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Abstract: A transient 3D thermal model based on the thermal quadrupole method, coupled to ray
tracing analysis, is presented. This methodology can predict transient temperature maps under any
time-fluctuating irradiance flux—either synthetic or experimental—providing a useful tool for the
design and parametric optimization of concentration photovoltaics systems. Analytic simulations of
a concentration photovoltaics system thermal response and assessment of in-plane thermal gradients
induced by fast tracking point perturbations, like those induced by wind, are provided and discussed
for the first time. Computation times for time-resolved temperature maps can be as short as 9 s for a
full month of system operation, with stimuli inspired by real data. Such information could pave the
way for more accurate studies of cell reliability under any set of worldwide irradiance conditions.

Keywords: CPV systems; solar concentration; Fresnel lens; ray tracing; thermal quadrupoles;
temperature field; 2D transient thermal analysis

1. Introduction

Despite a constant rise in concentration photovoltaic (CPV) cell efficiency, currently more than
45% [1], CPV technologies struggle in the photovoltaic system market, as they require high precision
tracking systems in order to take full advantage of direct solar radiation, and they also need appropriate
cooling. Indeed, tandem solar cells endure localized high heat fluxes and high operation temperature
gradients. Additionally, concentration optics deliver non-uniform irradiance profiles onto cell surfaces,
due to their inherent ray tracing properties and manufacturing imperfections. Baig et al. [2] and
Franklin et al. [3] found that non-uniform illumination induces efficiency losses.

Non-uniform illumination induces in-plane temperature gradients that follow complex time
regimes according to ambient stimuli: slow day-night cycles, fast daytime cloud shading periodicity,
and faster wind-induced tracking point perturbations. Wind influence on CPV systems performance
has raised great interest in research: Chih-Kuang et al. [4] quantified how much wind induces
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mechanical deformation in structures supporting Fresnel lenses. Chumakov et al. [5] developed
a methodology to evaluate CPV systems’ aerodynamic behavior, including wind tunnel experiments.
Stafford et al. [6] performed experimental observations to assess how meteorological data correlate
with tracking errors. Another factor is soiling, studied by Sanchez et al. [7] and Calvo-Parra et al. [8],
which reduces CPV system performance by scattering and shading effects.

Acceptance angle is another important parameter related to receiver flux density [9]. This parameter
depends on several factors such as the optical and mechanical precision in the construction of the
CPV module and the quantity, type and quality of the optical elements for solar concentration.
Small acceptance angles require greater precision in the tracking system, solar sensor, actuators, installation,
and alignment [10]. In some systems, a secondary optical element is employed to raise the concentration
ratio, increase tolerance to tracking errors or achieve a uniform flux distribution in the receptor [11,12];
however, the manufacturing cost also increases. Hence, concentrators should be designed to use the
minimum amount of materials and the simplest optical scheme [11].

All these CPV-inherent factors trigger uneven and, to some extent, unpredictable thermal stress
variations. They combine synergically to reduce concentration cell performance and life cycle; increasing
the cost, thus restraining market penetration of CPV technology. Therefore, operation temperature
predictions resolved in space and time are very valuable information and mandatory for CPV designers,
issued from models that simulate and analyze the concentration, temperature and thermal stress level of
the CPV cell. Hence, permitting scale concentrator apertures according to available solar radiation and
CPV cell maximum operation temperatures, which range between 85–110 ◦C. By doing so, designers can
increase the energy density and cell life-cycle, while decreasing cell cost.

Nowadays, given the complexity of CPV structures and irradiance heat fluxes spatial profiles,
temperature fields are estimated by means of the finite element method (FEM) as reported in Table 1.
FEM studies are costly in computing time [13] for any CPV optimization process, as they require a
high number of simulations for parametric studies.

Table 1. Literature on thermal analysis for CPV systems.

Author Thermal Model Time Regime Spatial Resolution Electrical Model

Renno et al. [14] FEM Transient 3D Single diode
Li et al. [15] FEM Transient 3D Energy efficiency

Sweet et al. [16] FEM Transient 3D Single diode
Theristis et al. [17] FEM Steady state 3D Single diode
Ahmad et al. [18] FEM Steady state 3D Single unit equivalent circuit

Baig et al. [19] FEM Steady state 3D Single diode
Cotal et al. [20] Finite differences Steady state 3D -
Min et al. [21] FEM Steady state 3D -

Theristis et al. [22] FEM Steady state and transient 3D Single diode
Oliverio et al. [23] FEM Steady state and transient 3D, 2D -

Most studies have dealt with steady-state analysis. This is not an intrinsic limitation of an FEM
approach and, of course, transient simulations can also be performed, as shown by Renno et al. [14],
Li et al. [15], Sweet et al. [16], Theristis et al. [22] and Oliverio et al. [23]. FEM is fundamental regarding
system design since it can deal with exact complex 3D structures and also with possible nonlinearities.
However, this approach can be impractical if system real-time simulation in response to fast incident
flux changes (cloud shading and wind perturbations), is needed. None of the listed studies report
numbers concerning computing times.

A complementary alternative for thermal modeling under such specific circumstances,
conditioned to maintain an acceptable level of simplification for the 3D system structure, would
be to solve the heat equation analytically; along with its inherent advantages: direct parameter
estimation and optimization, straightforward parameter sensitivity studies, and fewer computing
resources needed than FEM.



Energies 2018, 11, 2042 3 of 24

The thermal quadrupoles method [24] is suitable for heat transfer analysis of multilayered
systems and has been extensively employed for space and time-resolved thermal simulations
as varied as aircraft composite materials thermal characterization [25], ultrahigh heat flux and
temperature simulations in magnetically confined plasma facilities [26], and thermal characterization
of microchannel reactors in microfluidic systems [27]. The method is based on space and time integral
transformations, permitting work on the transformed space [24,26,28,29] within a linear relationship
between temperature and fluxes at different system layer interfaces.

In this work, the first thermal quadrupoles implementation of a 3D analytic solution for transient
heat transfer in CPV systems is reported. The thermal quadrupole model is associated with ray
tracing analysis which provides custom irradiance maps as an input stimulus for the thermal model.
Detailed sections are organized to highlight the contributions and advantages such a combination of
tools brings to CPV systems engineering.

In Section 2, Materials and Methods, the core of this work is described, starting with the
procedure for irradiance profile estimation for a concentrator based on a Fresnel lens. Inspired by
the specifications of a commercial Fresnel lens, simulations based on refractive surfaces generated by
script are reported for the first time and preliminary comparisons between experimental and simulated
irradiance spots are provided. Subsequently, a 3D analytic heat transfer model, based on the thermal
quadrupole method, is introduced. A 2D time-resolved CPV temperature map can be computed from
the combination of the absorbed flux map obtained from Tonatiuh and the thermal quadrupole model.

In Section 3, simulation results are presented for a typical configuration of a CPV module, i.e.,
a Fresnel lens to concentrate the solar radiation onto a CPV cell coupled to a passive heat sink.
A parametric study is presented, revealing the best set of parameters for design optimization in
order to keep operation temperatures within safe conditions. Transient thermal variations induced by
tracking point dynamic perturbations are reported for the first time.

