
Article

Short-Term Electricity Demand Forecasting Using
a Functional State Space Model

Komi Nagbe 1,2,*, Jairo Cugliari 2,* ID and Julien Jacques 2,*
1 Enercoop, 75019 Paris, France
2 ERIC, Université de Lyon, Lyon 2, 69676 Bron Cedex, France
* Correspondence: komi.nagbe@enercoop.org (K.N.); jairo.cugliari@univ-lyon2.fr (J.C.);

julien.jacques@univ-lyon2.fr (J.J.); Tel.: +33-(0)4-7877-3155 (J.C.)

Received: 5 February 2018; Accepted: 24 April 2018; Published: 2 May 2018
����������
�������

Abstract: In the past several years, the liberalization of the electricity supply, the increase in variability
of electric appliances and their use, and the need to respond to the electricity demand in real time
has made electricity demand forecasting a challenge. To this challenge, many solutions are being
proposed. The electricity demand involves many sources such as economic activities, household need
and weather sources. All of these sources make electricity demand forecasting difficult. To forecast
the electricity demand, some proposed parametric methods that integrate main variables that are
sources of electricity demand. Others proposed a non parametric method such as pattern recognition
methods. In this paper, we propose to take only the past electricity consumption information
embedded in a functional vector autoregressive state space model to forecast the future electricity
demand. The model we proposed aims to be applied at some aggregation level between regional
and nation-wide grids. To estimate the parameters of this model, we use likelihood maximization,
spline smoothing, functional principal components analysis and Kalman filtering. Through numerical
experiments on real datasets, both from supplier Enercoop and from the Transmission System
Operator of the French nation-wide grid, we show the appropriateness of the approach.

Keywords: electricity demand forecasting; functional state space model; Kalman filtering; functional data;
spline smoothing; functional principal components analysis

1. Introduction

Important recent changes in electricity markets make the electricity demand and production
forecast a current challenge for the industries. Market liberalization, increasing use of electronic
appliances and the penetration of renewable electricity sources are just a few of the numerous causes
that explain the current challenges [1]. On the other side, new sources of data are becoming available
notably with the deployment of smart meters. However, access to these individual consumers’ data is
not always possible (when available) and so aggregated data is used to anticipate the load of the system.

Load curves at some aggregate level (say regional or nation-wide) usually present a series of
salient features that are the basis of any forecasting method. Common patterns are long-term trends,
various cycles (with yearly, weekly and daily patterns) as well as a high dependence on external
factors such as meteorological variables. We may separate these common patterns into two sets of
effects. On one side, the effects linked to the social and economical organisation of the human activity.
For instance, the calendar structure induces its cycle to the electrical demand: load needs during
week days are higher than during weekends, and load during daylight is higher than during the
night; holidays also have a large impact on the demand structure. Notice that these effects are mostly
deterministic in their nature, that is they can be predicted without error. On the other side, we found
the effects connected to the environment of the demand—for instance, the weather, since the demand
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usually depends on variables such as air temperature, humidity, wind speed and direction, dew point,
etc., but also variables connected to exceptional events such as strikes or damages on the electrical grid
that may affect the demand. While weather is still easier to anticipate than exceptional events, both
effects share a stochastic nature that makes them more difficult to anticipate.

While only recorded at some time points (e.g., each hour, half-hour or quarter-hour), the electricity
load of the system is a continuum. From this, one may consider mathematically the load curve as a
function of time with some regularity properties. In fact, electrical engineers and forecaster usually
represent the load curve as a function instead of a sequence of discrete measures. Then, one may
study the electrical load as a sequence of functions. Recently, attention has been paid to this kind
of setting, which is naturally called functional time series (FTS). A nice theoretical framework to
cope with FTS is within the autoregressive Hilbertian processes, defined through families of random
variables taking values on a Hilbert space [2,3]. These processes are strictly stationary and linear,
which are two constrictive assumptions to model the electrical load. An alternative to linearity was
proposed in [4] where the prediction of a function is obtained as a linear combination of past observed
segments, using the weights induced by a notion of similarity between curves. Although the stationary
assumption of the full time series is still too strong for the electrical load data [5], corrections can be
made in order to render the hypothesis more reasonable. First, one may consider that the mean level of
the curves presents some kind of evolution. Second, the calendar structure creates on the data at least
two different regimes: workable and non workable days. Of course, the specific form of the corrections
needed should depend on the nature of the model used to obtain the predictions.

State-space models (SSM) and the connection notion of Kalman filter are an interesting alternative
to cope with nonlinearity and non stationary patterns of the electrical data. Let us mention some
references where SSM have been used to forecast load demand. Classical vector autoregressive
processes are used in [6] under the form of SSM to compare the predictive performance with respect
to seasonal autoregressive processes. The main point in [7] is to combine several machine learning
techniques with wavelet transforms of the electrical signal. SSM are then used to add adaptability to
the proposed prediction technique. Since some of the machine learning tools may produce results that
are difficult to interpret, the authors in [8] looks for a forecasting procedure based on SSM that is easier
to analyse making explicit the dependence on some exogenous variables. They use a Monte Carlo
based version of the Kalman Filter to increase flexibility and add analytical information.

A more detailed model is in [9], where the authors propose to describe the hourly load curve
as a set of 24 individual regression models that share trends, seasons at different levels, short-term
dynamics and weather effects including non linear functions for heating effects. The equations
represent 24 univariate stochastically time-varying processes that should be estimated simultaneously
within a multivariate linear Gaussian state space framework using the celebrated Kalman filter [10].
However, the cumbersome of the computational burden is a drawback. A second work circumvents
the problem by using a dimension reduction approach which reasonably resizes the problem into a
handy number of dimension which render the use of the Kalman filter practicable [11].

Some successful uses of SSM to cope with functional data (not necessarily time series) are reported
in literature—for instance, by using common dynamical factor as in [12] to model electricity price and
load, or as in [13] to predict yield curves of some financial assets in addition to [14] where railway
supervision is performed thanks to a new online clustering approach over functional time series
using SSM.

Inspired by these ideas, we push forward the model in [11] to describe now a completely functional
autoregressive process whose parameter may eventually vary on time. Indeed, at each time point
(days in our practical case), the whole functional structure (load curve) is described through the
projection coefficients on a spline basis. Then, using a functional version of principal components
analysis, the dimension of the representation is reduced. The vector of spline coefficients is then used
as a multivariate autoregressive process, as in [15]. Thus, our approach is completely endogenous
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but with the ability of incorporating exogenous information (available at the time of the forecast)
as covariates.

This paper will be structured as follows. In Section 2, we describe the model we propose for
forecasting electricity demand. We present the functional data, functional data representation in splines
basis, the state space model that we propose and model estimation methods. Section 3 is proposed to
show a model inference on a simulated dataset. We will talk about Kalman filtering and smoothing,
functional principal component analysis. Section 4 will describe the experiments we make on real data
with simple application of our procedure at the aggregation level of a single supplier. We then explore,
in Section 5, some corrections and extension to the simple approach in order to take into account some
of the non stationary patters present in the data. Additional experiments are the object of Section 6,
where we predict at the greater national aggregation level. The article concludes in Section 7 where
some future lines of work are discussed.

2. Materials and Methods

We introduce in this section the notation and we construct the prediction method. For convenience,
Table 1 sums up the used nomenclature including all variables, acronyms, indexes and constants
defined in the manuscript, in order to make the text more clear and readable.

Table 1. Nomenclature.

