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Abstract: With the increase of charging requirements in electrical equipment, the wireless power
transfer (WPT) system with multiple receivers has gained more attention as the charging power and
efficiency of a WPT system depends on the equivalent reflected impedance of the load. Based on the
circuit model analysis of a single receiver WPT system, this paper investigated the multiple-receiver
WPT system. The relationship between the mutual inductance, load, and system efficiency was
discussed and the optimal load, the equivalent reflected impedance, and power division method
were analyzed to design the proposed system control scheme. With the use of the perturbation and
observation (P&O) algorithm control method, the current of transfer and receivers were regulated to
achieve stable constant power charging. Furthermore, when searching the minimum input power of
the system, the optimal efficiency under a fixed power division ratio was also received. The validity
of the proposed system control method was confirmed by simulation and experimental results.
Under the proposed control method, an efficiency above 80% can be achieved for a multiple-receiver
WPT system with a fixed power division ratio working at 6.78 MHz.

Keywords: wireless power transfer (WPT); constant power charging; multiple receivers; optimal
efficiency tracking

1. Introduction

Wireless power transfer (WPT) systems for consumer electronic devices such as mobile phones,
wearable devices, and micro robots are gaining more attention [1–3]. Many studies have been
performed on wireless battery charging for intelligent devices and medical applications [4–7]. Usually,
the ideal WPT system is expected to transmit energy efficiently, regardless of the relative position
of the transmitter and receiver. However, in practical terms, when the distance of the receiver and
transmitter do not meet the optimal transmission region, the efficiency is quite low [8]. Furthermore,
in a multi-receiver wireless power transfer system, the receiving devices may have many different
sizes, positions, load characteristics, and power requirements. Receivers near to the transmitter
tend to absorb more power. There have been many achievements in circuit analysis, modeling, and
the optimization of traditional WPT systems. However, there have been relatively few studies on
multiple-receiver WPT systems. Although there has been some basic research addressing efficiency
issues, the power allocation to power has not been considered. References [9,10] analyzed the
efficiency of multiple-receiver systems under different conditions, but failed to propose power division
and methods of efficiency improvement. The authors in Reference [11] proposed a method for
designing circuit parameters based on different receivers and used the frequency tracking method to
compensate for the system efficiency. However, it did not control the power assigned to each receiver.
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In Reference [12], an impedance inverter was inserted into the receiver end based on an equivalent
circuit model. The power distribution of each receiver was controllable; however, the efficiency of the
system was not improved using this method.

In a multiple-receiver WPT system, the power division control is as important as
efficiency optimization. To satisfy the power distribution, efforts have been made to develop a practical
system by improving system efficiency; containing more control freedom as well as more power stages.
For example, References [13,14] proposed a time-division control for a multi-receiver WPT transmission
system and a control method based on game theory for the receiver, which optimized the efficiency of
the system while efficiently allocating the power of the receiving end. The receiver power ratio
at the maximum efficiency of the system was obtained under the uncontrolled conditions [15].
Additional coils can be used to control the power flow with multiple receivers, enabling multiple
small receivers to charge at a certain degree of spatial freedom [1]. A multi-transmitter multi-receiver
system configuration was also developed in Reference [16]. The study of power transmission, while
accompanied by data transmission, was implemented based on wearable devices [17,18]. All of
these fundamental works show the variety of possible solutions for multiple-receiver applications.
These works have proposed various solutions for multiple-receiver applications and have contributed
to the research on multiple-receiver systems. However, in practical applications, more practical issues
need to be considered, such as efficiency optimization, control complexity, power regulation, and
device miniaturization requirements. Therefore, in a multiple-receiver WPT system, it is important to
develop a suitable design and control scheme in practice. This paper presents a power division and
optimal efficiency tracking control method based on a 6.78 MHz system. The system equations were
derived and discussed. Finally, the effectiveness of the method was verified by experiments.

2. System Structure and Theoretical Analysis

2.1. System Structure

The WPT system includes a variety of topological structures. Among the four basic topologies
mentioned in Reference [19], only the series-series (SS) topology looking from the power source is
independent of either the coupling coefficient or the load resistance at the resonant frequency.

