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Abstract: This paper exhibits a passivity-based robust output voltage controller for DC/DC boost
converters for wind power system applications. The proposed technique has two features. The first
one is to introduce a nonlinear disturbance observer for estimating the disturbances arising from the
load and parameter variations. The second one is to derive a proportional-type passivity-based output
voltage tracking controller incorporating the disturbance observer output, which simplifies the control
algorithm by removing the use of tracking error integrators and an anti-windup algorithm. These two
features constitute the useful closed-loop properties called the performance recovery and offset-free
properties. Numerical simulation results confirm the efficacy of the proposed scheme, where a wind
power system including the proposed controller is emulated using the PowerSIM software.

Keywords: power conversion; model–plant mismatches; disturbance observer; performance recovery;
offset-free

1. Introduction

A DC/DC boost converter driven by pulse-width modulation (PWM) provides an acceptable
output voltage and current regulation performance with a power factor correction property. Because of
these two beneficial properties, the DC/DC boost converter has wide industrial applications, including
variable home appliances, electrical vehicles, and solar/wind power systems [1–6].

Conventionally, the cascade-type output voltage regulator has primarily been adopted for DC/DC
boost converter control systems where the outer-loop voltage control output is used as the reference
signal for the inner-loop current controller [7]. These inner- and outer-loops can be implemented
using a simple proportional-integral (PI) controller with two degree of freedom for each loop, and the
resulting closed-loop performance can be adjusted through the frequency domain using the Bode
and Nyquist techniques [7,8]. The feedback-linearization technique was applied by combining
the classical PI scheme and the converter parameter dependent feed-forward compensation terms,
in which the PI gains are tuned for the cut-off frequency of the closed-loop transfer function using the
converter parameters [7]. Thus, the parameter identification accuracy critically affects the closed-loop
performance. The parameter dependency can be reduced by also incorporating the gain-scheduling
techniques in the control algorithms, as in [9,10].

It was reported that closed-loop performance improvement could be achieved by applying several
advanced techniques, such as deadbeat [11], predictive [12], sliding mode [13], adaptive [14,15], model
predictive [16–19], and robust controllers [20]. However, these advanced techniques still have the
parameter dependency problem, and, even in the case of an adaptive controller, knowledge of the
true inductance value is required. Recently, a sliding mode technique [21] was devised through a
multi-variable approach and efficiently alleviated the chattering effect. The upper and lower bounds of
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the disturbances should be found using a trial-and-error procedure, which determines the feed-forward
compensation terms dominating the disturbances coming from the load and parameter variations.

This paper presents a robust output voltage tracking controller for DC/DC boost converters,
which considers the nonlinear dynamic behavior and model–plant mismatches arising from load
and parameter variations. The proposed technique is devised through a multi-variable approach
in the port-controlled Hamiltonian (PCH) framework introduced in [22]. This study made three
contributions. First, a nonlinear disturbance observer (DOB) was constructed to exponentially estimate
the disturbances given in the perturbed converter dynamical equations. Second, a proportional-type
output voltage controller was devised by solving a partial differential equation (PDE) for the desired
closed-loop energy function, including the DOB state variables. Third, it is rigorously proven that
the closed-loop system driven by the proposed technique ensures two beneficial properties called
the performance recovery and offset-free properties without the use of the tracking error integrators.
These three contributions could simplify the control algorithms by: (1) reducing the dependency on
converter information, such as the parameters and load current; and (2) removing the tracking error
integral actions with anti-windup algorithms, which is a stark contrast to previous studies. Realistic
simulations verify the effectiveness of the proposed technique by implementing a wind power system
comprised of a wind turbine, permanent magnet synchronous generator (PMSG), and three-phase
diode rectifier.

2. DC/DC Boost Converter Nonlinear Dynamics

The application of the averaging technique to the DC/DC boost converter depicted in Figure 1
leads to the nonlinear differential equations as [7]

Li̇L(t) = −(1− u(t))vdc(t) + vin(t), (1)

Cv̇dc(t) = (1− u(t))iL(t)− iLoad(t), ∀t ≥ 0, (2)

where the averaged inductor current of iL(t) and output voltage of vdc(t) are treated as the state
variables, and the duty ratio of u(t) acts as the control input constrained in the closed-interval of [0, 1].
The inductance and capacitance values are denoted as L and C, respectively. The input DC source
voltage of vin(t) comes from a wind power system comprised of a wind turbine, PMSG, and rectifier,
and the load current of iL(t) acts as the external disturbance.

