# Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. NdFeb Rectangular Magnets

#### 2.2. Acrylic Material

#### 2.3. Test Procedures

- -
- V
_{suplay}: >30 V_{DC} - -
- Speed: 2750 rpm
- -
- Torque: 10 kgm
- -
- Weight: 1.5 kg
- -
- Current: 0.75 A
- -
- Power: 25 W

## 3. Results

#### 3.1. Design Concept Development of the Axial MG

#### 3.1.1. Geometry of the Gear

#### 3.1.2. Concept Design

#### 3.2. Proposed MG Design

_{eries}= ℜs

_{1}+ ℜs

_{2}+ ℜs

_{3}+ ℜs

_{4}+ ℜs

_{5}+ ℜs

_{6}

#### 3.3. Magnetic Flux Measurement

#### 3.4. Experimental Results

## 4. Discussion

## 5. Conclusions

^{−3}(Nm) at 2600 rpm rotation speed for proposed axial MG, while for the conventional MG type it is 19.3 × 10

^{−3}(Nm).

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## Appendix A. Basic Approach of Comparison of a Magnetic Circuit and Electrical Circuit

Electric Circuit | Units | Magnetic Circuit | Units |
---|---|---|---|

Voltage (V) | Volt | Magneto-motive force $F=NI$ | Amp-turns |

Current (I) | Ampere | Magnetic flux (φ) | Webers Wb |

Resistance (R) | Ohm | Reluctance ($\Re $) | Amp-turns/Wb |

Conductivity (1/ρ) | Mho | Permeability (μ) | Wb/A-t-m |

Current density (J) | A/m^{2} | Magnetic flux density (B) | Wb/m^{2} = teslas T |

Electric field (E) | Newton/Coulomb (N/C) | Magnetic field intensity (H) | Amp-turn/m |