ω =
1√
LtCt

=
1√

Lr1Cr1
(1)

Furthermore, the power reflection from the receiving side to the transmitting side is eliminated
at this frequency. Therefore, the SS structure is widely used for variation load systems, such as
the battery-charging WPT system [20,21]. So, in this paper, the SS structure was also used as the
system structure.

As shown in Figure 1, it had the typical structure of a multiple-receiver WPT system.
The transmitter (composed of a power amplifier and control structure) as well as multiple receivers
(composed of a full-bridge rectifier) and a DC-DC converter were implemented at 6.78 MHz. Lt and
Ct are the self-inductance and the resonant capacitance of the transmitter. Lr1 to Lrn, Cr1 to Crn, and
Ro1 to Ron are the inductances, resonant capacitance, and load resistance of the multiple receivers,
respectively. M11 to M1n are the mutual inductance between transmitter and the multiple receivers.
ηAmplifier, ηLinked, and ηdc-regulator denote the efficiency of the power amplifier, transformation, and DC
regulator, respectively.
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Figure 1. Configuration of the wireless power transfer (WPT) system with multiple receivers.

2.2. Optimal Load Condition for Reflected Impedance Match

2.2.1. System with Single Receiver

Figure 2 demonstrates an equivalent circuit of a single-receiver WPT system. In a magnetic
coupling resonant wireless power transmission system, power is transferred by a pair of coupled coils.
The relationship between the mutual inductance M and coupling coefficient of coils k is expressed as:

M = k
√

LtLr1 (2)
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Figure 2. Equivalent circuit of a one-transmitter and one-receiver WPT system.

Assuming that all the resonant circuits share the same resonant frequency ω, then:

jωLt +
1

jωCt
≈ 0 (3)

jωLr1 +
1

jωCr1
≈ 0 (4)

The reflected impedance of the receiver on the transmitter can be represented as:

ZR1 =
ω2M2

RL1 + Rr1 + j(ωLr1 − 1
ωCr1

)
=

(ωM)2

RL1 + Rr1
(5)
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RL1 denotes the equivalent AC load of the system. The impedances Zin and Zout viewed from the
transmitter toward the load and viewed from the receiver toward the source are expressed as:

Zin = ZR1 + Rt + j(ωLt −
1

ωCt
) = Rt +

ω2M2

RL1 + Rr1
(6)

Zout =
ω2M2

Rt + j(ωLt − 1
ωCt

)
+ Rr1 + j(ωLr1 −

1
ωCr1

) = Rr1 +
ω2M2

Rt
(7)

Based on the equivalent Kirchhoff’s Voltage Law (KVL), the equation in the transmitting process
can be obtained: [

VS
0

]
=

[
Rt jωM

jωM RL1 + Rr1

][
It

I1

]
(8)

Solving current I1 in terms of It:

I1 =
−jωM

RL1 + Rr1
· It (9)

Here, a loss coefficient is defined to express the relationship between the resistance and reactance
of the coupling coils. The loss coefficient of transmitter qt and receiver qr1 are expressed separately:

qt =
Rt

ωLt
qr1 =

RL1 + Rr1

ωLr1
(10)

With the current flowing the load, the power can be derived as:

Pr1 = |I1|2(RL1 + Rr1) (11)

Substituting Equation (9) into Equation (11), then replacing load with the loss coefficient and
coupling coefficient from Equation (1), we obtain:

Pr1 =
k2

1
qr1
·ωLt · |It|2 (12)

The efficiency for the receiver is:

η =
Pr1

Pin
=

ZR1
RL1

Rr1+RL1

Rt + RL1
=

(ωM)2RL1

(Rr1 + RL1)
2Rt + (ωM)2(Rr1 + RL1)

(13)

The optimal loads for maximum η can be obtained by solving the derivative equation:

∂η

∂RL1
= 0 (14)

Therefore, the optimal RL1 for a maximum η is expressed as:

RL1_OPT = Rr1

√
1 +

ω2M2

RtRr1
(15)