Indexes Explanations Indexes Explanations

Z Univariate continuous-time stochastic process t infinite time
X Discretized version of Z as a vector i finite time defining instances of X
T time Ii sub-intervals defined on [0, T]
Xi Value of X at time i δ length of sub-intervals
n number of sub-intervals Ii FTS Functional Time Series
x observed discretized value of X tj discrete point of x
N number of discrete points of x x(t) observed value of the random function X(t)
φ1(t), . . . , φk(t) splines basis vectors k number of vectors in the splines basis
ỹk splines coefficient of function x(t) in the splines basis < ., . > inner product
FPCA Functional principal components Analysis ξk(t) Functional principal component
p number of functional principal components yik scores of ỹk in FPCA basis
SSM State Space Model FSSM Functional State Space Model
zi States vector in a SSM αi States coefficients at time i
εi Obsevations’ equation residual error ηi States’ equation residual error
Ti States transition matrix Hi εi covariance matrix
Qi ηi covariance matrix m number of states

The starting point of our modeling is a univariate continuous-time stochastic process
Z = {Z(t), t ∈ R}. To study this process, a useful device [2] is to consider a second stochastic process
X = {Xi(t), i ∈ N, t ∈ [0, δ]}, which is now a discrete-time process and at each time step it takes values
on some functional space. The process X is derived from Z as follows. For a trajectory of Z observed
over the interval [0, T], T > 0, we consider the n subintervals of form Ii = [(i− 1)δ, iδ], i = 1, . . . , n
such that δ = T/n. Then, we can write

Xi(t) = Z((i− 1)δ + t), t ∈ [0, δ] i = 1, . . . , n.

With this, anticipate the behavior of Z on say [T, T + δ] is equivalent to predict the next function
Xn+1(t) of X. The construction is usually called a functional time series (FTS). The setting is particularly
fruitful when Z presents a seasonal component of size δ. In our practical application, Z will represent
the underlying electrical demand, δ will be the size of a day and so X is the sequence of daily electrical
loads. Notice that X represents a continuum that is not necessarily completely observed. As mentioned
in the Introduction, the records of load demand are only sampled at some discrete grid. We will discuss
this issue below.
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2.1. Prediction of Functional Time Series

The prediction task involves making assertions on the future value of the series Xn+1(t) having
observed the first n elements X1(t), . . . , Xn(t). From the statistical point of view, one may be interested
in the predictor

X̃n+1 = E[Xn+1|X1, . . . , Xn], (1)

which minimizes the L2 prediction error given the available observations at moment n. A useful model
is the (order 1) Autoregressive Hilbertian (ARH(1)) process defined by

Xi+1(t)− µ(t) = ρ(Xi(t)− µ(t)) + εi(t), (2)

where µ is the mean function of X, ρ is a linear operator and {εi(t)} is a strong white noise sequence of
random functions. Under mild conditions, Equation (2) defines a (strictly) stationary random process
(see [2]). The predictor (1) for the ARH(1) process is X̃n+1(t) = µ(t) + ρ(Xn(t)− µ(t)), which depends
generally on two unknown quantities: the function µ and the operator ρ. The former can be predicted
by the empirical mean µ̂(t) = X̄n(t). The alternative for the latter is to predict ρ by say ρ̂n and obtain
the prediction X̂n+1 = µ̂n + ρ̂n(Xn − µ̂n), or to estimate directly the application ρ(Xn − µ̂n) of ρ over
the last observed centered function. Both variants needs an efficient way to approximate the possibly
infinite size of either the operator ρ or the function ρ(Xn− µ̂n) which are then estimated (see discussion
below on this point).

The inherent linearity of Equation (2) makes this model not flexible enough to be used on electricity
load forecast. Indeed, having only one (infinite-dimensional) parameter to describe the transition
between any two consecutive days is not reasonable. Variants have been studied. We may mention [16]
which incorporate weights in Equation (2) making the impact of recent functions more important; the
doubly stochastic ARH model that considers the linear operator ρ to be random [17]; or the conditional
ARH where an exogenous covariate drives the behavior of ρ [18]. In the sake of more flexibility, we
aim to make predictions on a time-varying setting where the mean function µ(t) and the operator ρ

are allowed to evolve.

2.2. Spline Smoothing for Functional Data

In practice, one only disposes a finite sampling x = {x(tj), j = 1, . . . , N} observed eventually
with noise, from the trajectory x(t) of the random function X(t). Then, one wishes to approximate x(t)
from the discrete measurements. A popular choice is to develop x(t) over the elements of a L2 basis
φ1(t), . . . , φk(t), . . ., which is to write

x(t) = ∑
k

ỹkφk(t), (3)

where the coefficients ỹk =< x(t), φk(t) > are the coordinates resulting of projecting the function x
on each of the elements of the basis. Among the several bases usually used, we choose to work with
a B-spline basis because they are adapted to cope with the nature of the data we want to model and
have nice computational properties.

B-splines is a basis system adapted to represent splines. In our case, we use cubic spline that is
3th-order polynomial piecewise functions. The connections are made at points called knots in order to
join-up smoothing, which is warranting the continuity of the second order derivative. An appealing
property of B-spline is the compact support of its elements that gives good location properties as well
as efficient computation. Figure 1 illustrates this fact from the reconstruction of a daily load curve. The
B-spline elements have a support defined over compact subintervals of horizontal axis.

Another important property is that, at each point of the domain, the sum of the spline functions is
1. Since the shape of the spline functions on the border knots are clearly different, this fact is clearly
observed on the extreme points of the horizontal axis where only one spline has a non null value.
Together with the regularity constraints and the additional knots on the extreme support, these points
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are subject to a boundary condition. Figure 1 illustrates this important issue concerning the behavior
of the boundaries. To avoid this undesirable effect, we will use a large number of spline functions on
the basis that empirically allows for reducing the boundary condition.

Figure 1. Illustration of the representation of a daily load curve (thick line) by a rank 20 B-spline bases
(thin lines).

2.3. Functional Principal Components Analysis

Like in multivariate data analysis, Functional Principal Components Analysis (FPCA) provides
a mechanism to reduce the dimension of the data by a controlled lost of information. Since data
in FDA are of infinite dimension, some care must be given to the sense of dimension reduction.
Indeed, what we look for is a representation of the functions like the one in (3) with a relatively
low number of basis functions that are now dependent on the data. Moreover, if we demand also
that the basis functions form an orthonormal system, then the solution is given by the elements of
the eigendecomposition of the associated covariance operator (i.e., the functional equivalent to the
covariance matrix) [19].

However, the problem is that these elements are functions and so of infinite dimension. The solution
is to represent themselves into a functional basis system (for instance, the one presented on the precedent
section). Thus, the initial curve x(t) can be approximated in the eigenfunctions basis system:

xi(t) =
p

∑
k

yikξk(t), (4)

where the number p of eigenfunctions, expected to be relatively small, will be chosen as such according
to the error of approximation of the curves.

Since the representation system may be non orthogonal, then it can be shown that the inner
product needed in FPCA is connected to the properties of the representational basis system.

Then, the notion of dimension reduction can be understood when one compares the lower number
of eigenfunctions with respect to the number of basis functions needed to represent an observation.
FPCA reduction of a representation dimension, which will yield a dramatic drop of the computational
time of the model we describe next.

2.4. State Space Model

State Space Models (SSM) are a powerful useful tool to describe dynamic behavior of time
evolving processes. The shape of the load curve may present long-term changes that induce non
stationary patterns on the signal. Taking into account these changes is one of the challenges of electricity
demand forecast.
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The linear SSM [10] includes two terms. An inertial term in the form of an intrinsic state of the
whole system being modeled. The observed output is a function of the state, some covariate and a
noise structure. The state evolution over time is modeled as a linear equation involving the previous
state and other observed variables summarized in a vector η. The general formulation is given by:{

yi = ziαi + εi,
αi+1 = Tiαi + Riηi,

(5)

where yi is the target variable observed at time i, zi ∈ Rm+1 is a vector of predictors, the state at time i
is represented as αi ∈ Rm+1, Ti and Ri are known matrices, and εi and ηi are the noise and disturbance
processes usually assumed to be independent Gaussian with zero-mean and its respective covariance
matrices Hi and Qi, which usually contains unknown parameters.

