickly, it is always easy to fall into local optimum [37–41], so the global optimization
solutions cannot be obtained easily. Therefore, in this paper, a modified PSO algorithm (namely,
C&I-PSO) is developed to address the equivalent unconstrained optimization problem, in which
a constrictive factor and a linear decreasing inertia weight (LDIW) are introduced to improve the
performance of global searches and local searches [42]. By this method, in the early search stage, a
large inertia weight is utilized to extend the search region and avoid the occurrence of premature
problems. In the later stage, a small inertia weight is used to obtain a more accurate local search
such that a more accurate global optimization solution can be achieved. To the best of the authors’
knowledge, in existing work, there have been little literature that considers parameter estimations
of electromechanical oscillation with physical constraints. Based on the above discussion, with the
consideration of the physical constraints on parameters, a constrained EKF in combination with
C&I-PSO algorithm is proposed in this paper for parameter estimation of the ringdown signal.

The rest of this paper is organized as follows: In Section 2, the state space model for the parameters
estimation of ringdown signal is provided. In Section 3, by incorporating the projection method,
the traditional EKF with inequality constraints on system states is presented. In Section 4, the C&I-PSO
algorithm for the equivalent unconstrained optimization problem is proposed, and the new parameter
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estimation algorithm is presented. In Section 5, some simulation results are provided to verify the
usefulness and effectiveness of the proposed results. Finally, the conclusions are presented in Section 6.

2. State-Space Model of the Ringdown Signal

As stated in [3,7], the ringdown signal can be expressed by the sequence of exponentially damped
sinusoids (EDS):

y(t) =
N

∑
i=1

Aie−δit cos(ωit + φi) + n(t), (1)

where N represents the number of EDSs, Ai is a known constant coefficient, δi is the damping ratio,
ωi represents the frequency, φi is the initial phase value, the subscript i indicates the ith component of
signal, and n(t) is considered a white Gaussian noise sequence with zero mean.

Assume that the signal sampling frequency is fs. Then the ringdown signal containing multiple
EDS signals can be deduced:

Sk =
N

∑
i=1

Aie
−δi

k
fs cos(ωi

k
fs
+ φi) + nk. (2)

Define 4 N state variables as [3]:
x4i−3,k = Aie

−δi
k
fs cos(ωi

k
fs
)

x4i−2,k = Aie
−δi

k
fs sin(ωi

k
fs
)

x4i−1,k = ωi
x4i,k = δi

, (3)

where the subscript i indicates the ith component of the signal. Based on Equation (3), the k + 1 instant
state equation of the ringdown signal can be formulated as:

x4i−3,k+1 = e−
x4i,k

fs
(

x4i−3,k cos( x4i−1,k
fs

)− x4i−2,k sin( x4i−1,k
fs

)
)
+ ω4i−3,k

x4i−2,k = e−
x4i,k

fs
(

x4i−3,k sin( x4i−1,k
fs

) + x4i−2,k cos( x4i−1,k
fs

)
)
+ ω4i−2,k

x4i−1,k = x4i−1,k + ω4i−1,k
x4i,k = x4i,k + ω4i,k

, (4)

where ω4i−l,k (l = 0, 1, 2, 3) denotes the system noise and modeling variations, which are usually
taken as the zero-mean white noises. The in-phase signal is given by the state variables x4i−3,k, x4i−2,k is
the quadrature signal, x4i−1,k represent the frequency ωi to be identified, x4i,k is the damping factor to
be estimated, and the subscript i indicates the ith component of ringdown signal.

The observation can be obtained by:

yk =
N

∑
i=1

k2i−1x4i−3,k + k2ix4i−2,k + nk, (5)

where N indicates the total number of EDSs, the subscript i indicates the ith component of the ringdown
signal, k2i−1 = cos(φi), k2i = − sin(φi), and nk is a white Gaussian noise sequence with zero mean.

Remark 1. It should be pointed out that most of the monitoring data of electromechanical oscillation in real
power systems are stable or positively damped, which means the damping factor is positive, even in some poorly
damped cases. Therefore, it is reasonable to assume the damping ratio and frequency are positive under this case.
Based on the above discussion, following the idea proposed in [3], the next step of this research is to explore new
methods to estimate parameters of electromechanical oscillation by taking into account the physical constraints.
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3. Extended Kalman Filter with Inequality Constraints

In this section, the traditional EKF for parameter identification will be introduced in advance.
Then, the projection method is utilized to turn the constrained estimation problem into an equivalent
constrained optimization problem.