Let

K1 =

√
1 +

ω2M2

RtRr1
(16)

RL1_OPT = Rr1K1 (17)
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Furthermore, the maximum transfer efficiency is expressed as:

η_opt =
K1 − 1
K1 + 1

(18)

2.2.2. System with Multiple Receivers

In Figure 3, a multiple-receiver WPT system is represented. There is one transmitter and several
(n ≥ 2) receivers. All of the receivers were coupled to the transmitter. Actually, the receiver coils were
inserted into the receiver devices and the size of the receivers determined the size of the coils. With the
application of mobile phones and other wearable devices, the receiver size is usually quite small, and
will usually not be overlapping. In this case, cross-coupling can be ignored when compared to the
coupling with the transmitter [22].
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Mj (j = 1, 2, · · · , n) is the mutual inductance between the transmitter and receivers; therefore, the
coupling coefficient can be expressed as:

Mj = k j

√
LtLrj f or j = 1, 2, · · · , n (19)

ZR1 to ZRn are the reflected impedance looking from the transmitter to the receivers, with the
expression of the loss coefficients in a multiple-receiver system given as:

qt =
Rt

ωLt
qrj =

Rrj + RLj

ωLrj
f or j = 1, 2, · · · , n (20)

The reflected impedance ZRj (j = 1, 2, . . . , n) can be derived using the expression of loss coefficients
from Equation (20) and coupling coefficients from Equation (19):

ZRj =
k2

j

qrj
ωLt f or j = 1, 2, · · · , n (21)
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As with the single receiver WPT system, assume that all coils have the same resonant frequency.
Again, applying the KVL to the multiple-receiver system in Figure 3, the relationships of voltage and
current can be given as:

VS
0
0
...
0

 =


Rt jωM1 jωM2 · · · jωMn

jωM1 RL1 + Rr1 0 · · · 0
jωM2 0 RL2 + Rr2 · · · 0

...
...

...
. . .

...
jωMn 0 0 · · · RLn + Rrn




It

I1

I2
...
In

 (22)

From Equation (22), the relationship among the currents is:

Ii =
−jωMi

Rri + RLi
· It f or i = 1, 2, · · · , n (23)

Substituting Equation (23) into Equation (22), we obtain:

Vs

It
=

n

∑
i = 0

Zi =

(
qt +

n

∑
i = 1

k2
i

qri

)
·ωLt (24)

Therefore, with the same current It flowing through the impedance of each receiver, the power
division ratio can be derived using the ratio of impedance as follows:

Pi : Pj = ZRi : ZRj =
k2

i
qri

:
k2

j

qrj
f or i, j = 1, 2, · · · , n and i 6= j (25)

The expression of Pi can be derived as:

Pi =
k2

i
qri
·ωLt · |It|2 f or i = 1, 2, · · · , n (26)

Thus, the efficiency for the ith load is:

ηi =
Pi
Pin

=
ZRi

RLi
Rri+RLi

Rt +
n
∑

i = 1
RLi

(27)

The system efficiency can be expressed as:

η =

n
∑

i = 1
Pi

Pin
=

n
∑

i = 1

ZRi RLi
Rri+RLi

Rt +
n
∑

i = 1
RLi

=
n

∑
i = 1

ηi (28)

The optimal loads for the maximum η can be obtained by solving the n partial derivative equations
as follows:

∂η

∂RLi
= 0 f or i = 1, 2 · · · n (29)

The solution is:
RLi_OPT = RriKn (30)

where

Kn =

√
1 +

n

∑
i = 1

ω2Mi
2

RtRri
(31)
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The simplified optimal efficiency can be expressed as:

η_opt =
Kn − 1
Kn + 1

(32)

which is similar to Equation (18).
It can be observed that:

RL1_opt : RL2_opt : · · · : RLn_opt = Rr1 : Rr2 : · · · : Rrn (33)

which means that when all of the loads turn to the optimal load, the power division ratio is:

Pi : Pj = ZRi : ZRj = M2
i Rrj : M2

j Rri f or i, j = 1, 2, · · · , n and i 6= j (34)

This shows that when the load of the receiver is optimized, the system obtains the
maximum efficiency. However, the power division ratio is determined by the mutual inductance
between the receiver and the transmitter and the internal resistance of each receiver coil. This is
obviously out of control.