Figure 1. DC/DC boost converter topology.

Considering the wind power system implementations, the following assumptions are made:

• The true inductance and capacitance values are unknown but their nominal values, denoted as
L0 and C0, are known.

• The input DC source voltage of vin(t) is time-varying but unknown except for its initial value,
i.e., vin,0 = vin(0) is known.

• The load current of iLoad(t) is unknown and time-varying.
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• The inductor current of iL(t) and output voltage of vdc(t) are available for feedback.

The converter dynamics of Equations (1) and (2) show that the output voltage tracking control
problem is not trivial because of the nonlinear terms presented in the inductor and output voltage
dynamics and the unstable zero-dynamics. This paper tackles this difficulty by combining the passivity
approach introduced in [22] and DOB techniques. For details, see the following section.

3. Output Voltage Tracking Controller Design

This section develops an output voltage tracking algorithm that allows the closed-loop output
voltage behavior to be convergent to the low-pass filter (LPF) dynamics as

Vdc(s)
Vdc,re f (s)

=
ωvc

s + ωvc
, ∀s ∈ C, (3)

with a desired cut-off frequency of ωvc > 0, where Vdc(s) and Vdc,re f (s) stand for the Laplace transforms
of vdc(t) and vdc,re f (t), respectively. For this purpose, Section 3.1 analyzes the open-loop stability
using a positive-definite energy function, which is used to constitute a PDE. Section 3.2 designs the
PDE using the open-loop and closed-loop energy functions and proposes an output voltage tracking
controller for solving the resulting PDE. Finally, Section 3.3 presents two useful closed-loop properties,
called the performance recovery and offset-free properties, by analyzing the closed-loop dynamics.

3.1. Open-Loop Stability Analysis

First, to remove the true parameter dependency, rewrite the nonlinear dynamics of Equations (1)
and (2) using the nominal converter parameters of L0 and C0 with the initial input DC source voltage
of vin,0 as:

L0 i̇L(t) = −(1− u(t))vdc(t) + vin,0 + dL,o(t), (4)

C0v̇dc(t) = (1− u(t))iL(t) + dv,o(t), ∀t ≥ 0, (5)

with dL,o(t) and dv,o(t) being unknown lumped disturbances caused by the model–plant mismatches,
which can be written in a vector form:

Mẋ(t) = J(u(t))M−1∇H(x(t)) + g + do(t), ∀t ≥ 0, (6)

where the state vector of x(t) is defined as x(t) :=
[

iL(t) vdc(t)
]T

, ∇H(x(t)) denotes the gradient

of the open-loop energy function of H(x(t)) given by H(x(t)) := 1
2 xT(t)Mx(t), ∀t ≥ 0 with the positive

definite matrix of M :=diag
{

L0, C0

}
, and the rest of the system matrices are defined as

J(u(t)) :=

[
0 −(1− u(t))

(1− u(t)) 0

]
, g :=

[
vin,0

0

]
, do(t) :=

[
dL,o(t)
dv,o(t)

]
, ∀t ≥ 0.

The open-loop stability can easily be seen using the open-loop energy function of H(x(t)) and the
state equation of Equation (6) as

Ḣ(x(t)) = ∇HT(x(t))ẋ(t) = xT(t)M
(

M−1
[

J(u(t))M−1∇H(x(t)) + g + do(t)
])

= xT(t)
(

J(u(t))x(t) + g + do(t)
)
= xT(t)(g + do(t)), ∀t ≥ 0,

which shows the passivity for the input-output mapping of (g + do(t)) 7→ x(t).
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3.2. Controller Design

The control problem for the target dynamics of Equation (3) can be solved by deriving a control
law that forces the closed-loop output voltage trajectory of vdc(t) to exponentially converge to the
desired trajectory of v∗dc(t) governed by

v̇∗dc(t) = ωvc

(
vdc,re f (t)− v∗dc(t)

)
, ∀t ≥ 0, (7)

because the dynamical Equation (7) is the inverse Laplace transform of Equation (3). To this end,

define the tracking error vector as x̃(t) := xre f (t)− x(t) =
[

ĩL(t) ṽ∗dc(t)
]T

with the reference vector

of xre f (t) :=
[

iL,re f (t) v∗dc(t)
]T

, where iL,re f (t) refers to the inductor current reference determined
later. Then, the tracking error dynamics are obtained as

M ˙̃x(t) = M(ẋre f (t)− ẋ(t))