The evolution of the states are useful to understand the system. Using the celebrated Kalman
Filter and smoothing, one is able to extract information about the underlying state vector [10].
The one-step-ahead prediction and prediction error are respectively

ai+1 = E[αi+1|y1, . . . yi],
vi+1 = yi − ziai.

In addition, their associated covariance matrices are of interest so let us define Pi+1 =

Var(αi+1|y1, . . . yi) and Fi = Var(vi) = ziPiz′i + Hi. Since these definitions use recursion, an important
step is its initialization. When the observations are unidimensional, an exact diffusion method can be
used from uninformative diffuse prior. However, the method may fail with multivariate observations
because the diffusion phase can yield into a non invertible Fi matrix. Moreover, even when Fi is
invertible, computations become slow due to its dimensionality. It is however possible to obtain an
univariate alternative representation of (5) that theoretically reduces computational cost of the Kalman
filter and allows one to use the diffuse initialization.

Inference on SSM can be obtained by a maximum likelihood (see [20]) and, due to the diffuse
initialization, the stability of the model is described in [21].

2.5. A Functional State Space Model

Approaches of SSM in continuous-time also exists. For instance, Ref. [10] presents the simple mean
level model. There, the random walk inherent to the state equation is replaced by a Brownian motion
that drives the time-varying mean level. Early connections between FDA and SSM yielded derivations
of a SSM with the help of FDA. For example, Ref. [22] uses spline interpolation to approximate the
behavior of a time dependent system that is described by a space model.

Our choice is to keep the time discrete by allowing the observations to be functions or curves.
A similar idea is behind the model in [14] where functions are used to represent observation on a SSM
model, but only dependence between states is considered.

Let us consider the vector yi as the p FPCA scores resulting from the projection of xi(t), the load
curve for day i, into the eigenfunctions basis system. Then, we may represent an autoregression system
by replacing the covariate zi by the past load curve, or more precisely by its spline coefficients yi−1.

We propose the following Functional State Space Model (FSSM):{
yi = yi−1αi + εi,

αi+1 = αi + ηi.
(6)

As before, the disturbance terms εi and ηi follow independent Gaussian distribution with zero
mean vector and generally unknown variance matrices Hi and Qi. The sizes of these matrices are in a
function of p, the number of FPCA scores retained on the approximation step discussed above.
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In order to keep the computation time under control while keeping some flexibility on the
modeling, we focus on three structural forms of matrices Hi and Qi: full, diagonal and null,
which yields six possible models. Table 2 summarizes the variants as well as the number of parameters
to be estimated on the covariance matrices. The complexity of the variant grows while going from
1 to 6. When Qi is null, then the state equation establishes that states are simply constant on time.
Diagonal structures on Qi and Hi assumes that all the correlations are null and so only variance
terms are to be treated. Conversely, full structures allows for a maximum of flexibility letting all the
covariances be free. However, the important drawback of dimensionality becomes crucial since the
number of terms to be estimated if of order p4.

The FSSM we propose is an SSM on the FPCA scores. Another choice could have been to apply
the SSM directly on the spline basis coefficients ỹi, but such choice would be computationally too
expensive. It is illustrative to link these dimensions to the problem of electricity demand forecasting.
Recall that the number of daily records on our load curves is 48 (sampled at half-hourly), which is
prohibited to be treated within our framework. Even if this number can be easily divided by two using
spline approximation, the number of coefficients would be still too high. Moreover, since the spline
coefficients can not be considered independent, one would need to use full diagonal structures on the
covariance matrices Hi and eventually on Qi. Lastly, the choice we make to reduce the dimension by
using FPCA approach is then justified since, with a handy number of eigenfunctions, say less than 10,
most of the variants discussed above can be easily computed.

The whole prediction procedure is schematically represented as a flowchart in Figure 2.

Figure 2. Functional State Space Model (SSM) flowchart in practice.

Table 2. Variants considered for the model (6) showing different structures of matrices Hi and Qi and
number of unknown parameters as function of p.

Variant Hi Qi Nb. of Param.

1 Diagonal Null p
2 Diagonal Diagonal p + p2

3 Diagonal Full p + p4

4 Full Null p2

5 Full Diagonal p2 + p2

6 Full Full p2 + p4
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3. Experiments on Simulated Data

We illustrate in this section our approach to forecast using the proposed functional state space
models on a functional time series. There are three steps in our approach. First, we approximate the
initial data using a B-spline basis. Then, an FPCA is performed using the B-splines approximations
of the curves. Finally, a fit of the FSSM is obtained. Prediction can then be done by applying the
recursion equations on the last estimated state. The resulting predicted coefficients are then put into
the functional expansion equations (see Equations (3) and (4)) to obtain the predicted function. For the
experiments, we use the statistical software R [23] to fit our model with the packages fda [24] for spline
approximation and FPCA computation and KFAS [20] for the FSSM estimation.

3.1. Simulation Scheme

Let us consider a process Y generated as follows:

Y(t) = β0 + β1m1(t) + β2m2(t) + ε(t),

m1(t) = cos(2πt/64) + sin(2πt/64),

m2(t) = cos(2πt/6) + sin(2πt/6),

ε(t) = ν(t) + θν(t− 1) + σ2,

(7)

where ν(t) is strong white noise process (i.e., an independent and identical distributed zero-mean
normal random variables N (0, σ2)). Following [4], we set β0 = 8, β1 = 0.8 and β2 = 0.18, θ = 0.8 and
σ2 = 0.05. Expression (7) is evaluated on discrete times ranging from 1 to δ× n, where n is the number
of functions of length δ = 64. Then, we consider the segments of length δ as a discrete sampling of
some unobserved functional process.

Figure 3 represents a time window of the simulated data generated through model (7). Notice that
the signal is composed of two additive sinusoidal terms of different frequencies plus a moving average
structure for the noise term in order to mimic the double seasonal structure of load curves.

Figure 3. Simulated signal generated via model (7).

3.2. Actual Prediction Procedure

For each model variant, we build and fit the FSSM with the first 26 segments on the simulated
signal. That is, each segment is projected on the B-spline basis, and these projections are used in an
FPCA. We let the number p of principal components as a tune parameter of the whole procedure.
Parameters are estimated and the states are filtered and smoothed as described in Section 2. The last
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state, together with the last segment coefficients are then used to predict the coefficients of the
next segment of the signal, which is naturally not used in the estimation of the model. Using the
reconstruction expression, the actual predicted segment is obtained that closes a prediction cycle.

In order to provide more robust prediction measures, several prediction cycles are used where a
sequential increment of the train dataset is done. In what follows, we report results on four prediction
cycles following the one-segment-ahead rolling basis described.

3.3. How We Measure Prediction Quality

There are three steps through which the prediction quality must be measured: the splines
representation quality of the initial functions x, the functional principal components representation
of x, and the forecasting. For all these three steps of quality measurement, we use the RMSE
(Root Mean-Square-Error) and the MAPE (Mean Absolute Percentage Error). For one-step-ahead
forecasting of vector xi on time i, if we consider the length of xi as h (h = δ in this case), these metrics
are defined as:

RMSE =

√
∑h

t=1(xi(t)− x̂i(t))2

h
, MAPE =

100
h

h

∑
t=1

|xi(t)− x̂i(t)|
|xi(t)|

.

The RMSE is measured in the scale of the data (e.g., kWh for our electricity demand data),
and MAPE is expressed in percentage. Notice that MAPE can not be calculated if target variable is
zero at some time point. While this is quite unlikely in practice, our simulated signal may present
values quite close to zero making MAPE to be unstable. However, this measure is useful to compare
prediction performance between signals of different mean magnitude.