2.3. Analysis of Load Transformation

As analyzed in Section 2.2, the power division depends on the load RL when the coupling
coefficient of the system is fixed. From previous research [13], we found that the DC-DC converters
can be used to transform equivalent load resistance. In Figure 4, the equivalent resistance RLi looking
from the rectifier was adjusted by the duty cycle D of the converter. The three equations in Figure 4
represent the process of impedance. For the Buck converter, assuming that the loss can be ignored, it
was found that:

Uo = DUin (35)

where Uo and Uin are the input and output voltages. The equivalent input resistance for the converter
looking forward rectifier can be expressed as:

RLi =
8

π2 Ri_dc−dc =
8

π2D2 Roi (36)

With the adjustment of duty cycle D, Roi is regulated to the required RLi calculated by Equation (36)
and then the power of the receiver can be fixed. The characteristics of other DC-DC converters used to
regulate the equivalent input resistance are listed in Table 1.

As shown in Table 1, the constant duty cycle control obtains a different transformation range
of the load with different DC-DC converters. Combined with the system parameters listed in
Tables 2 and 3(A), Figure 5 shows the relationship of the duty cycle D and load resistance Ro, when the
equivalent input resistance is the optimal load.

In practice, the adjustment of the range of RLi depends not only on the range of Ro, but also
the available duty cycle D, affected by the accuracy of the controller and MOSFET driver. From the
viewpoint of previous research, the boost and single-ended primary inductance converter (SEPIC) are
suitable and easy to control, as their input currents are continuous.

The SEPIC is a type of DC-DC converter that has been widely used in battery-charging
applications. Similar to the buck-boost converter, it has a wide output voltage range. However, the
SEPIC has a low input current harmonic achieved through the proper selection of the inductor [23,24].
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Table 1. Characteristics of different basic DC-DC converters.

Converter Type Voltage Gain (Uout/Uin) Load Resistance
Transformation (RLi/Roi)

The Range of RLi

Boost 1
(1−D)

8(1−D)2

π2
0~Roi

Buck D 8
(πD)2 Roi~+∞

Buck-Boost −D
(1−D)

8(1−D)2

(πD)2 0~+∞

Single-Ended Primary
Inductance Converter (SEPIC)

D
(1−D)

8(1−D)2

(πD)2 0~+∞

Table 2. Parameters of the experimental system.

Symbol Quantity Value

Lt Primary-side coil inductance 2.13 µH
Rt Primary-side coil resistance 0.53 Ω
Lri Secondary-side coil inductance 3.73 µH
Rri Secondary-side coil resistance 0.76 Ω
fs System operating frequency 6.78 MHz
Ioi Charging current 0.1 A~2 A
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Table 3. Power division ratio and efficiency with different receiver positions in a two-receiver system.

Symbol (A) Position 1 (B) Position 2 (C) Position 3

k1 0.089 0.048 0.051
k2 0.062 0.089 0.048
M1 0.251 0.135 0.144
M2 0.175 0.251 0.135
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3. Analysis of the Power Division and Efficiency Evaluation Method

As analyzed in Section 2, when the receivers obtain the optimal load, the optimal efficiency can
be reached. Compared with Equation (28), we can see that the optimal system efficiency is the sum of
each optimal load efficiency. With a given input power Pin, the power ratio between any two receivers
is expressed as:

Pi : Pj = ηi : ηj f or i, j = 1, 2, · · · , n and i 6= j (37)

However, the power division among the receivers cannot be controlled except to change the
mutual inductance and resistance of the coil. In practice, the working power of the load cannot
be arbitrarily changed. Therefore, the power division ratio is usually determined by the required
power of the load. Based on this rule, it is not practical to use optimal load transformation to achieve
the maximum efficiency of the system. When the power division ratio is determined, the optimal
of each receiver cannot necessarily satisfy the power distribution ratio. In this time, the maximum
efficiency of the system should be the optimum efficiency with the constant reflected impedance ratio
η%_opt (≤η_opt). It is obvious that there will be an optimal total reflected impedance that can reach the
maximum system efficiency in a constant reflected impedance ratio condition.