= −J(u(t))M−1∇H(x(t))− g + d(t), ∀t ≥ 0, (8)

where the disturbance vector of d(t) is defined as d(t) := Mẋre f (t)− do(t), ∀t ≥ 0. Now, consider the
closed-loop positive definite energy function given by

Hcl(x̃(t)) :=
1
2

x̃T(t)Mx̃(t), ∀t ≥ 0, (9)

which gives its time-derivative along the trajectory of Equation (8):

Ḣcl(x̃(t)) = ∇HT
cl(x̃(t)) ˙̃x(t)

= ∇HT
cl(x̃(t))M

−1
(
− J(u(t))M−1∇H(x(t))− g + d(t)

)
, ∀t ≥ 0. (10)

Through a further analysis using Lemma 1, it can be proven that a useful inequality of

Ḣcl(x̃(t)) ≤ −αcl Hcl(x̃(t)) + d̃T
(t)x̃(t), ∀t ≥ 0, (11)

holds for some αcl > 0 where d̃(t) := d(t)− d̂(t) with d̂(t) =
[

d̂L(t) d̂v(t)
]T

being the estimated
disturbance vector, ∀t ≥ 0, if the PDE of

−J(u(t))M−1∇H(x(t))− g =

(
Jcl(u(t))−Rcl

)
M−1∇Hcl(x̃(t))− d̂(t), ∀t ≥ 0, (12)

is solvable for some skew-symmetric matrix of Jcl(u(t)) and positive definite matrix of Rcl .
The PDE of Equation (12) can be solved using the proposed control law u(t), with the inductor

current reference iL,re f (t) given by

u(t) =
1

v∗dc(t)

(
L0kcc ĩL(t) + v∗dc(t)− vin,0 + d̂L(t)

)
, (13)

iL,re f (t) =
1

1− u(t)

(
C0kvcṽ∗dc(t) + d̂v(t)

)
, ∀t ≥ 0, (14)

with Jcl(u(t)) = J(u(t)) and Rcl =diag
{

L0kcc, C0kvc

}
for any given tuning parameters of kcc > 0 and

kvc > 0. Meanwhile, the estimated disturbance vector of d̂(t) is given by

d̂(t) = z(t) + LMx̃(t), ∀t ≥ 0, (15)
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with the diagonal DOB gain matrix of L =diag{lcc, lvc} > 0. The DOB state vector of z(t) is updated as

ż(t) = −Lz(t)− L2Mx̃(t) + L
(

J(u(t))x(t) + g
)

, ∀t ≥ 0, (16)

Lemma 1 presents a beneficial inequality of Equation (11) to derive a closed-loop property
through investigating the closed-loop energy function behavior driven by the proposed controller
of Equation (13) with the inductor current reference of Equation (14). The proof is given in the
Appendix A.

Lemma 1. For any given kx > 0, x = cc, vc, the proposed controller of Equation (13) with the inductor current
reference of Equation (14) solves the PDE of Equation (12) such that the inequality of Equation (11) holds true.

3.3. Closed-Loop Property Analysis

This subsection rigorously analyzes the closed-loop properties. First, Theorem 1 derives a
closed-loop property, called the performance recovery property, which includes the DOB output
of Equation (15) and the DOB state equation of Equation (16) based on the inequality of Equation (11)
derived by Lemma 1. The Appendix A presents the proof of Theorem 1.

Theorem 1. Under the assumption of Lemma 1, for any kx > 0 and lx, x = cc, vc, the proposed controller of
Equation (13) with the inductor current reference of Equation (14) and DOB of Equations (15) and (16) ensures
strict passivity for the input–output mapping:

w(t) 7→ y(t), (17)

where w(t) :=
[

0 0 (Γḋ(t))T
]T

and y(t) :=
[

x̃T(t) d̃T
(t)

]T
for some Γ = ΓT > 0, ∀t ≥ 0.

The proof of Theorem 1 can be accomplished by showing that the composite-type positive-definite
function of V(t) defined as

V(x̃(t), d̃(t)) := Hcl(x̃(t)) +
1
2

d̃T
(t)Γd̃(t), ∀t ≥ 0, (18)

with a positive definite weighting matrix of Γ gives

V̇(x̃(t), d̃(t)) ≤ −βV(x̃(t), d̃(t)) + wT(t)y(t), ∀t ≥ 0, (19)

for some β > 0. For details, see the Appendix A. The resulting inequality of Equation (19) implies that
the closed-loop system driven by the proposed control algorithm exponentially recovers the target
output voltage tracking performance of Equation (7) as the disturbance vector of d(t) exponentially
reaches its steady state, i.e., vdc(t)→ v∗dc(t) as ḋ(t)→ 0, exponentially.