3.4. Results

3.4.1. Spline Representation and Reconstruction

To represent the simulated data, we use cubic splines using a regular grid for the knots
(with augmented knots on the extremes). To avoid cutting down predictive power of our forecast model,
we may want to retain here as many spline coefficients as possible (in our case 63). However, we have
to make a special point here since a boundary condition may yield artefacts on the spline coefficients
near the boundaries. A simple way to reduce this problem was to choose this number of splines (and so
the length of the interior knots) to be about 59. This choice produces reasonable quality reconstructions
with a MAPE error less than 0.18%.

3.4.2. Functional Principal Components

The reconstruction quality of the initial functions highly depends on the number of principal
components. Of course, the quality of the forecasts will also be impacted by this choice.

Table 3 reports the reconstruction quality as mean MAPE and RMSE for two, three and four
principal components.

Table 3. MAPE and RMSE for the reconstruction step using 59 splines, and 2, 3 or 4 functional
principal components.

Reconstruction Error

Spline 2 FPC 3 FPC 4 FPC

RMSE 0.0023 0.1282 0.0258 0.0249
MAPE (%) 0.1800 15.0600 2.7900 2.7200
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3.4.3. Forecasting Results

In this topic, we discuss the forecasting errors for each choice of the structure of the matrices
Qi and Hi. We take cases of null, diagonal and full matrices Qi and Hi, as described in Table 2.
Table 4 reports RMSE and MAPE values for the forecasting of the simulation data. Both mean and
standard deviation are presented. Better prediction performances produce lower MAPE and RMSE.
On the one hand, as expected, the number of principal components retained has a large impact on the
mean prediction performance. When only two principal components are kept, the prediction error
is unreasonably large due to a poor reconstruction. On the other hand, there is no clear advantage
for any variant since the standard deviations are large enough to compensate any pairwise difference.
This is mainly due to the very small number of prediction segments. Variants with null Qi matrix are
slightly more performant (e.g., smaller errors). This would indicate that a static structure is detected
where no time-evolving parameters are needed to predict the signal, which is the true nature of the
simulated signal.

Table 4. MAPE and RMSE for the forecasting in function of the number of principal components for the
simulated signal and for the six model variants. Mean values are obtained from four one-step-ahead
predictions. Standard deviations are reported in parentheses.

MAPE RMSE

Variant (Hi/Qi) 2 3 4 2 3 4

1. Diag/Null 18.14 (6.37) 3.32 (0.47) 3.34 (0.46) 0.1753 (0.0291) 0.0279 (0.0012) 0.0279 (0.0017)
2. Diag/Diag 31.00 (14.89) 3.63 (0.4) 3.6 (0.55) 0.1832 (0.0330) 0.0279 (0.0018) 0.0280 (0.0024)
3. Diag/Full 23.38 (8.74) 3.68 (0.48) 3.92 (0.59) 0.1832 (0.0330) 0.0279 (0.0018) 0.0280 (0.0024)

4. Full/Null 18.15 (6.34) 3.32 (0.47) 3.34 (0.46) 0.1753 (0.0291) 0.0279 (0.0013) 0.0279 (0.0017)
5. Full/Diag 18.15 (6.39) 3.39 (0.5) 3.95 (0.99) 0.1832 (0.0330) 0.0279 (0.0018) 0.0280 (0.0024)
6. Full/Full 18.96 (7.59) 3.53 (0.53) 3.96 (0.73) 0.1832 (0.0330) 0.0279 (0.0018) 0.0280 (0.0024)

Finally, we compare now the variants from the computational time needed to obtain the prediction.
We can see in Table 5 that differences in computing times are significant since standard deviations are
quite small. For a fixed number of principal components, there is a clear ranking that can be obtained
where the more parsimonious structures produce smaller computing times. Conversely, when the
number of principal components increases the computation time increases. However, the increment is
more important for the variants of covariances matrices having more parameters.

Table 5. Computing time (in seconds) for the whole procedure by number of principal components
and for the six model variants. Mean values are obtained from four one-step-ahead predictions of the
simulated signal. Standard deviations are reported in parentheses.

Variant (Hi/Qi) 2 3 4

1. Diag/Null 0.24 (0.03) 0.29 (0.05) 0.38 (0.01)
2. Diag/Diag 0.66 (0.26) 0.47 (0.05) 13.5 (4.96)
3. Diag/Full 4.13 (0.32) 26.24 (10.88) 319.23 (31.98)

4. Full/Null 0.38 (0.10) 1.73 (1.97) 19.5 (14.84)
5. Full/Diag 1.20 (0.22) 6.63 (1.6) 34.82 (7.76)
6. Full/Full 6.91 (0.50) 52.78 (14.33) 421.22 (12.11)

4. Experiments on Real Electrical Demand Data

We centre the experiments on this section around the French supplier Enercoop (enercoop.fr), one of
the new agents appearing with the recent liberalization of the French electrical market. Electricity supplied
by Enercoop is from green renewable electricity plants owned by local producers everywhere in
France. The utility has several kind of customers such as householders, industries as well as small

enercoop.fr
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and medium-sized enterprise (SME) with different profiles of electricity consumption. People with
households, for example, use electricity mainly for lightning, heating and, sometimes cooling and
cooking. The main challenge for Enercoop is electricity demand and production and so anticipation of
load needs is crucial for the company. We work with the aggregated electricity data that is the simple
sum of all the individual demands.

We first introduce the data paying special attention to those salient features that are important for
the prediction task. Then, we introduce a simple benchmark prediction technique based on persistence
that we compare to the naive utilization of our prediction procedure. Next, in Section 5, we study
some simple variants constructed to cope with the existence of non stationary patterns.

4.1. Description of the Dataset

Let us use some graphical summaries to comment on the features of these data. Naturally, we
adopt the perspective of time series analysis to describe the demand series. Figure 4 represents
the dataset that consists of half-hourly sampled records over six years going from 1 January 2012 to
31 December 2017. Vertical bars delimits years that are shown on top of the plot. Each record represents
the load demand measured in kWh.

Figure 4. Electricity demand for the supplier Enercoop for six years.

First, we observe a clear, growing long-term trend that is connected to a higher variability of the
signal at the end of the period. Second, an annual cycle is present with lower demand levels during the
summer and higher during winter. Both the industrial production calendar and the weather impacts
the demand, which explains this cyclical pattern.

Figure 5 shows the profile of daily electricity consumption for a period of three weeks
(from 31 October 2016 to 20 November 2016). This unveils new cycles presented in data that can be
seen as two new patterns: the weekly one and the daily one. The former is the consequence of how
human activity is structured around the calendar. Demand during workable days is larger than during
weekend days. The latter is also mainly guided by human activity with lower demand levels during
the nighttime, and the usual plateau during the afternoon and peaks during the evening. However, a
certain similarity can be detected among days. Indeed, even if the profile of Fridays is slightly different,
the ensemble of workable days share a similar load shape. Similarly, the ensemble of weekends
form a homogeneous group. Holiday banks and extra days off may also impact the demand shape.
For instance, in Figure 5, the second segment, which corresponds to 1st November, is the electrical
demand on a bank holiday. Even if this occurs on a Tuesday, the shape of load of these days and the
preceding one (usually an extra day off) are closer to weekend days.
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We may also inspect the shape of the load curve across the annual cycle. A simple way to do this
is to inspect the mean form between months. Figure 6 describes four monthly load profiles, where
each month belongs to a different season of the year. Some differences are easy to notice—for instance,
the peak demand is during the afternoon in Autumn and Winter but at midday in Spring and Summer.
Others are more subtle, like the effect of daylight savings time clock change, which horizontally shifts
the whole demand. Transitions between the cold and warm seasons are particularly sensitive for the
forecasting task, especially when the change is abrupt.

Figure 5. Electricity consumption from 31 October 2016 to 20 November 2016.

