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Abstract: The ability to predict short-term electric energy demand would provide several benefits,
both at the economic and environmental level. For example, it would allow for an efficient use of
resources in order to face the actual demand, reducing the costs associated to the production as well
as the emission of CO2. To this aim, in this paper we propose a strategy based on ensemble learning
in order to tackle the short-term load forecasting problem. In particular, our approach is based on a
stacking ensemble learning scheme, where the predictions produced by three base learning methods
are used by a top level method in order to produce final predictions. We tested the proposed scheme
on a dataset reporting the energy consumption in Spain over more than nine years. The obtained
experimental results show that an approach for short-term electricity consumption forecasting based
on ensemble learning can help in combining predictions produced by weaker learning methods in
order to obtain superior results. In particular, the system produces a lower error with respect to the
existing state-of-the art techniques used on the same dataset. More importantly, this case study has
shown that using an ensemble scheme can achieve very accurate predictions, and thus that it is a
suitable approach for addressing the short-term load forecasting problem.

Keywords: ensamble learning; time series forecasting; energy consumption forecasting; evolutionary
computation; neural networks; regression

1. Introduction

The world energy demand is increasing day by day. As pointed out in [1], it is estimated that
the world energy consumption will increase from 549 quadrillion British thermal unit (Btu) in 2012
to 629 quadrillion Btu in 2020. A further 48% increase (to 815 quadrillion Btu) is expected by 2040.
More than half of the increase will correspond to Asian countries that do not belong to the Organization
for Economic Co-operation and Development (OECD), including China and India.

Several factors are contributing to such growing energy demand, e.g., the rapid grow of
the human population and increasing energy required by buildings and technology applications.
Therefore, the development of efficient energy management systems and predictive models for
forecasting energy consumption are becoming important in decision-making for effective energy
saving and development in particular areas, in order to decrease both the costs associated to it and
the environmental impact this consumption presents. Governments are also taking actions into these
matters. For example, the European Commission is constantly developing measures to increase the
EU’s energy-efficiency targets and to make them legally binding. Under the current energy plan,
EU countries will have to adopt a set of minimum energy efficiency requirements in order to achieve
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an increment of at least 20% in the energy efficiency [2]. Moreover, all EU countries have reached an
agreement in order to reach an increment of at least 27% by 2020, , to be reviewed by 2020 with the
potential to raise the target to 30% by 2030.

Electric energy consumption forecasting algorithms can provide several benefits in this sense.
For example, in [3,4] forecasting is used to assess what fraction of the generated power should be
stored locally for later use and what fraction of it can instead be fed to the loads or injected into the
network. Generally, forecasting can be divided into three categories, depending on the prediction
horizon, i.e., the time scale of the predictions. Short-term load forecasting, characterised by prediction
horizons going from one hour up to a week, medium-term load forecasting, with prediction from one
month up to a year, and long-term load forecasting, for prediction involving a prediction horizon of
more than one year [5].

Short-term load forecasting is an important problem. In fact, with reliable and precise prediction of
short-term load, schedules can be generated in order to determine the allocation of generation resources,
operational limitations, environmental and equipment usage constraints. Knowing the short-term
energy demand can also help in ensuring the power system security since accurate load prediction can
be used to determine the optimal operational state of power systems. Moreover, the predictions can be
helpful in preparing the power systems according to the future predicted load state. Precise predictions
also have an economic impact, and may improve the reliability of power systems. The reliability of
a power system is affected by abrupt variations of the energy demand. Shortage of power supply
can be experienced if the demand is underestimated, while resources may be wasted in producing
energy if such energy demand is overestimated. From the above observations, we can understand why
short-term load forecasting has gained popularity. The work presented in this paper lies among the
short-term load forecasting.