Theorem 2 shows that the closed-loop system does not suffer from an offset error despite the
absence of the tracking error integrators in the proposed controller, thanks to the DOB dynamics of
Equations (15) and (16). This property is called the offset-free property to simplify the controller by
removing the additional anti-windup algorithms. The proof is given in the Appendix A.

Theorem 2. The closed-loop system controlled by the proposed control algorithm of Equations (13)–(16) always
removes the output voltage steady state error, i.e, vdc(∞) = vdc,re f (∞) where vdc(∞) and vdc,re f (∞) denote
the steady states of vdc(t) and vdc,re f (t), respectively.
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4. Simulation Results

This section describes the simulation results of a wind power system that includes the DC/DC
boost converter to numerically demonstrate the effectiveness of the proposed technique. Section 4.1
gives the simulation setup. The numerical verification results are presented in Section 4.2. Section 4.3
concludes this section by discussing the numerical verification results.

4.1. Simulation Setup

The wind power system was emulated by the powerSIM (PSIM) software using its wind turbine
and permanent magnet synchronous machine (PMSM) model. The following values were selected
for the nominal output power, inertia, base wind and rotational speed, and initial rotational speed
of the wind turbine: 10-kW, 0.1 kg·m2, 20 m/s, 50 rpm, and 10 rpm, respectively. The PMSM
parameters were chosen as Rs = 0.099 Ω (stator resistance), Ld = Lq = 4.07 mH (d-q inductances),
λPM = 0.3166 Wb (flux), P = 40 (number of poles), J = 0.12 kg·m2 (inertia), B = 0.000425 Nm/rad/s
(viscous damping). The Weibull distribution-based wind model [23] was used to randomly determine
the wind speed for the wind turbine, which is shown in Figure 2. As components of the DC/DC boost
converter, the inductance of L and the capacitance of C were selected as

L = 460 µH, C = 470 µF, (20)

and their nominal values were determined to be

L0 = 0.5L, C0 = 1.5C, (21)

to take the model–plant mismatches into account, where the input DC source voltage was supplied
by the PMSM with a three-phase diode rectifier. Figure 3 shows the emulated wind power system
configuration, whose output DC-link voltage of vdc(t) was controlled by the DC/DC boost converter.
The control algorithms were implemented using the dynamic link library (DLL) block written in
the C language, where the pulse-width modulation (PWM) and control periods were chosen to be
synchronized to 0.1 ms.

Figure 2. Wind speed pattern from Weibull distribution-based wind model.
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Figure 3. Wind power system configuration.

For comparison, the feedback linearization (FL) technique was considered [7], which is given as

u(t) = 2L0ωcc ĩL(t) + L0ω2
cc

∫ t

0
ĩL(τ)dτ, ∀t ≥ 0, (22)

with the inductor current tracking error of ĩL(t) := iL,re f (t)− iL(t), ∀t ≥ 0, where the inductor current
reference of iL,re f (t) is updated by the outer-loop voltage regulator as

iL,re f (t) = 2C0ωvcṽdc(t) + C0ω2
vc

∫ t

0
ṽdc(τ)dτ, ∀t ≥ 0, , (23)

with the output voltage tracking error of ṽdc(t) := vdc,re f (t)− vdc(t), ∀t ≥ 0. The resulting closed-loop
system controlled by the FL technique gives the closed-loop transfer function

IL(s)
IL,re f (s)

≈ ωcc

s + ωcc
,

Vdc(s)
Vdc,re f (s)

≈ ωvc

s + ωvc
, ∀s ∈ C, (24)

as long as the nominal parameters of L0 and C0 exactly match their true values of L and C for all
operating points, where IL(s), IL,re f (s), Vdc(s), and Vdc,re f (s) represent the Laplace transforms of
iL(t), iL,re f (t), vdc(t), and vdc,re f (t), respectively. It is easy to see that the control objective of the FL
technique is the same as that of the proposed technique. The FL controller of Equations (22) and
(23) was implemented using the nominal parameters of L0 and C0 with the cut-off frequencies of
ωcc = 2π fcc = 600π rad/s and ωvc = 2π fvc = 2π rad/s, i.e., fcc = 300 Hz and fvc = 4 Hz.

The proposed algorithm was also constructed using the nominal parameters of L0 and C0,
where the cut-off frequency of ωvc was set the same as the FL controller. The design parameters
of kcc and kvc and DOB gains of lcc and lvc were tuned as kcc = ωcc, kvc = 95, lcc = 62.8, and lvc = 62.8,
respectively, which are summarized in Figure 4.