Figure 6. Monthly mean of daily load for four months: February, May, August and October.

4.2. Spline and FPCA Representation

As before, we report on the reconstruction error resulting from the spline and FPCA representations.
For comparison purposes, we compute the error criteria for five choices on the number of splines

(12, 24, 40, 45 and 47 splines) on the reconstruction of the coded functions. Table 6 shows the MAPE and
RMSE between the reconstruction and the real load data. As expected, the lower the number of splines,
the higher the reconstruction error. This shows that, using only spline interpolation, our approach is
not pertinent because a relatively large number of spline coefficients is needed. The extremest case of
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12 splines, which would make the computing times reasonable, produces a too large MAPE of 1.310%,
which hampers the performance of any forecasting method based on this reconstruction. On the other
extreme, using 47 cubic splines to represent the 48-length discrete signal of the daily demand produces
boundary effects that will dominate the variability of the curves.

Since spline approximation is connected to the FPCA in our approach, we may check the
reconstruction quality for all the choices issued from the crossing of the selected number of splines
and a number of principal component between 2 and 10. Table 7 shows the MAPE and RMSE of the
reconstructions obtained by each of the possible crossings. We may target a maximum accepted MAPE
value of 1% in reconstruction. Then, there are just a few options, most of them with very close MAPE
values. In what follows, we choose to work with 45 cubic splines and 10 principal components.

Table 6. RMSE and MAPE between the splines approximation and the electrical load data as a function
of the number of splines.

Number of Splines

12 24 40 45 47

MAPE (%) 1.310 0.480 0.160 0.060 0.010
RMSE (kWh) 130.030 48.800 19.480 8.860 3.850

Table 7. RMSE and MAPE errors for splines smoothing load data reconstitution via FPCA as a function
of the number of splines and the number of principal components.

MAPE (in %) RMSE (in kWh)

Nb. of Splines Nb. of Splines

Nb. PC 12 24 40 45 47 12 24 40 45 47

2 3.400 3.250 3.320 3.770 4.190 343 331 332 351 385
3 2.560 2.340 2.420 2.940 3.690 250 232 233 260 333
4 2.120 1.860 1.960 1.820 2.780 205 180 182 177 262
5 1.770 1.440 1.550 1.400 2.280 176 145 149 141 217
6 1.650 1.250 1.200 1.210 1.770 160 121 116 116 168
7 1.540 1.120 1.040 1.060 1.370 148 103 97 98 135
8 1.440 0.900 0.820 0.830 1.160 139 84 76 76 109
9 1.390 0.830 0.740 0.770 0.960 135 75 65 68 92

10 1.350 0.760 0.680 0.750 0.790 132 69 58 64 71

4.3. Forecasting Results

Forecasting is done in a rolling basis over one year in the data. Load data from 1 January 2012
to 30 October 2016 is used as a training dataset and, as a testing dataset, we choose a period from 31
October 2016 to 30 October 2017. Predictions are obtained at horizons one-segment ahead. This means
that, actually, we are making predictions for the next 48 time steps (1 day) if we adopt a traditional
time series point of view. Once the prediction is obtained, we compare it with the actual data and
incorporate the observation into the training dataset. Thanks to the recursion in the SSM, only an
update step is necessary here.

To give a comparison point to our methodology, we propose using a simple but powerful
benchmark based on persistence forecasting.

4.3.1. Persistence-Based Forecasting

A persistence-based forecasting method for a functional time series equals to anticipate Xn+1(t)
with the simple predictor X̂n+1(t) = Xn(t). Thus, the predictor can be connected to the ARH model
(Equation (2)) where the linear operator is the identity operator ρ = Id. However, this approach is not
convenient since there are two groups of load profiles in the electricity demand given by workable



Energies 2018, 11, 1120 14 of 24

days and the other days (e.g., weekends or holidays). We use then a smarter version of the persistence
model, which takes into account the existence of these two groups. The predictor is then written

X̂n+1(t) =

{
Xn(t), if day n is Monday, Tuesday, Wednesday or Thursday,
Xn−7(t), otherwise.

(8)

Table 8 summarizes the MAPE on prediction by type of day for the persistence-based forecasting
method. We can observe that the global MAPE errors are several times the reconstruction error we
observed above. There is a clear distinction between those days predicted by the previous day and the
other ones (i.e., Saturdays, Sundays and Mondays). The lack of recent information for the latter group
is a severe drawback and impacts its prediction performance. The increased difficulty of predicting
bank holidays is translated into the highest error levels.

Table 8. MAPE (in %) for the persistence-based forecasting method.

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

Monday 0.86 3.10 4.99 9.82 24.41 7.48 (5.72)
Tuesday 0.66 1.52 2.03 5.00 13.97 3.61 (2.86)

Wednesday 0.47 1.39 2.23 3.11 11.34 2.85 (2.25)
Thursday 0.39 1.26 2.27 3.87 10.99 2.78 (2.12)

Friday 0.27 1.45 2.33 3.73 11.55 2.74 (1.78)
Saturday 0.27 3.04 6.85 11.05 24.21 7.60 (5.61)
Sunday 0.42 2.80 6.11 9.15 21.41 6.86 (5.11)

Bank Holiday 1.13 6.27 10.80 12.65 25.73 10.90 (5.82)
Global 0.27 2.60 4.70 7.30 25.73 5.60 (1.78)

4.3.2. FSSM Forecasting

We now present the results for the proposed FSSM. Only the variant 1 in Table 2 is used, namely we
consider the covariance matrix of the observations Hi as diagonal and the covariance matrix of the
states Qi as null. The reason is twofold. First, we show on simulations that basic models give as
satisfactory results as the more involved ones. Second, computing time must be kept into reasonable
standards for the practical application.

Tables 9 and 10 show the MAPE on prediction for days and months respectively for the FSSM
approach. In comparison with the persistence-based forecasting, the global error is sensibly reduced
with improvement on almost all day types. In addition, improvements are observed in all the months
of the year but August (results for persistence-based forecasting are not shown). If we look at the
distribution of MAPE, we see that the range is compressed with a lower maximum error but also a
higher minimum error. This last effect is the price to pay for having an approximate representation
of the function. We may think the MAPE on approximation as a lower bound for the MAPE on
forecasting. The higher this bound, the more limited the approach is. Despite this negative result, the
gain on the largest errors observed before more than compensates for the increment on the minimum
MAPE and yields a globally better alternative. Among workable days, Mondays presents the higher
MAPE. FSSM being an autoregressive approach, it builds on the previous days that present a different
demand structure. Moreover, the mean load level of these two consecutive days is sharply different.
Undoubtedly, incorporating the calendar information would help the model to better anticipate
this kind of transition. Both mean load level corrections and calendar structure are modification or
extensions that can be naturally incorporated in our FSSM. We discuss some clues for doing this in the
next section.
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Table 9. Daily MAPE (in %) on prediction for the FSSM forecasting.

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

Monday 1.27 2.49 3.19 4.21 10.97 3.66 (1.61)
Tuesday 0.79 1.64 2.64 3.63 7.96 2.93 (1.57)

Wednesday 0.83 1.52 2.20 3.67 11.20 2.65 (1.4)
Thursday 0.77 1.70 2.47 3.93 8.98 2.90 (1.71)

Friday 0.77 1.66 2.41 3.12 8.70 2.59 (1.21)
Saturday 0.83 2.59 4.32 6.19 19.98 4.66 (2.89)
Sunday 1.26 3.91 5.94 7.80 19.98 6.07 (2.55)

Bank Holiday 2.20 5.35 6.03 6.86 11.20 6.18 (2.26)
Global 0.77 2.61 3.65 4.93 19.98 3.96 (1.21)

Table 10. Monthly MAPE (in %) on prediction for the FSSM forecasting.