The contribution of this work is twofold: on the one hand, time-resolved surface temperature
profiles in response to time-varying 2D irradiance patterns have been analytically estimated, providing
a powerful tool for CPV system designers and paving the way for future thermal stress assessment,
which in return would allow more accurate life-time and thermal breakdown predictions. The model
covers full time regimes: transient and steady state, as shown by simulations performed with
an engineering design scope. Theoretical temperature gradients induced by fast tracking point
perturbations are presented for the first time and discussed. Simulation execution times are as short as
9 s for a full month of CPV system operation computed with irradiance stimulus inspired by real data.

On the other hand, Fresnel lens ray tracing implementation by means of the Tonatiuh open source
software is reported for the first time. This is relevant as Fresnel lenses are extensively employed in
CPV systems. A preliminary comparison between a real lens spot and the spot generated by script
is discussed, indicating directions for more in-depth studies. However, this work’s focus is on the
thermal quadrupole model, its capabilities, and the advantages it brings in combination with the
Tonatiuh open source ray tracing software.

2. Materials and Methods

2.1. Locations, Instruments, Software and Methodology

Table 2 summarizes the resources employed for this work studies. The main purpose of this
research is the development of analytic tools for CPV system thermal analysis resolved in space and
time. The thermal model requires input stimuli, which is provided by a custom script representing
Fresnel lens through Tonatiuh software, and delivering irradiance maps resolved in time and space;
and inspired by real irradiance data and a real Fresnel lens.
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Table 2. Summary of research resources for this work.

Type Description Details

Location CIO, Aguascalientes Research Institute, Fresnel lens experiments, DNI
measurements (21◦50′42.7” N 102◦20′37.5” W)

Location CICY, Mérida Research Institute, Tonatiuh and Thermal
quadrupoles simulations

Software Tonatiuh [30]
Open source, for ray tracing analysis, simulate
sun ray vectors throughout year, and deliver
irradiance maps upon custom receiver surfaces

Software Matlab 2014b Thermal quadrupoles simulations

Script Den Iseger Algorithm [31] Inverse Laplace transformation

Laptop Hp Envy Processor Intel core i5-4210U, 8 GB RAM;
Tonatiuh and Matlab scripts execution

CCD camera MAKO, Allied vision 8 bits, monochrome, GigE; Irradiance spot spatial
profile measurements

Irradiance Sensor Gardon-Schmidt-Boelter
Water cooled sensor (SBG01) by Hukseflux,
calibrated in accordance to the ISO 14934-3
standard; Flux measurements

Solar station Solys2
Scientific Grade (Kipp&Zonen Solys2 + SHP1
pyrheliometer), Direct Normal Irradiance (DNI)
and ambient temperature measurements

Fresnel Lens FL220-285

PMMA, Square aperture concentrator
267 × 267 mm2, 220 mm focal length and
transmissivity of 0.92. Fresnel lens model by
Tonatiuh was inspired by this commercial lens

In order to accomplish the above-mentioned objectives, a methodology has been implemented:

(1) First, a Fresnel Lens model has been implemented by script, based on the software Tonatiuh
(Sections 2.2 and 2.2.1).

(2) Design parameters from a commercial lens (aperture, transmissivity and prism pitch) have been
introduced to the Tonatiuh model.

(3) The commercial Fresnel lens has been experimentally characterized (focal length and spot spatial
profile at a position below focal point, see Section 2.2.2).

(4) Inspired by the commercial lens aperture, focal length and measured spot profile, the Tonatiuh
Fresnel lens prisms angles were adjusted till they deliver the same focal length as the
commercial lens.

(5) Subsequently, both experimental and Tonatiuh spots were compared at a position below the focal
point (see Section 3.1).

(6) The so-obtained synthetic spots, inspired by the commercial Fresnel lens, were combined with
DNI time series for the highest irradiance day of 2015, thus generating a synthetic irradiance
data set, resolved in space and time, and inspired by a real Fresnel lens specifications and real
irradiance data (see Section 2.2.3).

(7) The irradiance data set is then introduced to the thermal quadrupole model described in
Section 2.3. Temperature maps for three solar cells with different sizes are computed and
a parametric study is executed (Section 3.2.1), it allows scaling the concentration ratio and
preserving the operation temperature within safe ranges.

(8) Finally, the possibilities of this work approach concerning the assessment of thermal gradients
induced by fast tracking point perturbations are discussed in Section 3.2.3.
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This work has been executed at two locations: CIO (Aguascalientes, Mexico) for the Fresnel
Lens Experiments and CICY (Mérida, México) for the Tonatiuh implementation of a Fresnel lens and
the thermal quadrupoles method. The following subsections describe thoroughly the methodology
employed for this research.

2.2. Irradiance Map Definition

Tonatiuh is an open-source ray tracing software based on Monte Carlo analysis with an extended
library of geometrical surfaces [30,32,33], allowing custom modification of available topologies and
script-based design of new ones. Tonatiuh delivers irradiance flux map simulations upon custom
receiver surfaces for any hour, calendar day and worldwide location; providing valuable information
for designing concentrated solar power (CSP) systems, including concentrator optical properties
and solar tracking systems. Unfortunately, Tonatiuh does not provide any library nor support for
refraction-based optical elements, like Fresnel lenses.

2.2.1. Implementing Fresnel Lenses with Tonatiuh

Nevertheless, as stated in [34] (p. 020017-5), “ . . . to model a refractive component on Tonatiuh
one has to define two refractive surfaces with coefficients to the transmission, absorption, reflection
and refractive index at each side”. This approach has been implemented successfully for this work.
A custom script-based refractive object has been generated by combining a rectangular prism with
a group of small prisms with triangular section and circular perimeter, concatenated on top of the
rectangular base as shown in Figure 1.
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Figure 1. Fresnel lens implemented with Tonatiuh. The 5 × 5 cm receiver is 1.5 cm below the focal
point. Inset: Closer view of Fresnel lens cross-section showing periodic prisms generated by script.

The Fresnel pattern is circular, while its aperture is rectangular (represented as a dark squared
mask upon a disk lens), as often found in the concentrator market. By means of the Snell law of
refraction [35] (pp. 81–85), each small prism angle is adjusted so as to produce the appropriate output
angle, in order to impact inside the receiver. This angle gets smaller as the prism approaches the center
of the Fresnel lens as shown in Figure 1 inset (Bottom left). Such a strategy is not free of drawbacks: the
diffraction patterns induced by the triangular edges cannot be represented by Tonatiuh. Nevertheless,
as stated by Hornung and Nitz [36], diffraction losses are less than 1% for Fresnel lenses with pitches
greater than 0.3 mm; a condition which is often met for non-imaging Fresnel lenses designed for
solar concentration. Accordingly, diffraction losses at simulation stage are negligible, so ignored in
this work.

The script model for the Fresnel lens has been inspired by commercial lens specifications.
A summary of parameters of the real lens is shown in Table 3. Transmissivity, active area and pitch
from the real lens were introduced into the Tonatiuh model. Then, the prism angles have been adjusted
to deliver the same focal length as in manufacturer specifications, which is f = 22 cm. Next section
describes the experimental design for the real lens irradiance maps measurements.
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Table 3. Fresnel lens specifications from manufacturer [37], also employed for Tonatiuh Model.