Basically, there are two main approaches to forecasting energy consumption, conventional
methods, such as [6,7] and, more recently, methods based on machine learning. Conventional methods,
including statistical analysis, smoothing techniques such as the autoregressive integrated moving
average (ARIMA) and exponential smoothing and regression-based approaches, can achieve
satisfactory results when solving linear problems. Machine learning strategies, in contrast to
traditional methods, are also suitable for non-linear cases. Among the machine learning strategies
approaches, strategies such as Artificial Neural Networks (ANN) or Support Vector Machines
(SVM) have been successfully (and increasingly) exploited to forecast power consumption data,
e.g., [8–10]. Although machine learning techniques provide effective solutions for time series
forecasting, these methods tend to get stuck in a local optimum. For instance, ANN and SVM
may get trapped in a local optimum if the configurations parameters are not properly set.

In order to overcome such limitations, in this paper we propose an approach based on ensemble
learning [11–13], and more specifically, we propose a two-layer ensemble scheme. Ensemble learning
is a machine learning paradigm where multiple learners are trained to solve the same problem.
In contrast to ordinary machine learning approaches, which try to learn one hypothesis from training
data, ensemble methods try to construct a set of hypotheses and combine them. This approach
usually yields better results than the use of a single strategy, since it provides better generalizations,
i.e., adaptation to unseen cases, better capability of escaping from local optima and superior search
capabilities. In this paper, we propose a novel ensemble scheme, which is based on two layers. On the
bottom layer, three learning algorithms are used, and their predictions are used by another strategy at
the top level.

In order to assess the performances of our proposal, we use a dataset regarding the electricity
consumption in Spain registered over a period of more than nine years. We use a fixed prediction
horizon of four hours, while we vary the historical window size, i.e., the amount of historical data
used in order to make the predictions. Experimental results shows that an ensemble scheme can
achieve better results than single methods, obtaining more precise predictions than other state of the
art methods. Therefore, we can summarize the contributions of this work as follows:
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• Propose to explore the short-term electrical consumption forecasting by using ensemble learning;
• Analyse electricity consumption data from Spain by means of the proposed ensemble scheme.

The rest of the paper is organised as follows. In Section 2, we provide a brief overview of the
state of the art on prediction of time series, with a special focus on prediction of energy consumption.
Section 3 describes the data used in this paper and the proposed strategy. In particular, in Section 3.3
we describe the particular ensemble learning scheme used. Results are discussed in Section 4. Finally in
Section 5, we draw the main conclusions and discuss possible future works.

2. Time Series Forecasting

This section provides a basic background on time series. We refer the reader to [14] for a more
extensive introduction to time series analysis. Moreover, in Section 2.1 we present an overview of
relevant works on time series forecasting.

A time series is a sequence of time-ordered observations measured at equal intervals of time.
In a time series consisting of T real value samples x1, . . . , xT , xi (1 ≤ i ≤ T) represents the recorded
value at time i. We can then define the problem of time series forecasting as the problem of predicting
the values of xw+1, . . . , xw+h, given the previous x1, . . . , xw (w + h ≤ T) samples, with the objective
of minimizing the error between the predicted value x̂w+i and the actual value xw+i (1 ≤ i ≤ h).
Here, we refer to w as the historical window, i.e., how many values we consider in order to produce
the predictions, and to h as the prediction horizon, which represents how far in the future one aims
to predict.

Traditionally, time series are decomposed into the three components [14]:

1. Trend—This term refers to the general tendency exhibited by the time series. A time series can
present different types of trends, such as linear, logarithmic, exponential power, polynomial, etc.

2. Seasonality—This is a pattern of changes that represents periodic fluctuations of constant length.
This variations are originated by effects that are stable along with time, magnitude and direction.

3. Residual—This component represents the remaining, mostly unexplainable, parts of the time
series. It also describes random and irregular influences that, in case of being high enough,
can mask the trend and seasonality.

More decomposition patterns can be included in order to represent long-run cycles,
e.g., holiday effects. However, real-world time series are challenging to forecast due to meaningful
irregular components they incorporate.