3.1. Traditional Extended Kalman Filter

EKF is usually used for states or the parameters estimation of nonlinear systems, which is
developed by combining the conventional Kalman filter and the linearized technology based on Taylor
series expansion.

Consider the following nonlinear stochastic system:{
xk+1 = f (xk, uk) + wk
yk = h(xk) + vk

, (6)

where f (·) is the system function, h(·) is the output function, both of them are nonlinear functions
that could be linearized by Taylor series expansion, xk is the n-dimensional system state, uk is the
input vector, wk is the state noise process vector denoting disturbances and modeling errors, yk is
the m-dimensional observation vector, and vk is the measurement noise. Here wk and vk are usually
considered as the zero-mean Gaussian white noises.

For convenience, the following formulas are defined in advance:

x̂k = E[(xk|y∗k )], P̂k = E[(xk − x̂k)(xk − x̂k)
T ] (7)

x̃k = E[(xk
∣∣y∗k−1)] , P̃k = E[(xk − x̃k)(xk − x̃k)

T ] (8)

where x̂k is the state estimation, P̂k is the estimation error covariance matrix, x̃k is the state prediction,
and P̃k is the prediction error covariance matrix, the subscript k indicating time instant.

The prediction step: {
x̃k+1 = f (x̂k, uk)

P̃k+1 = Fk P̂kFT
k + Qk

, (9)

The filtering step: 
x̂k+1 = x̃k+1 + Gk+1[yk+1 − h(x̃k+1)]

Gk+1 = P̃k+1HT
k+1(Hk+1P̃k+1HT

k+1 + Rk+1)
−1

P̂k+1 = (I − Gk+1Hk+1)P̃k+1

, (10)

where Gk+1 is the Kalman filter gain vector at k + 1 time instant, and the Jacobian matrices Fk and Hk+1
can be derived by:

Fk =
∂ f (xk, uk)

∂xk
|xk=x̂k , Hk+1 =

∂h(xk+1, uk+1)

∂xk+1
|xk+1=x̃k+1

(11)

Qk and Rk are the covariance matrices of state noise and measurement noise, respectively, and they are
usually defined as:

Qk = E[wkwT
k ], Rk = E[vkvT

k ] (12)

Based on the model of ringdown signal (4) and (5), by using the EKF algorithm, some related
equations for estimating parameters of the ringdown signal are obtained:
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f (xk) =



M1

M2
...

Mi
...

MN


, Mi =


x4i−3,k
x4i−2,k
x4i−1,k

x4i,k

 (13)

The function of h(xk), and the covariance matrix Qk, Rk can be also obtained:

H = ( k1k200 · · · k2i−1k2i00 · · · k2N−1k2N00 ), h(xk) = Hxk (14)

Qk =


q1 0 · · · 0
0 q2 · · · 0
...

...
. . .

...
0 0 · · · q4N

, Rk = E[vkvT
k ] = [r] (15)

Remark 2. In [3], a new method was proposed for ringdown detection, where the traditional EKF method was
used to estimate the parameters. However, it should be pointed out that both the frequency and damping ratio of
the ringdown signal are usually positive. Thus, the practical value of the method will be inevitably reduced if
such state constraints are ignored. In order to obtain a better and more practical estimation algorithm, a new
constrained method is proposed to estimate the parameters of the ringdown signal by accounting for the physical
constraints.

3.2. The Projection Method

In most cases, it is necessary to specify constraints on parameter values. Therefore, in order
to solve the constrained parameter identification problem, the constrained estimation problem can
be successfully converted by using the projection method to the equivalent minimum constrained
optimization problem at each iteration.

Consider the nonlinear dynamical system (6) with the constraint as follows:

Ucx ≤ uc, (16)

where Uc indicates a known matrix, which has s lines and n columns. s represents the number of
constraints, n indicates the number of state variables, usually the rank of Uc is assumed to be s.