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

January 0.79 2.15 2.86 4.21 8.54 3.39 (1.81)
February 1.11 2 2.535 3.57 4.36 2.72 (0.94)

March 1.27 2 3.82 5.42 10.71 4.05 (2.29)
April 1.01 2.54 3.67 5.81 10.44 4.31 (2.37)
May 0.83 1.99 3.19 6.03 8.70 3.85 (2.26)
June 0.93 1.69 2.43 4.11 10.54 3.25 (2.11)
July 1.26 2.8 3.94 5.05 7.37 3.97 (1.46)

August 0.77 1.45 2.43 5 11.20 3.69 (3.1)
September 0.83 2.14 2.87 5.41 19.98 4.29 (3.67)

October 1.04 1.66 2.7 3.69 19.98 3.22 (2.01)
November 1.45 3.26 4.415 5.68 9.48 4.65 (1.95)
December 1.28 1.58 2.59 4.26 8.98 3.09 (1.81)

5. Corrections to Cope with Non Stationary Patterns

We explore two kinds of extensions to add exogenous effects. In the first one, the days are grouped
into two groups, workable and non workable days, and the prediction is done separately in each group.
In the second one, the day and the month are introduced as an exogenous fixed effect in the model.

5.1. Adding Effects as Grouping Variables

We aim to tackle some of the difficulties that non stationary patterns impose on the forecasting of
load data by explicitly considering two groups of days: workable (i.e., Monday, Tuesday, Wednesday,
Thursday, Friday), and non workable (i.e., Saturday, Sunday and Holidays). We adapt our model
FSSM described in Equation (6) by adapting it on each group separately, that is, we consider the model{

yg
i = yg

i−1α
g
i + ε

g
i ,

α
g
i+1 = Tg

i α
g
i + η

g
i ,

g ∈ workable, non-workable. (9)

The only difference between models (6) and (9) is the data used in estimation of parameters. In the
case of (9), we have two groups of data, workable days and, non workable days. The structure of the
matrices are the same as in the model 6, but now they are specific to each group of days. In terms
of forecasting procedure, if we want to predict a workable day, we choose the data for the group
workable. Similarly for non workable days, in Tables 11 and 12, we present MAPE obtained with
this procedure reported by day type and month. The results for this approach globally improve the
forecast with respect to the initial model since the global MAPE decreases. In addition, reduced MAPE
are obtained for most of the day types. However, we can see also that, for Saturday and Monday, the
errors are significantly increased. These days are those where the transition between the groups occur.
They share then the additional difficulty of not having the most recent information (that one from
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the precedent day) in the model. Some cold months’ predictions are not improved. Improvements
are observed during summer months or months around summer. The high level load demand and
variability of winter months impacts the rise of prices and thus makes these months of particular
interest. The accuracy in forecasting for these months is important because bad prediction can have a
large economical impact for electricity suppliers.

Table 11. Daily MAPE (%) for model (9).

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

Monday 0.92 2.61 3.68 7.42 15.85 5.10 (3.38)
Tuesday 0.64 1.20 2.02 3.24 15.85 2.51 (1.83)

Wednesday 0.60 1.39 2.03 2.71 8.62 2.18 (1.12)
Thursday 0.66 1.43 2.01 3.10 6.76 2.42 (1.3)

Friday 0.75 1.47 2.15 3.23 9.51 2.53 (1.32)
Saturday 1.16 2.39 3.24 7.46 27.72 5.69 (5.34)
Sunday 1.15 2.01 2.33 3.67 8.06 3.00 (1.6)

Bank Holiday 1.39 3.77 4.51 5.88 9.51 4.89 (1.92)
Global 0.60 2.03 2.75 4.59 27.72 3.54 (1.32)

Table 12. Monthly MAPE (%) for model (9).

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

January 0.75 1.75 3.16 4.37 13.88 4.26 (3.8)
February 0.60 1.63 2.515 3.98 14.82 3.60 (3.24)

March 0.82 1.81 3.23 5.36 22.10 4.40 (4.48)
April 1.14 2.16 2.885 4.11 8.62 3.71 (2.25)
May 0.91 2.01 2.39 3.63 9.51 2.91 (1.77)
June 0.90 1.54 2.2 3.15 4.78 2.35 (1)
July 0.96 1.47 2.01 2.78 4.51 2.12 (0.85)

August 1.16 2.04 2.63 3.24 9.24 2.84 (1.41)
September 1.08 1.93 2.32 3.08 4.39 2.49 (0.86)

October 0.66 1.2 1.91 3.57 10.40 2.84 (2.53)
November 1.40 2.26 4.36 6.35 13.04 4.93 (2.87)
December 0.64 1.56 2.8 5.29 27.72 4.27 (5.05)

One thing we can also do to improve forecasting of load demand is to integrate some exogenous
variables such as day types and weather variables. Day types are fixed variables and weather variables
are random variables. In this paragraph, we have just implicitly introduced day types in our modeling
but not as exogenous variable. In the next paragraph, we introduce in our model the variable day types.

5.2. Adding Effects as Covariates

In this paragraph, we introduce in model (6) the variables day type and months. We must have an
appropriate presentation of this exogenous deterministic variables before predicting. We choose
to create for each day of the week, a binary dummy variable. In total, we have eight days
(including holidays) type which we use as eight dummies variables. Each variable takes values
in {0, 1}. The value 1 corresponds to the case where the response vector yi is observed on the same
day as the day that is being used. For example, if the response variable yi is observed on Sunday,
the dummy variable for Sunday takes value 1. The dummy variable for Sunday will take 0 if the
response vector yi is not observed on Sunday, but yi takes 1 for other day dummy variable on which
it was observed. In addition, we choose a numeric variable that represents the months of the year.
We would like to control the seasonal effect of the series with this variable. The months variable has
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12 values representing the month of the year. Let us choose Day as days’ dummy variables and Month
as the numeric months’ variable. The model (6) becomes:{

yi = Dayiβ
D
i + Monthiβ

M
i + yi−1αi + εi,

αi+1 = Tiαi + ηi.
(10)

Dayi ∈ {0, 1}1×8, βD
i ∈ R8×p, Monthi ∈ {1, . . . , 12} and βM

i ∈ R1×p . Dayi and Monthi are fixed
in the time but βD

i and βM
i are not fixed in time because the profile of the series changes with time.

These regression coefficients can be interpreted as estimation of each day and month mean profiles of
the series. Let us note βi = {βD

i , βM
i }. In terms of mixed linear models modeling, βi controls the fixed

effects of the load data. Parameters estimation of (10) is a bit different when using the package KFAS
that allows for estimating states’ space models parameters. In the case of the model (6), we choose a
random approach to estimate αi, which consequently explains the random parts of the load curves.
This means that we assume that Qi exists.

Tables 13 and 14 sum up the prediction performance of model 10 using daily and monthly MAPE
respectively.

Table 13. Daily MAPE (in%) for model (10).

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

Monday 1.48 2.35 2.81 3.96 8.90 3.30 (1.39)
Tuesday 0.65 1.51 2.16 2.93 8.06 2.56 (1.46)

Wednesday 0.65 1.44 2.04 2.73 8.06 2.21 (1.12)
Thursday 0.78 1.41 1.87 2.97 7.50 2.42 (1.41)

Friday 0.77 1.42 1.93 3.39 8.39 2.39 (1.43)
Saturday 0.77 2.14 3.04 4.44 13.11 3.55 (1.96)
Sunday 0.96 3.02 4.49 6.02 13.11 4.67 (1.92)

Bank Holiday 1.83 3.10 4.28 7.12 8.14 4.90 (2.03)
Global 0.65 2.05 2.83 4.20 13.11 3.25 (1.43)

Table 14. Monthly MAPE (in%) for model (10).