Specification Value

Model FL220-285
Type Point focus

Material PMMA
Size 285 × 285 mm

Active Area 267 × 267 mm
Transmissivity 0.92

Focal length 220 mm
Pitch 0.5 mm

2.2.2. Characterising the Fresnel Lens That Inspires Tonatiuh Script: Experimental Design

An experimental design (shown in Figure 2) was conceived to compare the synthetic spot obtained
with Tonatiuh, with the spot obtained by the commercial lens that inspired the script model. This design
provides mechanical support for a rectangular Fresnel lenses and includes a manual solar tracking
structure to ensure that the sun’s rays strike perpendicular to the plane of the Fresnel lens. In addition,
an Allied Vision Technologies MAKO camera was positioned to image the receiver surface.
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Figure 2. Experimental setup for irradiance flux mapping.

Local Direct Normal Irradiance (DNI) data was obtained from a scientific grade solarimetric
station (Solys2 + SHP1 pyrheliometer, Kipp & Zonen, Delft, The Netherlands) located at the CIO
Research Institute (Aguascalientes, México). A square Fresnel lens (FL220-285, Fresnelfactory, San Jose,
CA, USA) concentrator has been employed. This Fresnel lens produced a square spot of 23 mm per
side on the receiver surface, the latter located at 23.5 cm below the lens, which is 1.5 cm after lens focal
point. At this out-of-focal-point position, the concentration ratio was 126.9 suns. This out-of-focal-point
position is still close to focal plane, and provided a bigger spot, allowing an evaluation with higher
spatial resolution for the imaging system, thus a clearer comparison between spots, and a preliminary
evaluation of the light cone, as the focal point was known a priori.

A Gardon-Schmidt-Boelter sensor (SBG01, Hukseflux Thermal Sensors, Delft, The Netherlands)
was placed in the receptor plane 23.5 cm below the lens, 1.5 cm below the Fresnel lens focal plane,
as previously mentioned (see Figure 2. Inset, bottom-right), at the center of the spot. The Gardon active
area, a circle with a 1 cm diameter, generates a signal proportional to the integral of irradiance flux upon
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the active area. This mean flux measurement provides the calibration data for the spatially resolved flux
acquired with the MAKO camera (Allied Vision, Exton, PA, USA). Indeed, the Gardon sensor delivers
a signal proportional to the absorbed heat flux upon the sensor surface and measures the irradiant
flux; thus obtaining the Fresnel lens optical concentration after radiation absorption, reflection and
diffraction losses. The Gardon sensor was calibrated in accordance to the ISO 14934-3 standard.

Afterwards, the Gardon sensor was exchanged for a flat receiver covered in a Lambertian paint.
An image of the spot generated upon the Lambertian receiver surface was then acquired by means of
the MAKO camera, to gather the spatial flux distribution with the CCD matrix. Indeed, as receiver
surface, CCD pixel size and magnification, and Gardon sensor surface are all known, incident fluxes
can be obtained. This procedure allowed the estimation of receiver surface incident flux with spatial
resolution, providing an experimental flux map. A mean DNI experimental dataset was also introduced
into the Tonatiuh Fresnel lens model in order to compare model results with measured fluxes acquired
by the MAKO camera.

2.2.3. Combining Flux Maps Modeled through Tonatiuh with Synthetic Ambient Irradiance Series

Tonatiuh can mimic direct solar irradiance evolution through daytime variation of zenith and
azimuthal angles. Such a spatial distribution (Figure 3a) depends on the Fresnel lens geometry,
focal point, aperture and DNI incidence angle. However, Tonatiuh does not represent the unpredictable
amplitude variation due to atmospheric absorption, refraction and cloud shading. To overcome this
limitation, a synthetic, time-resolved DNI profile is generated by combining flux maps modeled
through Tonatiuh, with a set of experimental irradiance data for the highest irradiance record available
(Aguascalientes, Mexico, July 2015, Figure 3b), throughout full daytime, with a sampling period of
60 s; in order to provide a synthetic flux dataset very close to real conditions. The irradiance time
series of Figure 3b appears clipped at 9:00 and 17:00 to simulate a hypothetical, angular dynamic range
limitation of the tracking system. The absorbed flux upon receiver surfaces is then defined as:

Isolar(x, y, t) = Tonatiuh.spot(x, y, t)I(t) (1)

where Tonatiuh.spot(x, y, t) is the normalized irradiance map obtained with Tonatiuh (Figure 3a) and
I(t) is the synthetic solar irradiance time series (Figure 3b). This way a synthetic DNI voxel, resolved
in space and time is obtained. A voxel is the 3D (x, y, t) equivalent of the well-known 2D (x,y) pixel.
The so-obtained 3D voxel array will be the external stimulus for the thermal quadrupoles model
described in next section.
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2.3. Thermal Quadrupoles Model

Let us start, for proof of concept purposes, with a generic CPV system (Figure 4a) composed of a
square aperture Fresnel lens collector (point focal) focusing light onto a CPV cell glued to an aluminum
heat sink; the latter in contact with a refrigerant liquid (water) supplied in order to keep CPV cell
operation temperature within a safe range as specified by the manufacturer. The refrigerant liquid is
considered an isothermal heat sink. Such a simplified scheme aligns with this work’s main purpose: to
highlight the capabilities and potential of this new combination of known analysis tools, rather than to
focus on the details of a specific CPV system design.Energies 2018, 11, x FOR PEER REVIEW  8 of 24 
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Prior to heat balance, one assumption is made: CPV cell thickness (ec) is small in comparison
with its in-plane dimensions Xw and YL, and heat losses upon thin lateral walls are accordingly
negligible, thus ignored. The irradiance profile hitting the CPV cell has a time and space dependence.
Therefore, the same is expected for the CPV cell temperature response, giving rise to a transient 3D
heat transport problem, with adiabatic conditions at lateral CPV cell walls (Figure 4b). Under such a
set of assumptions, heat equation and initial and boundary conditions are written as:

1
a

∂T
∂t

=
∂2T
∂x

+
∂2T
∂y

+
∂2T
∂z

+
1
λ

g, T(x, y, z, t = 0) = 0 (2)

λ
∂T
∂t

∣∣∣∣
z=0

= ψsolar − hairT(x, y, z = 0, t); λ
∂T
∂t

∣∣∣∣
z=ecc+es

= ψout − hH2OT(x, y, z = ec + es, t) (3)

where a is thermal diffusivity, λ is thermal conductivity, T and t are temperature and time; and x, y, z
are spatial coordinates and es is heat sink thickness. g accounts for internal volumetric heat sources,
like Joule heating for a working CPV cell. hair and hH2O are the convection-radiation coefficients for
air (CPV cell surface) and heat sink side in contact with the refrigerant fluid (water), as shown in
Figure 4b. Two spatial (x→ α, y→ β) Fourier transforms and one time (t→ p) Laplace transform are
applied to the previous system of equations, and the partial differential equation (PDE) (Equation (2))
is transformed into the following ordinary differential equation (ODE):