By using the projection method, the unconstrained state estimate x̃ can be projected onto the
constraint surface directly, then the constrained EKF problem is expressed by:

min
x̃

(x̃− x̂)TWp(x̃− x̂), s.t. Uc x̃ ≤ uc (17)

where Wp > 0 is a weighting matrix. For simplicity, Wp is chosen as the identify matrix in this paper.
The constrained EKF could be inferred by seeking out an estimation x̃, which satisfies the

constraint condition (16) and can be obtained by solving the minimum constrained optimization
problem expressed in (17). Therefore, with the projection method, the constrained state estimation
problem can be addressed successfully by solving the constrained optimization after each iteration.
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4. The C&I Particle Swarm Optimization

In this section, the penalty function method is utilized to change the minimum constrained
optimization problem into an equivalent unconstrained optimization problem. Then, the C&I-PSO
algorithm is developed to solve the equivalent unconstrained optimization problem.

4.1. The Penalty Function Approach

Due to its simple principle, the penalty function method has been used in many constrained
optimization problems; after adding a penalty term, it can be applied to the constrained optimization
problem, and an equivalent unconstrained optimization problem can be obtained.

Motivated by the idea proposed in [34], a non-stationary multistage assignment penalty function
will be utilized to address the minimum constrained optimization, which can be expressed by:

fa(x) = f (x) + hd(k)Hp(x), x ∈ Rn (18)

where f (x) represents the minimum constrained objective function expressed in (17). hd(k) indicates
a dynamical modified penalty value, k represents the iteration number of the algorithm, and Hp(x)
denotes a penalty factor given by:

Hp(x) =
m

∑
i=1

θ f (βi(x))βi(x)α(βi(x)), (19)

where βi(x) = max{0, gi(x)}, (i = 1, . . . s), which is a relative violated function of the constraints, and
g(x) = Ucx− uc are the constraints expressed in (17); θ f (βi(x)) represents a multi-stage assignment
function; α(βi(x)) is the power of the penalty function.

Based on the above method, the minimum constrained optimization problem expressed in (17) can
be turned into an equivalent minimum unconstrained optimization problem, and the unconstrained
objective function can be expressed by (18). In order to address this minimum unconstrained
optimization problem, the C&I-PSO approach will be introduced in the next part of this paper.

4.2. The C&I-PSO Algorithm

The PSO is one of the most popular swarm intelligence optimization algorithms [29]; its main
idea is based simulating simplified social models, such as bird flocking and fish schooling. It begins
with an initial population, which is generated in random positions in the search space. Without loss of
generality, the D-dimensional search space is assumed to be S ⊆ RD; the swarm has N particles
that each having neither weight nor volume and each holding its own position and velocity.
These particles update their positions over finite iterations. For the ith particle at iteration L,
the position and velocity vectors are defined as XL

i = (xL
i1, xL

i2, , · · · xL
iD) and VL

i = (νL
i1, νL

i2, · · · νL
iD),

respectively. The best historical position visited by particle i is taken as a point in S, which is
denoted as PbestL

i = (pbestL
i1, pbestL

i2, · · · , pbestL
iD). The best GbestL =

(
gbestL

1 , gbestL
2 , · · · gbestL

D
)
.

In the traditional PSO, each particle moves toward the Particle Best and Global Best positions by the
specified velocity:

VL+1
i = ψ(L)×VL

i + c1r1,i

(
PbestL

i − XL
i

)
+ c2r2,i

(
GbestL − XL

i

)
, (20)

XL+1
i = XL

i + γ×VL+1
i , (21)

where γ is a constrictive factor introduced to constrict and control velocities, and ψ(L) is a linear
decreasing inertia weight, which can be obtained by:

ψ(L) = ψstart × (ψstart − ψend)× (Tmax − L)/Tmax, (22)
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where ψstart represents the inertia weight of initial iteration point, wend indicates the inertia weight
of final iteration point, usually chosen as ψstart = 0.9 and ψend = 0.4 respectively, L is the number of
iteration and Tmax represents the maximum iteration number.