Figure 4. Simulation parameter summary table.

4.2. Simulation Results

The first simulation evaluates the output voltage tracking performance for a time-varying
output voltage reference that was increased from vdc,re f (t) = 250 V to vdc,re f (t) = 350 V and
afterwards was restored to vdc,re f (t) = 250 V. This simulation was performed for three-types of
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resistive loads (RL = 30, 60, 100 Ω) to evaluate the closed-loop robustness against load variations.
The resulting closed-loop output voltage behaviors are shown in Figure 5, and the trajectories of the
estimated disturbances from the DOBs are depicted in Figure 6. Figure 7 shows the corresponding
input DC voltage and PMSM speed responses that originated from the wind turbine and velocity.
These results indicate that the proposed technique precisely assigned the desired output voltage
tracking performance to the closed-loop system in the presence of model–plant mismatches and load
variations, thanks to the DOBs.

Figure 5. Output voltage tracking performance change behaviors for RL = 30, 60, 100 Ω.

Figure 6. Estimated disturbance behaviors.

Figure 7. Permanent magnet synchronous machine (PMSM) speed and input voltage behaviors.
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The second simulation investigates the output voltage regulation performance under a sudden
load variation, where the resistive load of RL was changed from RL = 60 Ω to RL = 30 Ω, and it
was restored to RL = 60 Ω in a sequential manner. The resulting closed-loop responses are depicted
in Figure 8, which observes that the proposed technique considerably enhanced the output voltage
regulation performance by speeding up the output voltage restoring rate with a rapid inductor current
response. This feature was also obtained because the DOB exponentially estimated the disturbances
coming from load current variations and model–plant mismatches.

Figure 8. Output voltage regulation performance comparison for sudden load change from RL = 60 Ω
to RL = 30 Ω.

The last simulation examines the output voltage tracking performance change behaviors as
increasing the cut-off frequency of fvc to fvc = 0.7, 2, 4 Hz. In this simulation, the output voltage
reference was increased from vdc,re f (t) = 250 V to vdc,re f (t) = 350 V under a resistive load of RL = 30 Ω.
The comparison results are presented in Figure 9, which indicates that the closed-loop output voltage
tracking performance was precisely adjusted by the proposed technique using a fixed control parameter
set in the presence of model–plant mismatches.

Figure 9. Output voltage tracking performances for several cut-off frequencies, fvc = 0.7, 2, 4 Hz.
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4.3. Discussion

These numerical verifications confirmed the beneficial closed-loop properties proven in
Theorems 1 and 2, and this section clearly shows that a considerable output voltage tracking and
regulation performance improvement can be obtained using the proposed technique in the presence
of input voltage variations caused by wind speed changes. Therefore, it can be concluded that the
proposed technique is qualified as a promising solution for wind power system applications.

5. Conclusions

For DC/DC boost converter applications, this paper suggests a passivity-based proportional-type
output voltage tracking control algorithm incorporating the DOB under the PCH framework,
which results in a classical cascade structure. The proposed control algorithm was derived by solving
a PDE so that the closed-loop system had the desired positive-definite energy function. Moreover, it is
shown that the proposed controller guarantees the performance recovery property by rendering the
closed-loop energy function to be decreased exponentially, and it also ensures the offset-free property
in the absence of tracking error integrators by analyzing the closed-loop steady-state equations.
The beneficial closed-loop properties were numerically verified by emulating a wind power system
equipped with a wind turbine, PMSM, three-phase diode rectifier, and DC/DC boost converter. In this
study, the closed-loop cut-off frequency was manually found through a trial and error process, and it
was fixed for all time. An auto-tuning mechanism for the closed-loop cut-off frequency will be devised
and experimentally verified in a future study.
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Research Foundation of Korea(NRF) funded by the Ministry of Education(2018R1A6A1A03026005).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proofs for Lemma 1, Theorem 1, and Theorem 2 are presented in this section, sequentially. First,
Lemma 1 is proven as:

Proof. Letting Jcl =

[
0 Jcl,1

Jcl,2 0

]
and Rcl =diag{Rcl,1, Rcl,2} > 0, the PDE of (12) can be written as

[
0 (1− u)

−(1− u) 0

] [
iL
vdc

]
−
[

vin,0
0

]

=

([
0 Jcl,1

Jcl,2 0

]
−
[

Rcl,1 0
0 Rcl,2

]) [
ĩL
ṽ∗dc

]
−
[

d̂L(t)
d̂v(t)