∂2

∂z2 θ(α, β, z, p) +
1
λ

G(α, β, z, p) =
(

α2 + β2 +
p
a

)
θ(α, β, z, p) (4)

where α, β are Fourier variables, p the Laplace variable and θ is the temperature in the transformed
space (see Appendix A for details). A linear relationship between temperature and heat flux (Φ) at
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the boundaries of each system layer emerges, allowing a representation based on quadrupoles with
thermal impedances as shown in Figure 5.
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Thus, heat transfer in the composite system is represented by a layer matrices product linking
temperature-heat flux vectors at the boundaries of the system: θ0

ψ− θ0 − θair
ζair

 =

[
A1 B1

C1 D1

][
A2 B2

C2 D2

] θ2

θ2 − θH2O
ζH2O

− [ JcζC1

Jc

]
(5)

where θ0, θair, θ2, θH2O are temperatures for CPV cell surface, air, heat sink surface and refrigerant
liquid. ψ accounts for absorbed solar radiation and ζair and ζH2O are radiation-convection losses
toward air and refrigerant liquid. Aj, Bj, Cj, Dj are quadrupole matrix coefficients, and the index j
corresponds to the system layer index, 1 for CPV cell and 2 for heat sink. Jc is the volumetric source
for CPV cell Joule heating. Equation (5) can be solved algebraically for all relevant temperature and
heat fluxes, which are still in the multi-transform space. To return to meaningful coordinates and time,
a triple inverse transform must be applied.

Nevertheless, ψ and θair are not mathematically defined, as their origin is experimental records
of solar irradiance and ambient temperatures over time for a defined location. Such records exhibit
unpredictable variations in time, which are hard to represent by a function in the transformed space.
In such cases, a well-known strategy in linear systems analysis consists in first computing the system
response to the Dirac impulse, which in this case would be spatial and time Dirac impulse, located at
the center of the CPV cell. In practice, all experimental source terms and temperatures are grouped
together and then replaced by the Dirac impulse transform. Then, a spatial 2D inverse Fourier
transform is applied, to obtain the temperature map response to the Dirac impulse stimulus:

θ∗0 (x, y, z, p) =
1

XwYL
θ(α0, β0, z, p) +

2
XwYL

∞
∑

n=1
θ0(αn, β0, z, p) cos(αnx) . . .

+
2

XwYL

∞
∑

m=1
θ0(α0, βm, z, p) cos(βmy) +

4
XwYL

∞
∑

n=1

∞
∑

m=1
θ0(αn, βm, z, p ) cos(αnx) cos(βmy)

α0 = β0 = 0

(6)

In practice, infinite sums in Equation (6) are truncated to 10 terms, which provides a good
trade-off between precision and computing time as reported in [26]. Indeed, temperatures computed
with 10 term simulations converge asymptotically, better than 99.9%, to simulations using as high as
500 terms. Temperatures calculated with 500 terms were employed as reference, as any further (>500)
increase in number of terms does not produce temperature changes for double precision, floating
point computations. The 10 terms figure is explained by the incident flux spatial frequency spectrum,
by nature skewed toward low frequencies, and showing much less content at high spatial frequencies.
Further details are provided in Section 3.3 and Appendix B.
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Equation (6) remains in the Laplace space. So, a numerical inverse Laplace transform is applied
by means of the Den Iseger algorithm [31], which outperforms other well-known inversion techniques
such as Stehfest, and De Hoog’s [38]. Temperature response T*

0(x, y, z, t) to the measured ambient
variables time series and internal sources is then calculated, and consists of the sum by superposition
principle of two terms.

First, the time convolution between the response to Dirac impulses without the internal
Joule heating T∗0ψ

(
δij
)
, and a time series term composed of the sum of solar irradiance Isolar and

convective-radiative heat flux Tair/ζair. Second, the time convolution between the response to Dirac
impulses without solar irradiance Isolar and convective-radiative heat flux Tair/ζair, T∗0ψ

(
δij
)

and the
volumetric heat source g.

To obtain the system response for a custom or experimental irradiance profile covering the whole
receiver surface, the CPV cell surface is split into a grid of M by N size; and a synthetic Dirac impulse
“scans” each grid node, generating a set of temperature maps. This set of responses to individual
scanning Dirac impulses hitting a different node in the grid each time must be added up, taking
advantage of the superposition principle. The two set of M by N profiles so-obtained are added,
to yield the final CPV surface temperature map:

T0(x, y, z, t) =
M

∑
i=1

N

∑
j=1

[
T∗0ψ

(
δij
)
∗
(

Isolar
(
xi, yj, t

)
+

Tair(t)
ζair

)]
+

M

∑
i=1

N

∑
j=1

[
T∗0g
(
δij
)
∗ g
]

(7)

Tair is a time series for measured ambient temperature. Isolar is the irradiance flux absorbed at the
CPV surface, both space and time-resolved as defined in Section 2.2.3.

In some cases, the irradiance flux spatial function can be mathematically known, either by an
analytical derivation for a Fresnel lens [39], or for a concentrator [40,41]; or by plane-fitting a measured
profile with an appropriate function. Then, the analytic Fourier transform of the irradiance term can be
included in system (5). In such a case, a single Dirac impulse located at the CPV cell center is enough
(M = N = 1).

A more complex scenario consists in a spatial profile not known mathematically, like an
experimental profile obtained from a concentrator with optical imperfections and inhomogeneities.
That case requires the scanning M by N Dirac covering each grid node where the measured irradiance
flux is defined. For an in-depth, full mathematical development of this section, please refer to
Appendix A.

3. Coupling Ray Tracing Analysis + Thermal Quadrupoles Model: Results

3.1. Tonatiuh Fresnel Lens Model: Comparison with Commercial Lens Spot

In this section, the Tonatiuh Fresnel lens simulation is compared with experimental results from
the experimental design described in Section 2.2.2. As such a Fresnel lens implementation is reported
for the first time, we started from the specifications of a commercial lens, recover PMMA properties
and manufacturing information.

Results for both simulated (a, top) and experimental (a, bottom) spot profiles are shown in Figure 6.
They show a very similar square pattern and size. The simulated spot is ideal, and does not show
inhomogeneities, whereas the experimental spot does. Indeed, the real lens combines imperfections in
the sawtooth patterns, flatness variations, plastic bending and inhomogeneity in material transmittance.
These aspects would explain the high spatial frequency variations within the spot area.
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Nevertheless, it is important to mention that we are unable to claim that the teeth angles
are disposed the same way in the model as in the real lens. But this procedure does provide us
with a synthetic irradiant flux coming from the lens model, that mimic the real lens appropriately,
delivering the same focal length and a similar spot at an out-of-focal-point position.

Indeed, it should be noted that both spots show a good agreement for total power, maximum flux
and spot average flux, as summarized in Table 4. However, it is good engineering practice to employ
the ideal lens figures during design, in order to take into account the maximum theoretical flux the
cell would have to endure in real conditions, as if a high quality lens was employed. In any case, it is
possible to use both the experimental or theoretical spots (associated to a synthetic or experimental
time series) as an input stimulus for the thermal quadrupole model.