Remark 3. It is worth pointing out that, for solving the optimization problem in parameter estimation of
electromechanical oscillation, a modified PSO named the C&I-PSO is proposed, in which a constrictive factor
and a linearly decreasing inertia weight are introduced to improve the performance of local and global search.
By using the proposed C&I-PSO, the premature problem of the traditional PSO can be successfully addressed,
and much better solutions to the global optimization problem can be achieved if compared with the traditional
PSO. Now we can present the proposed approach for parameter estimation, which is formulated as the following
Algorithm 1:

Algorithm 1: Constrained EKF with C&I-PSO

1: Initialization: Set appropriate values for P̂0, x̂0, Q0, R0, St, Mt;
2: for k = 0 to St do
3: Calculate the value of state prediction x̃k+1 and prediction error covariance P̃k+1:
4: x̃k+1 ← f (x̂k, uk) , P̃k+1 ← Fk P̂kFT

k + Qk ;
5: Compute the Kalman gain matrix at time instant k + 1:

6: Gk+1 ← P̃k+1HT
k+1

(
Hk+1P̃k+1HT

k+1 + Rk+1

)−1
;

7: Update the state estimation x̂k+1 and estimation error covariance:
8: x̂k+1 ← x̃k+1 + Gk+1[yk+1 − h(x̃k+1)] , P̂k+1 ← (I − Gk+1Hk+1)P̃k+1 ;
9: if min(ω1, δ1, ω2, δ2 · · ·ωN , δN) < 0 then
10: min

x̃
(x̃− x̂)TWp(x̃− x̂), s.t. Uc x̃ ≤ uc;

11: while L ≤ Mt do
12: fa(x̃) = f (x̃) + hd(L)Hp(x̃), x̃ ∈ Rn;
13: for i = 1 to D do
14: Update Gbest, Pbesti and calculate particle new velocity and position:
15: ψ(L)← ψstart × (ψstart − ψend)× (Mt − L)/Mt ,

16: VL+1
i ← ψ(L)×VL

i + c1r1,i

(
Pbestiter

i − XL
i

)
+ c2r2,i

(
GbestL − XL

i
)

,

17: XL+1
i = XL

i + γ×VL+1
i ;

18: end for
19: L = L + 1;
20: end while
21: x̂k+1 = Gbest;
22: end if
23: k = k + 1;
24: end for

Remark 4. By using the proposed algorithm, the problem of parameter estimation for the ringdown signal
with physical constraints can be solved successfully. It should be noted that not only can the parameters of
the ringdown signal be truly identified with physical constraints, but a shorter convergence time can also be
expected if compared with the existing results in [3]. Therefore, the proposed algorithm is expected to be much
more realistic than the previous work.

5. Simulation Results and Discussions

In this section, three different test systems are provided to demonstrate the performance of the
proposed method. The parameters in the penalty function are chosen using the same values as those
in [34]. Specifically, the function hd(k) is set as hd(k) = k

√
k, other related function values are given by:
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α(βi(x)) =

{
1 when βi(x) < 1
2 when βi(x) ≥ 1

, (23)

θ f (βi(x)) =


10 when βi(x) < 0.001
20 when 0.001 ≤ βi(x) < 0.1
100 when 0.1 ≤ βi(x) ≤ 1
300 when βi(x) > 1

. (24)

In addition, in order to evaluate the whole performance of the proposed approach and
conventional EKF method effectively, the root-mean-square deviation (RMSD) used in [43] is adopted:

RMSD =

√√√√√ k=n
∑

k=1

i=m
∑

i=1
(x̂k,i − xk,i)

2

n
, (25)

where x̂k,i is the estimation result of the ith corresponding parameter, xk,i is the true value of the ith
corresponding parameter, m is the number of parameters, and n is the number of time steps.

5.1. Test System 1: Ringdown Signal Composed of One EDS Signal

At first, the ringdown signal in [7] is utilized to evaluate performance of the proposed algorithm.
The damping ratio and frequency of this ringdown signal are 0.01 and 1 rad/s, respectively, which is
provided by:

y1(t) = e−0.01t cos(t) + n(t). (26)

The input ringdown signal is shown in Figure 1. By utilizing the Matrix Pencil [13], Prony [17],
EKF [3] methods and the proposed algorithm, the damping factor and frequency could be estimated.
Figure 2 shows the estimation results, and the RMSD comparison of different approaches is also
provided in Figure 3. It can be found that the proposed approach is able to estimate parameters
correctly in a short time, while EKF and other methods need a long time to converge to the real values.
It follows from these simulation results that, a better convergence and steady state performance could
be obtained if compared with those by using EKF, Matrix Pencil and Prony methods.
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In order further to demonstrate the performance of the proposed algorithm, the final identification
results of different methods are also shown in Table 1. It is observed from the results that the proposed
method with smallest estimation errors than other approaches in [3,13,17]; which proves that the
proposed method can estimate the parameters of ringdown signal accurately.

Table 1. Identified results of different methods.