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

January 0.90 1.87 2.59 3.86 8.14 3.10 (1.68)
February 1.24 1.925 2.33 2.9 4.44 2.52 (0.88)

March 0.94 1.81 3.08 5.09 8.90 3.50 (1.95)
April 1.34 2.17 3.38 4.78 8.06 3.75 (2)
May 0.82 2.03 3.07 5.34 7.12 3.40 (1.76)
June 0.77 1.34 1.985 2.93 8.03 2.46 (1.52)
July 0.87 1.83 2.65 3.37 5.19 2.61 (1.08)

August 0.78 1.41 2.1 3.3 6.71 2.61 (1.63)
September 0.65 1.4 2.2 3.16 13.11 2.74 (2.24)

October 0.89 1.61 2.15 3.56 13.11 2.68 (1.5)
November 1.62 3.35 4.205 5.48 9.70 4.57 (1.88)
December 1.13 1.61 2.26 3.58 7.86 2.85 (1.65)

It can be observed that the global MAPE decreases. On Monday, the MAPE decreases significantly.
It is still difficult to have accurate prediction in winter and spring months, except December and
February. For the month of November, the great value of MAPE is due to unprecedented increase
of the number of customers on November 2016. Figure 7 shows the errors of observations equation
and their variance Hi. It can be observed at the end of year 2016 (from November 2016) that there
was a big change in the errors’ variance. This change comes from the change in the rhythm of
electricity consumers’ subscription as clients of Enercoop. In the end of 2016, there was the COP21 (21st
Sustainable Innovation Forum) in France. As Enercoop’s strategy is to support renewable electricity
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production and consumption; at this moment, the communication of the image of Enercoop increased
in the population. Enercoop was more well known to the French public than ever. This communication
brought many customers to subscribe to electricity supplied by Enercoop. For this moment, it is
difficult for the model to be accurate because, at this moment, outliers’ values were being observed.

(a)

(b)

Figure 7. Diagnostics plot from model FSST: (a) daily mean of errors ε̂i; (b) daily trace of variance
matrix Hi.

6. A Short Case Study: Prediction at a National Grid Level

We now provide a detailed case study on the construction of a forecasting model using our approach
for a more aggregated signal. We move from the supplier point of view to the Transmission System
Operator (TSO) point of view. Data in this section come from RTE (Réseau de Transport d’Électricité)
(http://www.rte-france.com/)), the TSO of the French electrical grid. These data are openly available (http:
//www.rte-france.com/fr/eco2mix/eco2mix-telechargement). The size of the system is a considerably
large RTE operating on the largest grid in Europe with over 100,000 km of electrical lines and routing
a total gross annual consumption of over 475 TWh. For the reasons detailed below, we incorporate
meteorological data in the prediction model. For this, data is obtained upon Météo-France, the national
weather service in France (https://donneespubliques.meteofrance.fr/).

6.1. Salient Features on the Data

Data is retrieved from RTE API (http://www.rte-france.com/fr/eco2mix/eco2mix-telechargement)
where past effective demands but also forecast load demand obtained by RTE are available. The daily
load demand is recorded with 96 points per day, which is equivalent to intervals of fifteen (15) minutes.

http://www.rte-france.com/
http://www.rte-france.com/fr/eco2mix/eco2mix-telechargement
http://www.rte-france.com/fr/eco2mix/eco2mix-telechargement
https://donneespubliques.meteofrance.fr/
http://www.rte-france.com/fr/eco2mix/eco2mix-telechargement
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We use a series of plots to highlight relevant features on the data that should be considered in
the construction of a prediction model. The first view of the data is in Figure 8, which shows the time
plot of the electrical load from 2012 until the first two months of 2018 (vertical lines separates years).
When compared to Figure 5, the most important fact is the absence of a growing trend. Indeed, the gross
yearly energy demand in France is quite stable during the period of study, which explains the constant
trend. The annual cycle is clearly made evident with yearly larger levels of load demand during winter
and lower ones during summer.

Figure 8. Daily load demand for France’s electricity grid from 2012 to 2018.

Figure 9 illustrates the daily load demand for France from 13 February 2017 to 5 March 2017. As it
can be noticed, the load demand is correlated with human activities, which means that the load profile
is high on workable days and low on weekends and holidays.

Figure 9. Daily load demand for France’s electricity grid from 13 February 2017 to 5 March 2017.

Lastly, Figure 10 represents the relationship between load demand and temperature by both a
scatter plot and a smooth curve estimated non parametrically. It can be seen that demand increases
with cold or hot temperatures.
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Figure 10. Daily load demand for France’s electricity grid versus temperature in France from
January 2012 to February 2018.

6.2. Model Construction

For the FSSM training and test purposes, we use data from 1 January 2012 to 9 February 2017 as
training dataset and from 10 February 2017 to 9 February 2018 for the test dataset.

For the comparison purposes, we make some experiments with model 6 and we introduced some
exogenous variables. For our model training purposes, we represent the initial load demand data in a
cubic splines basis (with 82 splines) and in a functional principal components basis (with 10 functions).
Observing the initial load data, we can notice the annual (see Figure 8) and the week (see Figure 9)
patterns in the load data. Therefore, we introduce four fixed variables Week1, Week2, Year1

and Year2. In a week, we have seven days that we transform to a numeric variable NumDay,
and to extract the week pattern in the load demand, we choose Week1 = sin(2πNumDay/7),
Week2 = cos(2πNumDay/7). For the annual pattern, we introduce variable PosDayYear, which
means position of the day in a year (position goes from 1 to 365) Year1 = sin(2πPosDayYear/365)
and Year2 = cos(2πPosDayYear/365). Finally, we make variables Week = {Week1, Week2} and
Year = {Year1, Year2}. Year also controls the effects of months, which is why we do not need to
introduce months in this model. The load demand depends on the type of the days, as it has been
noticed. For this reason, we introduce the day type dummies variables Day as in the case of Enercoop’s
load demand data forecasting. It should be noted that we add new fixed variables for RTE’s load
demand data forecasting, which are different from fixed variables used for Enercoop’s load demand
forecasting. The reason for this choice is the annual and weekly seasonality observed in the load
demand data.

We have also observed that the load demand is a quadratic function of temperature (see
Figure 10). The target temperature that we consider here is an aggregation of France’s 96 departments’
temperatures. Usually, RTE considers a few special zones, which represent all of France in terms
of temperature. We do not consider this representation method in this paper. It can be observed in
Figure 10 that load demand decreases with temperature below 10 °C, and increases with temperature
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above 10 °C. The temperatures below 10 °C describe the heating season for the load demand and
the temperatures above 10 °C illustrate the cooling season for the load demand. For this reason, we
define two variables TempHeating and TempCooling to be introduced into the model. We then define
a variable Temp as Temp = {TempHeating, TempCooling}. Then, the FSSM model used for the RTE
load demand data is{

yi = Dayiβ
D
i + Weekiβ

W
i + Yeariβ

Y
i + Tempiβ

T + yi−1αi + εi,

αi+1 = Tiαi + ηi,
(11)

where Weeki ∈ R1×2, βW
i ∈ R2×p, Yeari ∈ R1×2, βY

i ∈ R2×p, Tempi ∈ R1×2and βT ∈ R2×p.

6.3. Prediction Performances

Tables 15 and 16 illustrate the results of the RTE prediction model on the test period. It can be
observed that forecasting MAPE is quite high during weekends and higher on holidays. The global
MAPE is about 1.47%, which means in terms of RMSE to 912.12 MW.

Table 15. Daily MAPE (in %) for RTE’s regression based model.