As shown in Equation (25), the power division ratio is the same as the reflected impedance ratio
of the receivers. With the adjustment of D, it can not only transform the load to change the power of
the receivers, but also regulate the power division ratio. Therefore, according to the analysis in the
last section, the output current on the load can be regulated to obtain the required power and power
division ratio by controlling the DC-DC converter. However, in order to improve the system efficiency,
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a more adjustable degree is required. Therefore, the current regulation controller was introduced to
adjust the input power of the transmitter.

Ioi =
8(1− Di)

π2
ωMi

Rri +
8(1−Di)

2

(πDi)
2 Roi

· |It| f or i = 1, 2, · · · , n (38)

η =

n
∑

i = 1

ω2 M2
i

8(1−Di)
2

(πDi)
2 Roi

(Rri+
8(1−Di)

2

(πDi)
2 Roi)

2

Rt +
n
∑

i = 1

8(1−Di)
2

(πDi)
2 Roi

(39)

From Equations (38) and (39), it can be seen that Ioi and η are the functions of Di and Roi. It is
obvious that the system efficiency is related to the transmitter input current and the output current of
the receiver load, respectively. In order to achieve optimal efficiency, the transmitter and the receivers
should work cooperatively. Assuming that the load Roi is stable in the meantime, the calculation of the
load power can be realized by measuring the current Ioi flowing into the load. Based on the constant
power charging of the receivers, the optimal efficiency η_opt is tracked by measuring the minimum Pdc
at the transmitter. In this paper, the perturbation and observation (P&O) algorithm was introduced to
design the control scheme of the system. The method is widely used in applications of photovoltaic
power generation to track the maximum power points, and its correctness and practicability have
already been effectively verified [25]. A detailed analysis on the proposed control method is illustrated
in the following.

4. Analysis of the Proposed Control Scheme

4.1. Structure of Proposed Control Scheme

The control flow chart of the system is shown in Figure 6. On the transmitter, the voltage and
current sensors were used to collect the DC input voltage and current of the power amplifier, and then
the P&O algorithm was used to adjust the input power in real time by controlling the input current
of the power amplifier to track the best efficiency of the system. At the receiving end, through the
real-time acquisition of the input current of the load, the constant current charging was realized by the
simplified PI control.
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4.2. Operating Principle Analysis

Assuming that the load impedance is fixed for a period of time when it is charged, the constant
current charging by the SEPIC fixed the output power of the load during this time. When tracking the
minimum input power by adjusting the input power Idc of the power amplifier, the optimal efficiency
of the system tracking under the stable output power division can be obtained. However, the premise
behind the system working properly is that the system must meet the power requirement of all loads
when the system is initialized. The detail description of Figure 7 is as follows:

1. In the initialization phase, the initial output power of the transmitter is determined by the number
of loads and power requirements. The duty cycle D is adjusted by the PI controlled DC-DC
converter so that the current Io at the receiving end reaches the required current.

2. The input power Pdc of the transmitter is recorded after initialization and the corresponding
change of the input power is calculated in real time by increasing or decreasing the DC input
current Idc of the power amplifier. When the change of Idc is ∆Idc, the new value of Idc is
expressed as Idc1 = Idc0 − ∆Idc or Idc1 = Idc0 + ∆Idc. The new value of the input power is expressed
as Pdc1 = Pdc0 + ∆Pdc or Pdc1 = Pdc0 + ∆Pdc. As the transmitter’s power varies, the output current
Io of the receiver will also change due to the variation in power received by the load.

3. After storing the new current Idc1 and input power Pdc1 of the transmitter, the receiver adjusts D
again to restore the output current Io to the set value.

4. Finally, the new input power Pdc1 obtained by adjusting the Idc is compared with the Pdc. If the
Pdc1 is less than the Pdc, the current Idc should continue to be adjusted in the forward direction,
and steps 2 and 3 repeated until the Pdc1 increases. Otherwise, if Pdc1 is greater than Pdc, the
adjustment direction of Idc should be reversed and steps 2 and 3 repeated until the Pdc1 no longer
decreases. At this point, the maximum efficiency of the system is tracked.