Method Damping Factor δ1 Frequency ω1 (rad/s)

Matrix Pencil [13] 0.0093 1.0104
Prony [17] 0.0087 1.0223

EKF [3] 0.0091 1.0109
Proposed Method 0.0099 1.0001
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5.2. Test System 2: Ringdown Signal Composed of Two EDS Signals

In this case, a ringdown signal consisting of two EDS signals is considered:

y(t) = y2(t) + y3(t) + n(t), (27)

where:
y2(t) = e−0.005t cos(0.2t), y3(t) = e−0.001t cos(0.6t). (28)

and n(t) denotes white noise. The input signal is presented in Figure 4. The estimation results of
frequency and damping factor by using different methods are shown in Figures 5 and 6. Figure 7
shows the RMSD comparison of the methods. It can be seen from these simulation results that a better
convergence and steady state performance could be obtained if compared with those when using other
methods in [3,13,17].
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In addition, the final identification results of different methods are also provided in Table 2,
which further proves superior performance of the proposed method.

Table 2. Identified results of different methods.

Method Damping factor δ2/δ3 Frequency ω2/ω3 (rad/s)

Matrix Pencil [13] 0.0049/0.0094 0.1983/0.5887
Prony [17] 0.0045/0.0089 0.1864/0.5843

EKF [3] 0.0048/0.0092 0.1967/0.5876
Proposed Method 0.0050/0.0101 0.2001/0.6001
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5.3. Test System 3: WSCC Model

In this case, the WSCC model is taken as the test system [42], which has three generators and
nine buses. The network is depicted in Figure 8a. The normal frequency of G2 is 60 HZ, at t = 5.1 s,
the load at bus 5 is removed. This disturbance causes an inter-area sustained oscillation in G2 with the
frequency of ω4 = 2.4 rad/s, and the damping factor is δ4 = 0.3. Figure 8b presents the event recorded
in the bus frequency signal.
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Figure 8. (a) The model of WSCC power system; (b) The input signal of test system 3.

Figure 9 shows the estimated frequency and damping factor when using the proposed algorithm
and other methods. Figure 10 illustrates the RMSD comparison of different methods. It could be found
from these simulation results that, in this case, the proposed algorithm can estimate the parameters
effectively with better convergence and steady state performance than EKF and other methods.
Finally, the final identification results of other methods are also provided in Table 3, which demonstrate
the superior performance of the proposed mehthod. Therefore, it can be concluded that the proposed
algorithm possesses much more practical value than those shown in previous work.
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Table 3. Identified results of different methods.

Method Damping Factor δ4 Frequency ω4 (rad/s)

Matrix Pencil [13] 0.2808 2.3875
Prony [17] 0.2732 2.3873

EKF [3] −0.0488 2.3666
Proposed Method 0.2998 2.4000

6. Conclusions

In this paper, with the consideration of the physical constraints on parameters, the constrained
parameter estimation problem of ringdown signals has been discussed in detail. Based on the EKF
algorithm and the projection method, the constrained estimation problem was converted into a
minimum constrained optimization issue. Thus, the constrained optimization issue can be solved
successfully by the proposed C&I-PSO with the penalty function method. Finally, the proposed
algorithm was successfully applied to estimate the constrained parameters of the ringdown signal.
Simulation results have demonstrated in most cases that the proposed algorithm can achieve much
better performance and makes more practical sense than using the Matrix Pencil, Prony, and traditional
EKF approaches.

Author Contributions: Y.S. performed the experiments and evaluated the data. Y.W. developed the concept,
conceived the experiments, and wrote the original manuscript. L.B., Y.H., D.S. and D.P. reviewed and edited
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China under
Grants 61673161 and 61603122, in part by the Natural Science Foundation of Jiangsu Province of China under
GrantBK20161510, in part by the Fundamental Research Funds for the Central Universities of China under
Grants 2017B13914 and 2017B655X14, in part by Six Talent Peaks High Level Project of Jiangsu Province under
Grant XNY-004, in part by Postgraduate Research & Practice Innovation Program of Jiangsu Province under
Grant KYCX17_0484, and in part by the research projects III.17.3.1, III.17.4 of the program of fundamental
research of the Siberian Branch of the Russian Academy of Sciences, reg No. AAAA-A17-117030310442-8,
No. AAAA-A17-117030310438-1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alizadeh, M.; Kojori, S.; Ganjefar, S. A modular neural block to enhance power system stability. IEEE Trans.
Power Syst. 2013, 28, 4849–4856. [CrossRef]