Table 4. Comparison of Fresnel lens performance: Commercial lens and Tonatiuh model inspired by
the commercial lens.

Spot Property Tonatiuh Experimental

Total Power 39.2 W 31.2 W
Max Flux 1.2 × 105 W/m2 1.3 × 105 W/m2

Average Flux 7.7 × 104 W/m2 5.5 × 104 W/m2

Let us insist that this comparison purpose is not to provide a demonstration of the fidelity of
the simulated Fresnel lens geometry in comparison with the commercial lens. Instead, the purpose
was to design a synthetic lens inspired by specifications from the commercial lens datasheet (material
transmissivity, focal length, pitch and aperture), to provide the thermal quadrupole model with an
irradiance spot, defined in space and time, inspired from a real lens and real irradiance data.

3.2. Time-Resolved Temperature Mapping Simulation Results

Once the flux voxel is defined in accordance with Equation (1) and the procedure described in
Section 2.2.3, on a daily basis with a 1 min sampling frequency, the voxel is introduced into the thermal
quadrupole model (Equation (6)) in order to compute relevant temperatures and heat fluxes at any
time. Now it is straightforward to perform parametric studies in order to optimize the design and
scale the CPV system. Relevant simulation parameters are summarized in Table 5.



Energies 2018, 11, 2042 12 of 24

Table 5. Thermal Modelling Simulation Parameters and Ranges.

Property CPV Cell (Ge) Heat Sink (Al) Thermal Glue

Thermal conductivity [W/m·K] 60.2 237 0.735
Density [K/m3] 5320 2700 -

Specific heat [J/Kg K] 322 900 -
Concentration Factor 0–500

Heat sink-liquid convection coefficient (W/m2·K) 3000–6000
Cooling water temperature 29 ◦C

CPV cell thermal properties are typical values for semiconductor multijunction solar cell [42–44],
as well as a thermal contact resistance coefficient for a thermal interface material. Design parameter
ranges for concentration factor and convection coefficients are provided and discussed in next section.

3.2.1. Uneven Irradiance Profiles and High Temperature Gradients

How spatially uneven fluxes affect temperature response is an important question for CPV system
performance and reliability, and accordingly, to highlight the model pertinence on this matter, let us
start with the synthetic spot shown Figure 6a, top, and compute the CPV cell surface temperatures for
three different CPV cell sizes (1 × 1 cm, 2 × 2 cm and 5 × 5 cm) as shown in Figure 7. It is important to
note the effect of an inhomogeneous flux profile upon cell surface temperatures. Indeed, the 1 × 1 cm
cell shows small spatial variations around 55 ◦C, whereas the 2 × 2 cm and 5 × 5 cm cells endure
much higher gradients (50 ◦C to 55 ◦C, and 30 ◦C to 42 ◦C) as the bigger cells get less photons at the
edges. Notice also how as the same amount of heat is distributed over a growing volume, maximum
temperatures (56 ◦C, 53 ◦C, 42 ◦C) decreases with growing cell sizes.Energies 2018, 11, x FOR PEER REVIEW  12 of 24 

 

  
(a) (b) 

 
(c) 

Figure 7. Temperature maps for three CPV cell sizes (a) 1 × 1 cm (b) 2 × 2 cm (c) 5 × 5 cm in response 
to irradiance spot of Figure 6a, top. 

Of course, for a real device, a change in position for the CPV cell would be indicated for the 2 × 2 
and 5 × 5 cells, to irradiate at an out-of-focal-point position, where the spot would be bigger, and 
thus homogenize the temperature gradient. Such an analysis, clearly relevant for the optimization of 
a well-defined, specific CPV system, is beyond the scope of this work, which is centered on the 
thermal quadrupoles model capabilities when combined with ray-tracing analysis. 

Hereafter, let us focus on the 1 × 1 cm cell, which is the most frequent size for CPV cells found in 
the market. Since solar cell surface temperature is strongly affected by convection on the heat sink 
surface (convection coefficient	݄ுଶ௢) and especially on concentration factor C, a parametric analysis 
is developed to determine an upper operation temperature according to manufacturer 
specifications, which is typically Tmax < 100 °C for most cells. The concentrator factor C is here 
defined as the ratio between Fresnel lens area and solar cell area. 

3.2.2. Concentrator Scaling and Operation Temperature Optimization 

Figure 8 shows a parametric study for center CPV cell temperature (b) and the CPV cell-heat 
sink interface, as a function of concentration factor C and heat sink convection coefficient.	݄ுଶ௢ 
range was estimated in accordance with [45] in an operation range of 40–100 °C for a heat sink in 
natural convection. Concentration factor has been varied within the 0–500 range. For this purpose, 
the synthetic irradiance voxel was evaluated with the Fresnel lens model, but at closer position 
below the focal point (22.6 cm, which is 6 mm below focal point), thus providing a smaller spot in 
order to match the cell surface and the spot area. The voxel was scaled to artificially provide lower 
and higher irradiances, and mimic the effect a range of concentrations (0–500) would have. 

Figure 7. Temperature maps for three CPV cell sizes (a) 1 × 1 cm (b) 2 × 2 cm (c) 5 × 5 cm in response
to irradiance spot of Figure 6a, top.



Energies 2018, 11, 2042 13 of 24

Of course, for a real device, a change in position for the CPV cell would be indicated for the 2 × 2
and 5 × 5 cells, to irradiate at an out-of-focal-point position, where the spot would be bigger, and thus
homogenize the temperature gradient. Such an analysis, clearly relevant for the optimization of a
well-defined, specific CPV system, is beyond the scope of this work, which is centered on the thermal
quadrupoles model capabilities when combined with ray-tracing analysis.

Hereafter, let us focus on the 1 × 1 cm cell, which is the most frequent size for CPV cells found in
the market. Since solar cell surface temperature is strongly affected by convection on the heat sink
surface (convection coefficient hH2O) and especially on concentration factor C, a parametric analysis is
developed to determine an upper operation temperature according to manufacturer specifications,
which is typically Tmax < 100 ◦C for most cells. The concentrator factor C is here defined as the ratio
between Fresnel lens area and solar cell area.

3.2.2. Concentrator Scaling and Operation Temperature Optimization

Figure 8 shows a parametric study for center CPV cell temperature (b) and the CPV cell-heat
sink interface, as a function of concentration factor C and heat sink convection coefficient. hH2O range
was estimated in accordance with [45] in an operation range of 40–100 ◦C for a heat sink in natural
convection. Concentration factor has been varied within the 0–500 range. For this purpose, the synthetic
irradiance voxel was evaluated with the Fresnel lens model, but at closer position below the focal point
(22.6 cm, which is 6 mm below focal point), thus providing a smaller spot in order to match the cell
surface and the spot area. The voxel was scaled to artificially provide lower and higher irradiances,
and mimic the effect a range of concentrations (0–500) would have.Energies 2018, 11, x FOR PEER REVIEW  13 of 24 
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Figure 8. CPV cell center temperatures as a function of heat sink convection coefficient and
concentration factor (a) CPV cell-heat sink interface (b) CPV surface.