]
,

∀t ≥ 0, which gives the two equations of

(1− u)vdc − vin,0 = Jcl,1ṽ∗dc − Rcl,1 ĩL − d̂L, (A1)

−(1− u)iL = Jcl,2 ĩL − Rcl,2ṽ∗dc − d̂v, ∀t ≥ 0. (A2)

Then, together with Jcl,2 := (1 − u) and Rcl,2 := C0kvc, Equation (A2) yields the inductor
current reference of Equation (14), and the control law of Equation (13) is obtained by setting
Jcl,1 and Rcl,1 as Jcl,1 := −(1 − u) and Rcl,1 := L0kcc for Equation (A1). Therefore, the proposed
controller of Equation (13) with the inductor current reference of Equation (14) is a solution to the
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PDE of Equation (12). It is easy to see that the time-derivative of Hcl can be obtained by combining
Equations (10) and (12) as

Ḣcl = ∇HT
clM

−1
(

Jcl −Rcl

)
M−1∇Hcl + d̃

)
= −x̃TRcl x̃ + d̃T x̃

≤ −αcl Hcl + d̃T x̃, ∀t ≥ 0, (A3)

with αcl := 2λmin(Rcl)
λmax(M)

where λmin((·)) and λmax((·)) represent the minimum and maximum eigenvalues

of the square matrix of (·) which satisfies that λmin((·))‖x‖2 ≤ xT(·)x ≤ λmax((·))‖x‖2 for any vector
of x ∈ Rn. Therefore, the inequality of Equation (11) holds true.

Second, Theorem 1 is proven as:

Proof. The substitution of the DOB output in Equation (15) to the DOB state equation of
Equation (16) yields

˙̂d− LM ˙̃x = −L(d̂− LMx̃)− L2Mx̃ + L(Jx + g), ∀t ≥ 0,

which is equivalent to

˙̃d = −Ld̃ + ḋ, ∀t ≥ 0, (A4)

since it holds that d = M ˙̃x + JM−1∇H + g = M ˙̃x + Jx + g (See Equation (8)). Consider the positive
definite function of Equation (A5) as

V = Hcl +
1
2

d̃TΓd̃, ∀t ≥ 0, (A5)

with a positive definite weighting matrix of Γ :=diag{γcc, γvc} > 0 determined later, which gives

V̇ = Ḣcl + d̃TΓ ˙̃d

= −αcl Hcl + d̃T x̃− d̃TΓLd̃ + d̃TΓḋ

≤ −αcl
2

Hcl − d̃T
(ΓL− 1

2αclλmin(M)
)d̃ + ḋTΓd̃, ∀t ≥ 0, (A6)

where the inequality of Equation (A3) and the DOB dynamics of Equation (A4) are used for the
second equality, and the last inequality is obtained by the Young’s inequality of xTy ≤ ε

2‖x‖2 + 1
2ε‖y‖2,

∀x, y ∈ Rn, ∀ε > 0. Then, the weighting matrix of Γ := L−1( 1
2 + 1

2αcl λmin(M)
) renders for V̇ to be

V̇ ≤ −αcl
2

Hcl −
1
2
‖d̃‖2 + ḋTΓd̃

≤ −βV + wTy, ∀t ≥ 0, (A7)

which indicates the strict passivity of the input-output mapping of Equation (17), where β :=
min{ αcl

2 , 1
λmax(Γ)

}.

Finally, Theorem 2 is proven as:

Proof. The closed-loop tracking error dynamics can be obtained by combining the tracking error
dynamics of Equation (8) and the PDE of Equation (12) as

M ˙̃x = (Jcl −Rcl)x̃ + d̃, ∀t ≥ 0, (A8)
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which gives the simplified steady-state equation

0 = (Jcl −Rcl)x̃(∞) (A9)

since it always holds that d̃(∞) = 0 in the steady-state (see Equation (A4)), where x̃(∞) and
d̃(∞) denote the steady states of x̃(t) and d̃(t), respectively. Furthermore, it follows from the
skew-symmetricity of the matrix Jcl , i.e., Jcl = −JT

cl , that

0 = x̃T(∞)(Jcl −Rcl)x̃(∞)

= −x̃T(∞)Rcl x̃(∞),

which shows that x̃(∞) = 0 because the matrix Rcl is positive definite. Therefore, it concludes that
ṽdc(∞) = v∗dc(∞) = vdc,re f (∞).
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