2. Sidorov, D.; Panasetsky, D.; Šmádl, V. Non-Stationary Autoregressive Model for On-Line Detection of
Inter-Area Oscillations in Power Systems. In Proceedings of the IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT Europe), Gothenberg, Sweden, 11–13 October 2010.

http://dx.doi.org/10.1109/TPWRS.2013.2278377


Energies 2018, 11, 2059 14 of 15

3. Yazdanian, M.; Mehrizi-Sani, A.; Mojiri, M. Estimation of electromechanical oscillation parameters using an
extended Kalman filter. IEEE Trans. Power Syst. 2015, 30, 2994–3002. [CrossRef]

4. Jiang, T.; Yuan, H.; Jia, H.; Zhou, N.; Li, F. Stochastic subspace identification-based approach for tracking
inter-area oscillatory modes in bulk power system utilizing synchrophasor measurements. IET Gener.
Transm. Distrib. 2015, 9, 2409–2418. [CrossRef]

5. Wu, F.; Ju, P.; Zhang, X.-P.; Qin, C.; Peng, G.J.; Huang, H.; Fang, J. Modeling, control strategy, and power
conditioning for direct-drive wave energy conversion to operate with power grid. Proc. IEEE 2013, 101,
925–941. [CrossRef]

6. Jiang, T.; Bai, L.; Li, F.; Jia, H.; Hu, Q.; Jin, X. Synchrophasor measurement-based correlation approach
for dominant mode identification in bulk power systems. IET Gener. Transm. Distrib. 2016, 10, 2710–2719.
[CrossRef]

7. Yazdanian, M.; Mehrizi-Sani, A.; Mojiri, M. A Novel Approach for Ringdown Detection Using Extended
Kalman Filter. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics
Society, Vienna, Austria, 10–13 November 2013.

8. Ju, P.; Handschin, E.; Karlsson, D. Nonlinear dynamic load modelling: Model and parameter estimation.
IEEE Trans. Power Syst. 1996, 11, 1689–1697. [CrossRef]

9. Peng, J.; Nair, N. Enhancing Kalman filter for tracking ringdown electromechanical oscillation. IEEE Trans.
Power Syst. 2012, 27, 1042–1050. [CrossRef]

10. Pierre, J.; Trudnowski, D.; Donnely, M. Initial results in electromechanical mode identification from ambient
data. IEEE Trans. Power Syst. 1997, 12, 1245–1251. [CrossRef]

11. Mojiri, M.; Bakhshai, A. An adaptive notch filter for frequency estimation of a periodic signal. IEEE Trans.
Auto. Cont. 2004, 49, 314–318. [CrossRef]

12. Mojiri, M.; Karimi-Ghartemani, M.; Bakhshai, A. Processing of harmonics and interharmonics using an
adaptive notch filter. IEEE Trans. Power Deliv. 2010, 25, 534–542. [CrossRef]

13. Jain, V. Filter analysis by use of pencil of functions: Part I. IEEE Trans. Circuits Syst. 1974, 21, 574–579.
[CrossRef]

14. Kung, S.Y.; Arun, K.S.; Rao, B. State-space and singular-value decomposition-based approximation methods
for the harmonic retrieval problem. J. Opt. Soc. Amer. 1983, 73, 1799–1811. [CrossRef]

15. Roy, R.; Paulraj, A.; Kailath, T. ESPRIT—A subspace rotation approach to estimation of parameters of cisoids
in noise. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1340–1342. [CrossRef]

16. Kumaresan, R.; Tufts, D. Estimating the parameters of exponentially damped sinusoids and pole-zero
modeling in noise. IEEE Trans. Acoust. Speech Signal Process. 1982, 30, 833–840. [CrossRef]

17. Hildebrand, F.B. Introduction to Numerical Analysis, ser. Dover Books on Advanced Mathematics, 2nd ed.;
McGraw-Hill: New York, NY, USA, 1956.