## References

- Gouda, E.; Mezani, S.; Baghli, L.; Rezzoug, A. Comparative study between mechanical and magnetic planetary gears. IEEE Trans. Magn.
**2011**, 47, 439–450. [Google Scholar] [CrossRef] - Jian, L.; Chau, K.T.; Li, W.; Li, J. A novel coaxial magnetic gear using bulk HTS for industrial applications. IEEE Trans. Appl. Supercond.
**2010**, 20, 981–984. [Google Scholar] [CrossRef] [Green Version] - Li, W.; Chau, K.T.; Li, J. Simulation of a tubular linear magnetic gear using HTS bulks for field modulation. IEEE Trans. Appl. Supercond.
**2011**, 21, 1167–1170. [Google Scholar] [CrossRef] [Green Version] - Zhao, H.; Yang, Z.; Tian, J. Study on calculation method of the torque of permanent magnetic gears. Chin. J. Mech. Eng.
**2001**, 37, 66–70. [Google Scholar] [CrossRef] - Pakdelian, S.; Frank, N.W.; Toliyat, A.H. Principles of the Trans-Rotary Magnetic Gear. IEEE Trans. Magn.
**2013**, 49, 883–889. [Google Scholar] [CrossRef] - Musial, W.; Butterfield, S.; McNiff, B. Improving wind turbine gearbox reliability. In Proceedings of the European Wind Energy Conference, Milan, Italy, 7–10 May 2007. [Google Scholar]
- Chau, K.T.D.; Zhang, J.; Jiang, Z.; Jian, L. Transient analysis of coaxial magnetic gears using finite elemenco-modeling. J. Appl. Phys.
**2008**, 103, 07F101. [Google Scholar] [CrossRef] - Ikuta, K.; Makita, S.; Arimoto, S. Non-contact magnetic gear for micro transmission mechanism. In Proceedings of the IEEE Conference on Micro Electro Mechanical Systems, Nara, Japan, 30 January–2 February 1991; pp. 125–130. [Google Scholar]
- Yao, Y.D.; Huang, D.R.; Lee, C.M.; Wang, S.J.; Chiang, D.Y.; Ying, T.F. Magnetic coupling studies between radial magnetic gears. IEEE Trans. Magn.
**1997**, 33, 4236–4238. [Google Scholar] [CrossRef] - Yao, Y.Y.D.; Huang, D.R.; Hsieh, C.C.; Chiang, D.Y.; Wang, S.J. Simulation study of the magnetic coupling between radial magnetic gears. IEEEE Trans. Magn.
**1997**, 33, 2203–2206. [Google Scholar] [CrossRef] - Furlani, E.P. A two-dimensional analysis for the coupling of magnetic gears. IEEE Trans. Magn.
**1997**, 33, 2317–2321. [Google Scholar] [CrossRef] - Jorgensen, F.T.; Andersen, T.O.; Rasmussen, P.O. Two dimensional model of a permanent magnet spur gear. In Proceedings of the Industry Application Conference, Kowloon, Hongkong, China, 2–6 October 2005; pp. 261–265. [Google Scholar]
- Yao, Y.Y.D.; Huang, D.R.; Hsieh, C.C.; Chiang, D.Y.; Wang, S.J.; Ying, T.F. The radial magnetic coupling studies of perpendicular magnetic gears. IEEE Trans. Magn.
**1996**, 32, 5061–5063. [Google Scholar] [CrossRef] - Wang, R.; Furlani, E.P.; Cendes, Z.J. Design and analysis of a permanent magnet axial coupling using 3D Finite element Field computations. IEEE Trans. Magn.
**1994**, 30, 2292–2295. [Google Scholar] [CrossRef] - Yao, Y.D.; Chiou, G.J.; Huang, D.R.; Wang, S.J. Theoretical computations for the torque of magnetic coupling. IEEE Trans. Mag.
**1995**, 31, 1881–1884. [Google Scholar] - Chen, M.; Chau, K.T.; Li, W.; Liu, C. Development of non-rare-earth magnetic gears for electric vehicles. J. Asian Electr. Vehicles
**2012**, 10, 1607–1613. [Google Scholar] [CrossRef] - Rasmussen, P.O.; Andersen, T.O.; Jorgensen, F.T.; Nielsen, O. Development of a High-Performance Magnetic Gear. IEEE Trans. Ind. Appl.
**2005**, 41, 764–770. [Google Scholar] [CrossRef] - Atallah, K.; Howe, D. A novel high-performance magnetic gear. IEEE Trans. Magn.
**2001**, 37, 2844–2846. [Google Scholar] [CrossRef] - Kikuchi, S.; Tsurumoto, K. Design and characteristics of a new magnetic worm gear using permanent magnet. IEEE Trans. Magn.
**1993**, 29, 2923–2925. [Google Scholar] [CrossRef] - Kikuchi, S.; Tsurumoto, K. Trial construction of a new magnetic skew gear using permanent magnet. IEEE Trans. Magn.
**1994**, 30, 4767–4769. [Google Scholar] [CrossRef] - Joergensen, F.T.; Andersen, T.O.; Rasmussen, P.O. The cycloid permanent magnetic gear. IEEE Trans. Ind. Appl.
**2008**, 44, 1659–1665. [Google Scholar] [CrossRef] - Charpentier, J.; Lemarquand, G. Calculation of ironless Permanent Magnet couplings using semi numerical magnetic pole theory method. Int. J. Comput. Math. Electr. Electron. Eng.
**2001**, 20, 72–89. [Google Scholar] [CrossRef] [Green Version] - Li, X.; Chau, K.-T.; Cheng, M.; Hua, W. Comparison of magnetic-geared permanent-magnet machines. Prog. Electromagn. Res.
**2013**, 133, 177–198. [Google Scholar] [CrossRef] - Yonnet, J.-P. A new type of permanent magnet coupling. IEEE Trans. Magn.
**1981**, 17, 2991–2993. [Google Scholar] [CrossRef] - Gao, Q.; Wang, D.; Sheng, L. Application of field theory to air gap permanent magnet eddy current coupling. Adv. Sci. Technol. Lett.
**2014**, 73, 44–51. [Google Scholar] - Wu, Y.; Wang, C. Transmitted torque analysis of a magnetic gear mechanism with rectangular magnets. Appl. Math. Inform. Sci.
**2015**, 9, 1059–1065. [Google Scholar] - Wu, Y.; Tseng, W.; Chen, Y. Torque ripple suppression in an external-meshed magnetic gear train. Adv. Mech. Eng.
**2013**, 5, 178909. [Google Scholar] [CrossRef] - Jian, L.; Chau, K.T.; Gong, Y.; Jiang, J.Z.; Yu, C.; Li, W. Comparison of coaxial magnetic gear with different topologies. IEEE Trans. Magn.
**2009**, 45, 4525–4529. [Google Scholar]