Safe operation temperature limits (T < 100 ◦C) are marked within black ellipses. As cell
temperature approaches the 100 ◦C limit, heat sink temperature is close to 80 ◦C. According to reported
correlations [45] and simulation results, that would correspond to a convection coefficient close to 5000.
Such a set of conditions matches a concentration factor of 400, which would be the maximum allowable
concentration, associated to the 5000 figure of convection exchange.

Accordingly, the simulated Fresnel lens inspired from the manufacturer specifications is found to
provide the 400 suns figure at a 22.6 cm working distance, just 6 mm below focal point, conditioned to
limit the aperture to a 20 × 20 cm window (20 × 20 cm/10 × 10 mm→ 400 suns).

Of course, higher convection coefficients, will allow further concentration ratios, and the specific
design conditions can be studied thoroughly at this design stage. Such analysis is beyond the scope of
this work, whose main interest is to pinpoint the potential of the proposed methodology on this matter.

Finally, the temperature field under that set of optimal design parameters is recalculated for the
highest radiation day of the year 2015 (Figure 3b), and results are shown in Figure 9, where the gradient
rises to a 20 ◦C difference between CPV cell edges and center (Figure 9a). Heat sink top temperature
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and CPV cell temperature at the center are shown throughout the same day in Figure 9b. The cell
temperature is kept under the safe operation range (<100 ◦C), as expected, thanks to the parametric
study described above. Supplementary Material S1 contains a video with the time sequence of CPV
surface temperature maps throughout the day in response to irradiance flux maps in Figure 3b.
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Figure 9. Temperatures on the highest radiation day (Aguascalientes, July 2015) (a) CPV surface
temperature map at 12:00; (b) Temperature at CPV cell center and heat sink-CPV cell interface
temperature throughout the day.

3.2.3. Predicting Temperature Variations Due to Tracking Point Perturbations

Until now, the thermal quadrupole model has not been challenged on its transient capabilities,
as the available irradiance data sampling frequency is quite low (60 s) in comparison with the CPV
system dynamics. Even the fastest cloud shading observed in Figure 3b lies in the steady state regime
for the CPV cell temperature. Nevertheless, wind perturbations affecting the tracking point could
induce much faster flux variations and therefore unexpected temperature gradients on the CPV cell.

To assess such an effect, a periodic angular perturbation (Figure 10a, sawtooth chirp form,
0.5◦ amplitude, frequency starting from 5 Hz to 0.1 Hz) centered on the optimal tracking point (0◦) has
been introduced. This synthetic perturbation spans over 16 s and induces an absorbed flux variation
(Figure 10b).
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The resulting temperature variations are shown in Figure 10c, where the low pass filtering effect
of heat equations is displayed. Indeed, “high frequency” perturbations (>5 Hz) do induce a mean
operation temperature variation that is perceptible, but not a measurable periodic response following
the perturbation periodicity. As frequency decreases down to (0.1 Hz) such a periodic component
appears and grows up to variations of 6 ◦C, from 87 ◦C to 93 ◦C. That low pass filter behavior depends
on CPV cell thermal properties and especially on cell thickness (z-axis). Greater angular perturbations
will induce higher temperature variations. The assessment of the temperature variations induced by
the angular perturbation effect is of great value for design purposes and a deeper investigation in future
studies (beyond the scope of this work) might consider possible associated cell lifespan shortening.
Indeed, as already shown in Figure 7c, an incident flux gradient induces strong temperature gradients
as well. For a deeper picture of such an effect, please consult the Supplementary Material S2, where the
evolution over time for the CPV cell temperature map is shown, in response to the synthetic angular
perturbations of Figure 10a.

3.3. Computing Time

As stated in Section 2.2, two cases are foreseen regarding the spatial profile of an absorbed flux:
a known mathematical function or a custom profile, which could be gathered from a measured flux
map. The first case involves calculating a single Dirac response, whereas the second case requires M
by N computations of the scanning Dirac pulses. The computing time has been estimated accordingly
for time-resolved temperature maps lasting 1 day, 1 week and 1 month of CPV system operation.
Results are summarized in Table 6.

Table 6. Computing time (in seconds) for several simulation scenarios.

Flux (x, y) 1 Day 1 Week 1 Month (30 Days)

Impulse Convolution Impulse Convolution Impulse Convolution

Know spatial function 8.2 0.02 8.2 0.23 8.2 0.68
Unknown spatial function

(M by N impulses) 994 23 994 130 994 742

In practice, computation procedure starts with the calculation of one Dirac response (for a known
spatial function) or M by N Dirac responses (for an unknown function spatial profile) followed by
a time convolution according to the Den Iseger algorithm. When the flux spatial function is known,
such an operation is very fast, lasting less than 9 s (8.2 + 0.68) for a full month of temperature map
simulations. In this case, the single impulse response calculation dominates the total computation time.

Conversely, when the flux spatial function is unknown, computation time scales according to the
M by N discretization. In this case the study has been performed for M by N (21 by 21) yielding a
good spatial resolution for a thermal problem, whose spectral content is inherently restrained to low
spatial frequencies. The computing time scales up to 29 min for a month, and down to 17 min for a
day which is still a reasonable figure for a transient 3D study of thermal response. Further information
on computing time optimization can be consulted in Appendix B.

4. Discussion

Script-based Fresnel lenses simulations for concentration photovoltaics were proposed. They allow
the use of Tonatiuh ray tracing open source software to represent refraction objects, and obtain synthetic
receiver flux maps for any worldwide date, hour and latitude. Characteristics of a commercial Fresnel
lens have been introduced to the Tonatiuh script, and experimental and simulated flux distributions
were compared. It should be pinpointed that commercial lens is employed in order to inspire the
script-based Fresnel lens model.
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For design purposes, the script-based lens was employed, as its design was inspired in the real
lens, and it provides a synthetic irradiance spot similar to the real one. Additionally, it provided the
maximum theoretical flux, and consequently, the highest foreseen operation temperatures.

Tonatiuh’s set of synthetic flux profiles under perfect tracking conditions throughout daytime and
seasons were then combined with measured solar irradiance series, which include variations induced
by cloud shading. Such a synthetic flux voxel was then introduced into the thermal quadrupole
model. Indeed, an analytic model for CPV cell temperature maps estimations, based on the thermal
quadrupoles method has been proposed. It accurately predicts time-lapse CPV cell surface temperature
maps under any worldwide irradiance conditions, for any set of experimental or simulated irradiance
fluxes. Such a thermal model, coupled with Tonatiuh ray tracing analysis, is a powerful combination
of tools for CPV systems design.

Indeed, a parametric analysis to keep the system’s upper operation temperature below the
maximum limit according to CPV cell specifications was developed. Computing time can be as low as
a few seconds, even for a temperature map calculation spanning over a month, provided there is a
known spatial function for flux. The proposed method simplifies the design of solar concentration
systems and would allow studying the performance and the life cycle of concentration photovoltaic
cells, through an accurate computation of thermal stress along years of operation.