In the process of tracking the maximum efficiency, steps 2 to 3 may be repeated several times.
This process will eventually achieve a dynamic balance, and it can also track the optimal efficiency
with the variation parameters of the system.
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5. Experimental Verification

5.1. Experimental Setup

Based on the proposed control scheme, an experimental system was designed. Figure 8 shows
the implemented structure of a single-receiver WPT system operating at 6.78 MHz. This system
was composed of a Class D power amplifier with a maximum power of 35 W, and a receiver with a
full-bridge rectifier and a DC-DC converter. On the transmitter, the P&O algorithm was realized by
the stepdown controller (LT3741) that could decrease or increase the current at intervals of 10 mA
using an 8-bit Digital-to-Analog Converter (DAC) controlled by microcontroller units (MCU) via
I2C communication. On the receiver, the MCU controller generates a PWM signal with variation duty
cycle D for the SEPIC under PI control.
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The transmitting and receiving resonant coils were fabricated on FR4 (thickness 1.2 mm, relative
permittivity 4.6, tangent loss 0.015) compliant with the A4WP standard [26]. The transmitting coil
was 205 mm × 141 mm in size, had an inductance Lt of 2.13 µH, and an equivalent series resistance
Rt of 0.53 Ω. The receiving coil had a size of 63 mm × 45 mm, an inductance Lr of 3.73 µH, and the
equivalent series resistance Rr1 of 0.76 Ω. As shown in Figure 9, the coupling coefficient of the two
coils at different axial distances and plane distances were simulated by Ansoft Maxwell 14.
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5.2. Experiment Results of the Proposed Control Method

Figure 10 illustrates the experimental setup. It is a schematic diagram of the experiment. For the
experiment, the input DC voltage was supplied by an external power supply, and the battery and
resistive load were used as the load separately. Table 3 shows the optimal efficiency and measured
efficiency with a fixed power division ratio in three positions between the transmitter and two receivers
including the coupling coefficients (k1, k2, and k3) and those of mutual inductance (M1, M2, and M3).
Table 3 presents the variable parameters of the DC load and frequency.Energies 2018, 11, x 13 of 18 
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Under the system configuration of Table 3(A), the coupling coefficient between the transmitter
and the receiver were 0.089 and 0.062, respectively. Figure 11a shows the efficiency with sweeping RL1

and RL2. The optimal point was RL1 = RL2 = 17 Ω, and η_opt = 93%. The maximum efficiency η%_opt

was 92% and 91% when the power distribution ratio was fixed at 2:1 and 4:3, respectively. The actual
efficiency achieved through maximum efficiency tracking was 84.3% and 83.5%, respectively.

In contrast to Table 3(A), in Table 3(B) the position of the two receivers with the transmitting coil
was changed. Figure 11b shows the efficiency of position 2 with sweeping RL1 and RL2. The optimal
efficiency η_opt = 92% and the optimal point was RL1 = RL2 = 18 Ω. The maximum efficiency with a
fixed power distribution ratio at 2:1 and 4:3 was 86% and 88%, respectively. The measured maximum
efficiency η%_opt with the maximum efficiency tracking was 77.8% and 78.2%.

Figure 11c demonstrates the relationship between efficiency and RL1, RL2 in Table 3(C).
The distance between the transfer coil and the receiving coils changed, and the coupling coefficient
and mutual inductance are shown in Table 3(C). The optimal efficiency reached 0.886, when the
RL1 = RL2 = 12 Ω. The efficiency was 87.4% and 88.2% when the power distribution ratio was 2:1 and
4:3, respectively. This was nearly the same as the optimal efficiency. The actual measured efficiency
with maximum efficiency tracking was 78.6% and 79.4%.