**Figure 5.**Analogies MG approach from magnet circuits into electrical circuits (

**a**) Conventional MGs; (

**b**) Analogies of MG gear into series reluctance; (

**c**) Gear train magnets; (

**d**) Pieces of series magnetic; (

**e**) Parallel magnets.

**Figure 6.**Analysis of magnetic circuits and electrical circuits: (

**a**) series reluctances; (

**b**) parallel reluctance.

**Figure 9.**Measurements of magnetic flux (

**a**) rectangular magnet; (

**b**) ½ piece of a rectangular PM of (

**a**); (

**c**) parallel piece of magnet.

**Figure 10.**Measurements magnetic flux of modified magnetic rods (

**a**) modified magnetic rod forms; (

**b**) pieces of ½ modified magnetic rods of (

**a**); (

**c**) parallel pieces of magnetic rods.

**Figure 12.**Comparison of input current and load current of axial topology arranged in series and parallel: (

**a**) 100 Ω; (

**b**) 200 Ω; (

**c**) 300 Ω.

Symbol | Quantity | Value |
---|---|---|

R_{1d} | Inner radius, drive magnets (mm) | 40 |

R_{2d} | Outer radius, drive magnets (mm) | 50 |

R_{3d} | Outer radius of the acrylic yoke, drive magnets (mm) | 60 |

R_{1s} | Inner radius, source magnets (mm) | 15 |

R_{2s} | Outer radius, source magnets (mm) | 25 |

R_{3s} | Outer radius of the acrylic yoke, source magnets (mm) | 30 |

g | Length of air gap (mm) | 0.5 |

t | Magnets thickness (mm) | 1 |

h | Magnets height (mm) | 10 |

L1 | Outer magnet length (mm) | 20 |

L2 | Inner magnet length (mm) | 18 |

N_{d} | Number of pole pairs (source magnets) | 16 |

N_{s} | Number of pole pairs (drive magnets) | 8 |

Br | Remanence of the PMs |

Symbol | Quantity | Value |
---|---|---|

R_{1d} | Inner radius, drive magnets (mm) | 40 |

R_{2d} | Outer radius, drive magnets (mm) | 50 |

R_{3d} | Outer radius of the acrylic disk, drive magnets (mm) | 60 |

R_{1s} | Inner radius, source magnets (mm) | 15 |

R_{2s} | Outer radius, source magnets (mm) | 25 |

R_{3s} | Outer radius of the acrylic disk, source magnets (mm) | 30 |

G | Length of air gap (mm) | 0.5 |

T | Magnets thickness (mm) | 2 |

H | Magnets height (mm) | 10 |

L1 | Outer magnet length (mm) | 10 |

L2 | Inner magnet length (mm) | 8 |

N_{d} | Number of pole pairs (source magnets) | 16 |

N_{s} | Number of pole pairs (drive magnets) | 8 |

Br | Remanence of the PMs |

Magnet No. | Series (1 Layer) | Parallel (2 Layers) | Notes |
---|---|---|---|

mT | mT | ||

1 | 93.1 | 173.5 | N |

2 | 94.3 | 173.5 | S |

3 | 95.5 | 157.6 | N |

4 | 95.1 | 199.2 | S |

5 | 110.2 | 175.4 | N |

6 | 93.6 | 169.5 | S |

7 | 95.4 | 183.3 | N |

8 | 98.4 | 177.7 | S |

9 | 101.2 | 139.2 | N |

10 | 95.6 | 177.1 | S |

11 | 97.7 | 191.2 | N |

12 | 75.8 | 178.4 | S |

13 | 92.3 | 180.5 | N |

14 | 90.1 | 176.3 | S |

15 | 98.8 | 160.4 | N |

16 | 104.2 | 190.3 | S |

Ʃ | 1531.3 | 2803.1 | |

$\overline{x}$ | 95.71 | 175.19 |

Magnet No. | Series (1 Layer) | Parallel (2 Layers) | Notes |
---|---|---|---|

mT | mT | ||

1 | 112.3 | 215.2 | N |

2 | 110.2 | 236.5 | S |

3 | 77.6 | 183.4 | N |

4 | 78.8 | 194.2 | S |

5 | 97.5 | 196.1 | N |

6 | 108.2 | 239.2 | S |

7 | 104.4 | 214.3 | N |

8 | 106.3 | 222.4 | S |

Ʃ | 795.3 | 1701.3 | |

$\overline{x}$ | 99.41 | 212.66 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Syam, S.; Soeparman, S.; Widhiyanuriawan, D.; Wahyudi, S.
Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences. *Energies* **2018**, *11*, 1153.
https://doi.org/10.3390/en11051153

**AMA Style**

Syam S, Soeparman S, Widhiyanuriawan D, Wahyudi S.
Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences. *Energies*. 2018; 11(5):1153.
https://doi.org/10.3390/en11051153

**Chicago/Turabian Style**

Syam, Sudirman, Sudjito Soeparman, Denny Widhiyanuriawan, and Slamet Wahyudi.
2018. "Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences" *Energies* 11, no. 5: 1153.
https://doi.org/10.3390/en11051153