The scope of the proposed methodology does not claim to replace FEM analysis. Instead, we think
it provides a complementary tool that can be employed at the first stages of CPV system design to
provide FEM models (more accurate for complex 3D structures representation) with narrowed and
fine-tuned ranges of relevant design parameters and time regimes, minimizing computer resources
usage. Furthermore, this method opens up interesting opportunities for improvement of CPV systems
reliability studies.

As shown in Table 1, all prior works concerning thermal response of CPV systems consist of
3D models for average temperatures or numerical simulation by Finite Element. To our knowledge,
this is the first time analytic computation of CPV cell surface temperature resolved in space and time
has been proposed. The same is true for the association of the thermal quadrupole method and ray
tracing analysis.

5. Conclusions and Perspectives

The thermal quadrupole model, in association with ray tracing analysis software Tonatiuh, applied
to transient temperature maps, resolved in time and space was reported for the first time. Such an
approach, by its analytic essence, is suitable for CPV engineering, including parametric studies, design
optimization, and reliability studies. Additionally, the so-performed studies are executed in less
computing time, as short as 9 s for a full month of simulated operation, with a generic laptop computer.

Nowadays these tasks are accomplished with FEM tools, which are undeniably useful and
mandatory when systems structures are geometrically complex and show non-linearities. Accordingly,
the claim is not replacing FEM, but rather complement it, by providing them with narrowed ranges
for design parameter optimization, when working with CPV designs whose complexity cannot be
properly represented by thermal quadrupole models. We would like to draw reader’s attention to
another field that could benefit from this research: CPV cell reliability.

Potential for Reliability Studies

CPV cell thermal breakdown has been extensively studied and is the recognized main cause of cell
failures and lifespan shortening [46–54]. To our knowledge all reported works employ simplified steady
state models and operation condition statistics for the assessment of cyclic degradation. With FEM
simulations, it is hard to foresee the implementation of transient simulations over months and years
of operation with real ambient and irradiance data. Nevertheless, with the approach proposed in
this work, computation times are very short and hence, it is reasonable to contemplate thermal stress
simulation with real irradiance data over full years of operation. Furthermore, including higher time
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resolution computations which permit assessing the influence of fast angular perturbation of tracking
point (wind, vibrations) is also conceivable.

The consequences on lifespan shortening induced by these temperature variations, represented
with better accuracy by this work method, are still to be studied. The same is true for thermal
breakdown forecasting based on full knowledge of CPV thermal response over years with high
time resolution.

Finally, concerning the implementation of Fresnel lenses by refractive surfaces generated by script
with Tonatiuh, which is also a novelty presented in this work: Proper validation of the script-based
model by comparing real and scrip lenses, including their geometry, is worth its own research and is
beyond the scope of this work, focused on the association between the thermal quadrupoles model
and ray tracing analysis.

Supplementary Materials: The following are available online at https://zenodo.org/record/1340754#
.W2kBabgRWUk, Video S1: Temperature throughout the highest irradiance day of the year 2015. Video S2:
Incident flux and CPV surface temperature in response to synthetic angular perturbations.
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Appendix A. Full Mathematical Development of Thermal Quadrupole Model

The heat transfer through CPV cell is:

1
a

∂T
∂t

=
∂2T
∂x

+
∂2T
∂y

+
∂2T
∂z

+
1
λ

g, T(x, y, z, t = 0) = 0 (A1)

λc
∂T
∂z

∣∣∣∣
z=0

= ψsolar − hairT(x, y, z = 0, t), −λc
∂T
∂z

∣∣∣∣
z=ec

= ϕ1 (A2)

where ac and λc are thermal diffusivity and thermal conductivity of CPV cell and T is temperature, t is
time, g is internal heat source, ϕ1 is flux from CPV to heat sink and x, y, z are spatial coordinates.

Under assumption that heat losses upon thin lateral walls are neglected, one can write:

∂T(x, y, z, t)
∂x

=
∂T(x, y, z, t)

∂y
= 0, t > 0, x = Xw, x = y = 0, y = YL (A3)

Applying Laplace transform to system:

θ∗(x, y, z, p) = L[T(x, y, z, t)] =
∫ ∞

0
Te−ptdt (A4)

φ∗(x, y, z, p) = L[T(x, y, z, t)] =
∫ ∞

0
ϕe−ptdt (A5)

G∗(x, y, z, p) = L[g(x, y, z, t)] =
∫ ∞

0
ge−ptdt (A6)

https://zenodo.org/record/1340754#.W2kBabgRWUk
https://zenodo.org/record/1340754#.W2kBabgRWUk
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∂θ∗(x, y, z, p)
∂x

=
∂θ∗(x, y, z, p)

∂y
= 0, para x = 0, x = Xw, y = 0, y = YL, t > 0 (A7)

By taking account adiabatic conditions (A7), one can apply the Fourier cosine transform:

θ(α, β, z, p) =
∫ Xw

0

∫ YL

0
θ∗(x, y, z, p) cos(αnx) cos(βmy)dy dx (A8)

where the eigenvalues are:

α =
m π

XW
, β =

n π

YL

with n = 0, 1, 2, 3, . . . and m = 0, 1, 2, 3, . . . .
After Laplace-Fourier transformation the differential Equation (A1) and boundaries conditions

are written as:
d2

dz2 θ(α, β, z, p) +
1
λ

G(α, β, z, p) =
(

α2 + β2 +
p
a

)
θ(α, β, z, p) (A9)

−λ
∂θ

∂z

∣∣∣∣
z=0

= ψsolar − hairθ(α, β, z = 0, p), −λ
∂θ

∂z

∣∣∣∣
z=ec

= Φ1 (A10)

whose solution is:
θ(α, β, z, p) = K1cosh(δ z) + K2sinh(δ z) + y(δ z) (A11)

with δ2 = α2 + β2 + p
a .

By taking account boundaries Condition (A10) and using the quadrupole formalism developed
in [17] one can express the transformed temperature and heat flux at z = 0 (θ0, Φ0) and z = ec,(θ1, Φ1) as: θ0

Ψ − θ0 − θair
ζair

 = exp(δc ec)

{[
A1 B1

C2 D2

][
θ1

Φ1

]
−
[

X
Y

]}
(A12)

where elements of matrix are defined in function of proprieties of CPV cell:

[
A1 B1

C1 D1

]
=


1 + exp(−2δc ec)

2
1− exp(−2δc ec)

2λc δc

λc δc
1− exp(−2δc ec)

2
1 + exp(−2δc ec)

2

 (A13)

with δ2
c = α2 + β2 +

p
ac

.

And internal heat source due Joule effect [X, Y]’ are expressed as:

[
X
Y

]
=

 A1 − exp(−δc ec)

C1
J exp(−δc ec)

J exp(−δc ec)

 (A14)

with:

J =
I2
c Rc

Ac

sinh(δc ec)

δc
(A15)

where Rc, Ac and Ic are resistance area and CPV cell current estimate by explicit method presented
in [55] for Azur Space triple junction solar cell 3C44.