According to Table 3, the calculated results of the optimal efficiency and the efficiency with a
fixed power division ratio are shown in Figure 11; with a different power division ratio, the efficiency
sweep line was fixed by the constant ratio of loads in each receiver. When the measured efficiency
used the proposed maximum efficiency tracking method, the efficiency of the system was more than
80%, although it was lower than the calculated efficiency. The reason for this is that the efficiency we
measured from the power amplifier to the DC load was an end-to-end efficiency of the system (system
efficiency ηsystem in Figure 1). Compared with Figure 3, to more easily analyze the relationship between
the power distribution of the multiple receivers and the optimization of transmission efficiency, the
losses in the DC-DC converters and the switching loss of the power amplifier were not taken into
account in the calculation.
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5.3. Discussion of System Loss

From the experiments, we found that the losses could not be ignored in the system. The system
losses consisted of Class-D power amplifier losses, SEPIC losses, magnetic coupling losses, and
other losses.

Compared with the result of the calculated maximum efficiency with the fixed power division
ratio in Table 3(A) (92% and 91% with the optimized load resistance at 2:1 and 4:3, respectively),
the measured efficiency tracked by the proposed method was only 84.3% and 83.5%. The system power
loss was nearly 10%. Therefore, we set up an experiment that only kept a single receiver to analyze the
composition of the system’s losses. The measured results are shown in Figure 12. Po denotes the output
power of the receiver, and η is the efficiency of the system. It can be seen that the loss mainly came from
the conduction loss, followed by the loss of the SEPIC and the loss of the power amplifier. The magnetic
coupling loss was caused by power dissipation in the internal resistance of the coupled coils and
resonant capacitor. Compared with the loss of the power amplifier, the loss of the SEPIC included not
only the switching loss of the MOSFET, but also the internal resistance loss of the converter inductance.
Therefore, in practice, low distributed parameters and low resistivity switching devices are needed to
decrease these losses; for example, using a gallium nitride (GaN) MOSFET can effectively reduce the
switching loss [27].
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5.4. Comparison to Previous Methods

In practice, there have been many low power applications suitable for portable terminals.
Taking the A4WP product as an example, the A4WP standard does not include the method of
tracking optimal efficiency under power division conditions, especially under multi-receiver conditions.
With the increased number of electrical appliances, introducing power distribution and maximum
efficiency tracking for A4WP products to improve system performance will undoubtedly make
products more attractive to consumers [28]. As shown in Figure 13, the A4WP system and the
proposed system scheme were compared under the same position of the two receivers and the
transmitter. Table 4 shows the system parameters of the A4WP system and proposed scheme. For a
convenient comparison of system efficiency, the parameters of the two systems were made as similar
as possible. The results showed that the maximum efficiency of A4WP products was 72%, while with
the proposed control method, the system efficiency exceeded 80%.
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Table 4. System parameters of the proposed system scheme and the A4WP system in an efficiency
comparison process.

Symbol A4WP Designed Prototype

P1:P2 1:1 1:1
k1 0.064 0.065
k2 0.058 0.056
M1 0.18 0.183
M2 0.163 0.158
Ioi 0.1 A~2 A 0.1 A~2 A

In future work, we need to further optimize the system for practical applications. By improving
the P&O algorithm and its controller, the response speed of the optimal efficiency tracking under stable
power division control will be further optimized.

6. Conclusions

Based on the research of traditional single-receiver wireless power transfer systems, this paper
deeply analyzed the relationship between load impedance and system efficiency in a multiple-receiver
WPT system. Furthermore, we analyzed the optimal efficiency with a fixed power division ratio.
An efficiency evaluation method with a fixed power division ratio was presented. The “maximum
efficiency” at a fixed power division ratio did not reflect the efficiency with optimal loads, but reflected
that with a fixed reflected impedance ratio. According to the results, a maximum efficiency tracking
method with a fixed power division ratio was proposed. Combining the stepdown controller that is
controlled by the P&O algorithm in the transmitter with the PI-controlled SEPIC in the receivers, the
validity of the proposed system control method was confirmed by simulation and experimental results.
Although losses occurred in the system with the proposed control scheme, it achieved a higher
efficiency over the wide range of coupling coefficients and load impedances while maintaining a stable
power output.
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