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

Monday 0.62 0.93 1.14 1.57 2.57 1.28 (0.5)
Tuesday 0.63 0.99 1.11 1.52 3.30 1.28 (0.48)

Wednesday 0.55 0.87 1.22 1.49 3.36 1.29 (0.57)
Thursday 0.53 0.79 1.05 1.81 3.29 1.30 (0.68)

Friday 0.61 0.86 1.07 1.43 3.03 1.23 (0.53)
Saturday 0.52 0.96 1.16 2.04 4.56 1.55 (0.87)
Sunday 0.60 0.97 1.25 2.00 4.34 1.52 (0.75)

Bank Holiday 0.79 1.10 2.47 3.02 4.69 2.35 (1.28)
Global 0.52 0.93 1.31 1.86 4.69 1.47 (0.75)

Table 16. Monthly MAPE (in %) for RTE’s based model.

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

January 0.53 0.88 1.1 1.86 4.54 1.37 (0.77)
February 0.52 0.915 1.37 1.945 3.30 1.49 (0.7)

March 0.65 1 1.42 2.03 4.56 1.72 (1.01)
April 0.66 1.12 1.26 1.87 2.47 1.44 (0.51)
May 0.63 0.94 1.14 1.42 3.02 1.29 (0.56)
June 0.66 0.99 1.145 1.72 3.24 1.42 (0.69)
July 0.64 0.84 1.15 1.51 4.00 1.35 (0.68)

August 0.68 0.89 1.15 1.76 2.95 1.38 (0.64)
September 0.62 0.74 0.965 1.23 3.36 1.07 (0.52)

October 0.62 0.88 1.11 1.38 2.97 1.28 (0.58)
November 0.81 0.91 1.06 1.57 2.71 1.28 (0.48)
December 0.55 0.88 1.29 1.74 4.69 1.47 (0.85)

Tables 17 and 18 illustrate the results of our model (11). We can see that, during Saturdays and
Holidays, model (11) performs better than RTE’s model. MAPE of months shows that, during February,
March, May, June and October, our model performs better than the model of RTE. Nevertheless, the
global MAPE for (11) is 1.54%, which means 972.25 MW in terms of RMSE, which is slightly larger
than for the RTE model. One way to improve our model is to introduce all variables that can change
the load signal such as hydro power production with water pumping, wind power production and
photo-voltaic power production and consumption.
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Table 17. Daily MAPE (in %) for FSSM model (11) on RTE load demand data.

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

Monday 0.41 0.97 1.27 1.65 5.59 1.44 (0.84)
Tuesday 0.47 0.87 1.26 1.71 4.63 1.41 (0.82)

Wednesday 0.43 0.80 1.07 1.59 3.40 1.29 (0.7)
Thursday 0.47 0.73 1.15 1.86 4.36 1.42 (0.87)

Friday 0.43 0.77 1.09 1.50 2.76 1.25 (0.62)
Saturday 0.54 1.01 1.31 1.79 3.39 1.46 (0.62)
Sunday 0.60 1.23 1.84 2.23 3.27 1.76 (0.62)

Bank Holiday 0.94 1.88 2.13 2.59 3.76 2.25 (0.75)
Global 0.41 1.03 1.39 1.86 5.59 1.54 (0.62)

Table 18. Monthly MAPE (in %) for FSSM model (11) on RTE load demand data.

Minimum 1st Quartile Median 3rd Quartile Maximum Mean (sd)

January 0.82 1.05 1.29 2.1 3.34 1.56 (0.7)
February 0.43 0.8 1.125 1.485 2.34 1.19 (0.52)

March 0.47 0.89 1.14 1.78 2.63 1.27 (0.58)
April 0.54 1.04 1.47 1.84 3.01 1.51 (0.65)
May 0.41 FL0.87 1.08 1.77 3.13 1.26 (0.64)
June 0.46 0.73 1.06 1.41 3.76 1.18 (0.65)
July 0.57 0.82 1.12 1.87 3.39 1.48 (0.79)

August 0.64 1.27 1.88 2.78 5.59 2.18 (1.15)
September 0.43 0.74 1.02 1.33 2.40 1.13 (0.52)

October 0.50 0.73 1.19 1.45 2.75 1.22 (0.58)
November 0.61 1.24 1.48 2.13 3.28 1.68 (0.65)
December 0.86 1.24 1.77 2.29 3.81 1.81 (0.68)

7. Discussion and Conclusions

In a concurrent environment, electrical companies need to anticipate load demand from data that
presents non stationary patterns induced by the arrival and departure of customers. Forecasting in this
context is a challenge since one desires using as much past data as possible but needs to reduce the
usable date to the records that describe the current situation. In this trade-off, adaptive methods have
their role to play.

Figure 7 witnesses the ability that FSSM has to adapt to a certain extent to the changing
environment. The impact of an external event to the electrical demand is translated into larger variability
on the error and so an inflation of the trace of the errors variance matrix (cf. at the end of 2016).

Forecasting process for Enercoop’s load demand in this paper is mainly endogenous. Only some
calendar information is used as an exogenous variable. However, in electricity forecasting, it is well
known that weather has a great influence on the load curve. For instance, temperature impacts
through the use of cooling systems in hot season and electrical heating during cold seasons. In France,
this dependence is known to be asymmetrical with a higher influence of temperature on cold days.
The nature of this covariable on forecasting is different to the ones we used. Indeed, while calendars
can be deterministically predicted, it is not the case for the temperature. Using forecasted weather
on an electrical demand forecast inserts the eventual bias and the uncertainty of the weather
forecasting system to the electrical demand prediction. Integration of weather information into
our model to forecast Enercoop’s load demand data, eventually changing the structure of the matrix
Hi, and obtaining prediction interval for the predictions are perspectives of future work.

For France’s grid load demand, we have integrated fixed and weather variables that enable better
forecasting than in the case of Enercoop. It is possible to improve the accuracy of our model on this
data if there is more time to have more information on all variables that can be introduced in the
forecasting process.
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In addition, only point predictions are obtained. In a probabilistic framework, one would like
to have not only an idea of the mean level anticipation of the load, but also some elements about
the predictive distribution of the forecast. Whether it is a whole distribution, some quantile levels
or a predictive interval, this information is not trivially obtained from our approach. While SSM
does provide intervals through the Gaussian assumptions coupled with the estimation of the variance
matrices, FSSM has this information on the coefficients of the functional representation. Transporting
this information to the whole curve needs to be studied.

Besides these technical considerations, a natural interrogation is how this model can be used
in other forecasting contexts. While the work is focused on short-term prediction horizons, there is
no mathematical constraint in using the model on other tight time frameworks. For instance, for a
long-term horizon, one would naturally increase the sample resolution to a certainly monthly basis in
which case the functional segments could represent the annual cycle. However, as it is well known
in practice, predicting long-term patterns without relevant exogenous information is not the best
option. Another case to consider is the presence of periodic and seasonal patterns. As it is the case,
the electricity demand carries on very clear cycles (e.g., yearly, weekly, daily) that are exploited by our
model in two ways. First, the smallest one is taken into consideration within the functional scheme and
so all the non stationary patterns inside it are naturally taken into consideration by the model. Second,
the largest ones are explicitly modelled as exogenous variables. A last case relevant to discuss is the
one where the sampling of the time series is done by an irregular basis. However, in our examples, we
only treated regular grid samplings, and the functional data analysis framework allows one to cope
with irregular sampling in a natural way. Indeed, the data for each segment (in our case each day) is
used to fit the corresponding curve (e.g., the daily load curve) and then estimate the spline coefficients.
With this, the rest of the forecasting procedure remains unchanged. Of course, the proposed model
could be used to forecast other kind of phenomena. The good reliability and predictability would
depend on the nature of these signals.

To sum up, the presented model has enough flexibility to be used in the anticipation of energy
demands in the electricity industry, providing credible predictions of energy supply, and improvement
on the efficient use of energy resources. This may help to handle theoretical and practical electricity
industry applications for further development of energy sources, strategic policy-making, plans of
energy mix and adoption patterns [25].
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