18. Wang, D.; Bao, Y.; Shi, J. Online lithium-ion battery internal resistance measurement application in
state-of-charge estimation using the extended Kalman filter. Energies 2017, 10, 1284. [CrossRef]

19. Xia, B.; Wang, H.; Wang, M.; Sun, W.; Xu, Z.; Lai, Y. A new method for state of charge estimation of lithium-ion
battery based on strong tracking cubature Kalman filter. Energies 2015, 8, 13458–13472. [CrossRef]

20. He, H.; Qin, H.; Sun, X.; Shui, Y. Comparison study on the battery SoC estimation with EKF and UKF
algorithms. Energies 2013, 6, 5088–5100. [CrossRef]

21. Zhang, C.; Jiang, J.; Zhang, W.; Sharkh, S.M. Estimation of state of charge of lithium-ion batteries used in
HEV using robust extended Kalman filtering. Energies 2012, 5, 1098–1115. [CrossRef]

22. Xia, B.; Wang, H.; Tian, Y.; Wang, M.; Sun, W.; Xu, Z. State of charge estimation of lithium-ion batteries using
an adaptive cubature Kalman filter. Energies 2015, 8, 5916–5936. [CrossRef]

23. Li, W.; Wei, G.; Liu, Y. Weighted average consensus-based unscented Kalman filtering. IEEE Trans. Cybern.
2016, 46, 558–567. [CrossRef] [PubMed]

24. Simon, D.; Chia, T. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms.
IET Control Theory Appl. 2010, 4, 1303–1318. [CrossRef]

25. Simon, D.; Chia, T. Kalman filtering with state equality constraints. IEEE Trans. Aerosp. Electron. Syst. 2002,
38, 128–136. [CrossRef]

26. Julier, S.; Alveolar, J. On Kalman filtering with nonlinear equality constraints. IEEE Trans. Signal Process.
2007, 55, 2774–2784. [CrossRef]

http://dx.doi.org/10.1109/TPWRS.2015.2388694
http://dx.doi.org/10.1049/iet-gtd.2015.0184
http://dx.doi.org/10.1109/JPROC.2012.2235811
http://dx.doi.org/10.1049/iet-gtd.2015.1316
http://dx.doi.org/10.1109/59.544629
http://dx.doi.org/10.1109/TPWRS.2011.2169284
http://dx.doi.org/10.1109/59.630467
http://dx.doi.org/10.1109/TAC.2003.821414
http://dx.doi.org/10.1109/TPWRD.2009.2036624
http://dx.doi.org/10.1109/TCS.1974.1083919
http://dx.doi.org/10.1364/JOSA.73.001799
http://dx.doi.org/10.1109/TASSP.1986.1164935
http://dx.doi.org/10.1109/TASSP.1982.1163974
http://dx.doi.org/10.3390/en10091284
http://dx.doi.org/10.3390/en81212378
http://dx.doi.org/10.3390/en6105088
http://dx.doi.org/10.3390/en5041098
http://dx.doi.org/10.3390/en8065916
http://dx.doi.org/10.1109/TCYB.2015.2409373
http://www.ncbi.nlm.nih.gov/pubmed/26168453
http://dx.doi.org/10.1049/iet-cta.2009.0032
http://dx.doi.org/10.1109/7.993234
http://dx.doi.org/10.1109/TSP.2007.893949


Energies 2018, 11, 2059 15 of 15

27. Massicotte, D.; Morawski, R.; Barwicz, A. Incorporation of a positivity constraint into a Kalman filter based
algorithm for correction of spectrometric data. IEEE Trans. Instrum. Meas. 1995, 44, 2–7. [CrossRef]

28. Li, W.; Jia, Y.; Du, J. Variance-constrained state estimation for nonlinearity coupled complex networks.
IEEE Trans. Cybern. 2018, 48, 818–824. [CrossRef] [PubMed]

29. Mendes, R.; Kennedy, J.; Neves, J. The fully informed particle swarm: Simpler, maybe better. IEEE Trans.
Evol. Comput. 2004, 8, 204–210. [CrossRef]

30. Zhang, Y.; Chiang, H. A novel consensus-based particle swarm optimization-assisted trust-tech methodology
for large-scale global optimization. IEEE Trans. Cybern. 2017, 47, 2717–2729. [CrossRef] [PubMed]

31. Chou, S.; Huang, S. Stochastic set-based particle swarm optimization based on local exploration for solving
the carpool service problem. IEEE Trans. Cybern. 2016, 46, 1771–1783. [CrossRef] [PubMed]