A same process is development for heat sink block with its proprieties as, λs, es, and without
internal heat sours to obtain the expression:

[
θ1

Φ1

]
= exp(δs es)

[
A2 B2

C2 D2

] θ2

θ2 − θH2O
ζH2O

 (A16)
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With: [
A2 B2

C2 D2

]
=


1 + exp(−2δs es)

2
1− exp(−2δs es)

2λc δc

λs δs
1− exp(−2δs es)

2
1 + exp(−2δs es)

2

 (A17)

where θ1 is defines as heat sink top temperature, θ2 is the heat sink water contact temperature and
θH2O is the water temperature. From (A12), (A14), (A15), (A16) one obtains (A18):

 θ0

Ψ− θ0 − θair

ζair

 = exp(δc ec + δs es)


 A1 B1

C2 D2

 A2 B2

C2 D2


 θ2

θ2 − θH2O

ζH2O

− exp(−δs es)

 X

Y


 (A18)

A thermal resistance Rg =
eg
λg

is introduced between CPV cell and Heat Sink to represent thermal
glue, so the full system is: θ0

Ψ− θ0 − θair
ζair

 = exp(δc ec + δs es)


[

A B
C D

] θ2

θ2 − θH2O
ζH2O

− exp(−δs es)

[
X
Y

] (A19)

with: [
A B
C D

]
=

[
A1 B1

C2 D2

][
1 Rg
0 1

] [
A2 B2

C2 D2

]
(A20)

whose representation with thermal impedances is shown in Figure 5, where thermal impedances are:

ζc,s 2 = ζc,s 1 =
Ac,s − 1

Cc,s
(A21)

ζc,s 3 =
1

Cc,s
(A22)

ζH2O =
1

hH2O
, ζair =

1
hair

(A23)

Since (A19) is a system of linear equations, it is possible solve for θ0:

θ0(α, β, p) . . .

=

(A + BhH2O)(ψ + θairhair) +
AD− CB

exp(−δcec − δses)
hH2OθH2O −

C + DhH2O
exp(−δcec)

X +
A + B hH2O
exp(−δcec)

Y

hair(A + BhH2O) + C + DhH2O

(A24)

and subsequently one can obtain:

θ2(α, β, p) . . .

=
exp(−δcec − δses)(Ψ + θairhair) + (D + Bhair)hH2OθH2O + exp(−δses)(X hair + Y )

hair(A + BhH2O) + C + DhH2O

(A25)

θ1(α, β, p) = exp(−δses)(A2 + B2hH2O)θ2 (A26)

To keep system linearity, internal heat source is computed externally due thermal dependence.
Thermal response is the sum of two external excitations (Ψ + θairhair) and g. As:

θ0(α, β, p) . . . = θ0ψ + θ0g (A27)
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where:

θ0ψ (α, β, p) =
(A + BhH2O)(ψ + θairhair) +

AD− CB
exp(−δcec − δses)

hH2OθH2O

hair(A + BhH2O) + C + DhH2O
(A28)

θ0g (α, β, p) =
−C + DhH2O

exp(−δcec)
X +

A + B hH2O
exp(−δcec)

Y

hair(A + BhH2O) + C + DhH2O
(A29)

At this point thermal response of system still in Laplace-Fourier domain, so two inverse
transformation must be applied, the space transformation defined as:

θ∗0 (x, y, z, p) =
1

XwYL
θ(α0, β0, z, p) +

2
XwYL

∞
∑

n=1
θ0(αn, β0, z, p) cos(αnx) . . .

+
2

XwYL

∞
∑

m=1
θ0(α0, βm, z, p) cos(βmy) +

4
XwYL

∞
∑

n=1

∞
∑

m=1
θ0(αn, βm, z, p ) cos(αnx) cos(βmy)

(A30)

with α0 = β0 = 0.
And inverse transformation of Laplace was made by Den Iseger algorithm to obtain thermal

response T∗0ψ due impulse response as radiation excitation and T∗0g due impulse response as internal
heat source.

A.1. Flux Excitation

The Den Iseger algorithm demands a defined laplace function to compute inverse transform.
So one need define a function able to describe laplace transform from solar flux measurement data.
Find this kind of function is not easy task due non-homogeneous distribution in space and time.

To solve this problem one can compute the response from Dirac function in time in specific area
over solar cell surface and by convolution find the response from any excitation function.

Normalized Heaviside function is used to approximate Dirac function in a discrete form, in this
way ψ function is defined as:

ψ(x, y, t)ψ(x, y, t)

= 1
∆t (H(t)− H(t + ∆t))(H(x− X0)

−H(x− (X0 + ∆x)))(H(y−Y0) . . . − H(y− (Y0 + ∆y)))

(A31)

whose Laplace-Fourier transform is find by:

Ψ(α,β, p) =
∫ ∞

0

∫ Xw

0

∫ YL

0
ψ(x, y, t)e−pt cos(αx) cos(βy)dt dx dy (A32)

Solving:

Ψ(α,β, p) . . .

=

(
1− e−p∆t

p ∆t

)


(
sin((X0 + ∆x)α)− sin(X0α)

α

)(
sin((Y0 + ∆y)β)− sin(Y0β)

β

)
, α 6= 0, β 6= 0

∆x
(

sin((Y0 + ∆y)β)− sin(Y0β)

β

)
, α = 0, β 6= 0(

sin((X0 + ∆x)α)− sin(X0α)

α

)
∆y, α 6= 0, β = 0

∆x ∆y, α = 0, β = 0

(A33)

A.2. Thermal—Electric Coupling

CPV cell current is temperature dependent, yielding a no-linear problem, which has been solved
by means of iterative computing as summarized in Figure A1. Starting from a an initial thermal
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response, the electric model is feed with first thermal estimation and delivers an estimate of the cell
current, which in return is used to recalculate thermal response. This procedure is repeated until the
thermal response converge according to a stop criterion (consecutive variation lower than 1%).Energies 2018, 11, x FOR PEER REVIEW  21 of 24 
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Appendix B. Truncate Inverse Fourier Transform Infinite Series and Computing Time Optimization

Simulation have been executed on a general-purpose laptop computer (Model HP Envy, processor
Intel core i5-4210U, 8 GB RAM), by means of the software Matlab® (R2014b, MathWorks, Natick,
MA, USA). A full day of temperature maps responses has been calculated with a 60 s sampling
frequency. Global simulation time (Figure A2a), and maximum error at selected point upon CPV
surface (Figure A2a), starting at the cell center and finishing on cell edges, are shown as a function of
the Fourier series number of terms.
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This error is defined as the difference in percentage with a simulation using 500 terms for the
Fourier series of Equation (6). Higher number of terms (>500) did not show any further change in
simulated temperature. The point with the highest error on the temperature map along the day is
plotted in Figure A2b.

Afterwards, number of terms has been reduced from 100 to 10, where 10 terms implies a
computing time lower than 9 s of 1 day in temperature response, as seen in Figure A2a.

Still, difference between the 10 and the 500 terms simulations is smaller than 0.05% for
temperatures at center of the CPV cell and reach a maximum of 0.5% at CPV cell edges, which is an
imperceptible difference for any temperature measuring device available nowadays.

Accordingly, the Fourier series term number has been set to 10. Such a figure will be specific to each
case, according to the spatial frequency spectrum of the absorbed flux maps. A similar analysis each
time a new problem is posed might be good engineering practices for accurate temperature simulations.
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