32. Chen, S.; Hsin, W. Weighted fuzzy interpolative reasoning based on the slopes of fuzzy sets and particle
swarm optimization techniques. IEEE Trans. Cybern. 2015, 45, 1250–1261. [CrossRef] [PubMed]

33. Lee, J.; Kim, J.; Song, J.; Kim, Y.; Jung, S. A novel memetic algorithm using modified particle swarm
optimization and mesh adaptive direct search for PMSM design. IEEE Trans. Magn. 2016, 52, 1–4. [CrossRef]

34. Abdelhafiz, A.; Behjat, L.; Ghannouchi, F. Generalized memory polynomial model dimension selection using
particle swarm optimization. IEEE Microw. Compon. Lett. 2018, 52, 96–98. [CrossRef]

35. Ratnaweera, A.; Halgamuge, S.; Watson, H. Self-organizing hierarchical particle swarm optimizer with
time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]

36. Tang, Y.; Wang, Z.; Fang, J. Parameters identification of unknown delayed genetic regulatory networks by a
switching particle swarm optimization algorithm. Expert Syst. Appl. 2011, 38, 2523–2535. [CrossRef]

37. Singh, S.; Singh, B. Optimized passive filter design using modified particle swarm optimization algorithm
for a 12-pulse converter-fed LCI synchronous motor drive. IEEE Trans. Ind. Appl. 2014, 50, 2681–2689.
[CrossRef]

38. Ting, T.; Rao, M.; Loo, C. A novel approach for unit commitment problem via an effective hybrid particle
swarm optimization. IEEE Trans. Power Syst. 2006, 21, 411–418. [CrossRef]

39. Pehlivanoglu, Y. A new particle swarm optimization method enhanced with a periodic mutation strategy
and neural networks. IEEE Trans. Evol. Comput. 2013, 17, 436–452. [CrossRef]

40. Selvakumar, A.; Thanushkodi, K. A new particle swarm optimization solution to nonconvex economic
dispatch problems. IEEE Trans. Power Syst. 2007, 22, 42–51. [CrossRef]

41. Park, J.B.; Jeong, Y.W.; Shin, J.R.; Lee, K.Y. An improved particle swarm optimization for nonconvex economic
dispatch problems. IEEE Trans. Power Syst. 2010, 25, 156–166. [CrossRef]

42. Anderson, P.M.; Fouad, A.A. Power System Control and Stability, 2nd ed.; IEEE Press: New York,
NY, USA, 2003.

43. Wang, Y.; Sun, Y.; Wei, Z.; Sun, G. Parameters estimation of electromechanical oscillation with incomplete
measurement information. IEEE Trans. Power Syst. 2018. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/19.368111
http://dx.doi.org/10.1109/TCYB.2017.2653242
http://www.ncbi.nlm.nih.gov/pubmed/28129200
http://dx.doi.org/10.1109/TEVC.2004.826074
http://dx.doi.org/10.1109/TCYB.2016.2577587
http://www.ncbi.nlm.nih.gov/pubmed/27333616
http://dx.doi.org/10.1109/TCYB.2016.2522471
http://www.ncbi.nlm.nih.gov/pubmed/26890944
http://dx.doi.org/10.1109/TCYB.2014.2347956
http://www.ncbi.nlm.nih.gov/pubmed/25204003
http://dx.doi.org/10.1109/TMAG.2015.2482975
http://dx.doi.org/10.1109/LMWC.2017.2783847
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1016/j.eswa.2010.08.041
http://dx.doi.org/10.1109/TIA.2013.2292991
http://dx.doi.org/10.1109/TPWRS.2005.860907
http://dx.doi.org/10.1109/TEVC.2012.2196047
http://dx.doi.org/10.1109/TPWRS.2006.889132
http://dx.doi.org/10.1109/TPWRS.2009.2030293
http://dx.doi.org/10.1109/TPWRS.2018.2817214
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	State-Space Model of the Ringdown Signal 
	Extended Kalman Filter with Inequality Constraints 
	Traditional Extended Kalman Filter 
	The Projection Method 

	The C&I Particle Swarm Optimization 
	The Penalty Function Approach 
	The C&I-PSO Algorithm 

	Simulation Results and Discussions 
	Test System 1: Ringdown Signal Composed of One EDS Signal 
	Test System 2: Ringdown Signal Composed of Two EDS Signals 
	Test System 3: WSCC Model 

	Conclusions 
	References