An important aspect is also to determine if a time series is stationary. This means to verify whether
or not the mean and variance of the time series are constant over time. If a time series is not stationary,
some transformation techniques must be applied before one can apply some forecasting methods.

According to the number of variables involved, time series analysis can be divided into univariate
and multivariate analysis [15]. In the univariate case, a time series consists of a single observation
recorded sequentially. In contrast, in multivariate time series the values of more than one variables are
recorder at each time stamp. The interaction among such variables should be taken into account.

There are different techniques that can be applied to the problem of time series forecasting.
Such approaches can be roughly divided into two categories, linear and non-linear methods [16].
Linear methods try to model the time series using a linear function. The basic idea is that even if the
random component of a time series may prevent one from making any precise predictions, the strong
correlation among data allows to assume that the next observation can be determined by a linear
combination of the preceding observations, except for additive noise.

Non-linear methods are currently in use in the machine learning domain. These methods try
to extract a model, that can be non-linear, which describe the observed data, and then use the so
obtained model in order to forecast future values of the time series. Machine learning techniques have
gained popularity in the forecasting field, due to the fact that while conventional methods can achieve
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satisfactory results in linear problems, machine learning methods are suitable also for non-linear
modelling [15].

2.1. Related Work

The number of studies addressing the electricity consumption forecasting is increasing due to
several reasons, such as gaining knowledge about the demand drivers [17], or comprehending the
different energy consumption patterns in order to adopt new policies according to demand response
scenarios [18], or, again, measuring the socio-economic and environmental impact of energy production
for a more sustainable economy [19].

In the conventional approach, the Auto-Regressive and Moving Average (ARMA) is a very
common technique that arises as a mix of the Auto-Regressive (AR) and the Moving Average (MA)
models. In [6] Nowicka-Zagrajek and Weron applied the ARMA model to the California power market.
In another work, Chujai et al. [20] compared the Auto-Regressive Integrated Moving Average (ARIMA)
with ARMA on household electric power consumption. The results showed that the ARIMA model
performed better than ARMA at forecasting longer periods of time, while ARMA is better at shorter
periods of time. The ARIMA methods were applied in [21] by Mohanad et al. to predict short-term
electricity demand in Queensland (Australia) market. ARMA is usually applied on stationary stochastic
processes [6] while ARIMA on non-stationary cases [22].

Regression based methods are also popular in energy consumption studies. The use of the simple
regression model of the ambient temperature was proposed by Schrock and Claridge [23], where the
authors investigated a supermarket’s electricity use. In later studies, however, the use of multiple
regression analysis is preferred, due to the capability to handle more complex models. Lam et al. [24]
used such an approach to analyse office buildings in different climates in China. In another work,
Braun et al. [25] performed multiple regression analysis on gas and electricity usage in order to study
how the change in the climate affects the energy consumption in buildings. In a more recent work
Mottahedia et al [26] investigated the suitability of the multiple-linear regression to model the effect of
building shape on total energy consumption in two different climate regions.

As stated in the previous section, a significant part of recent studies in the literature is focussed on
time series forecasting using machine learning techniques. Among these techniques, Artificial Neural
Networks (ANN) have been extensively applied. In an early work presented by Nizami and
Ai-Garni [27], the authors developed a two-layered fed-forward ANN to analyse the relation between
electric energy consumption and weather-related variables. In another work, Kelo and Dudul [28]
proposed to use a wavelet Elman neural network to forecast short-term electrical load prediction
under the influence of ambient air temperature. In [29] Chitsaz et al. combined the wavelet and ANN
for short-term electricity load forecasting in micro-grids. In a more recent work, Zheng et al. [30]
developed a hybrid algorithm that combines similar days selection, empirical mode decomposition,
and long short-term memory neural networks to construct a prediction model for short-term load
forecasting. Other recent examples of using ANN for the problem of energy consumption prediction
are [31–33].

Despite the popularity of ANN, other novel-techniques are lately gaining attention. For instance,
Talavera-Llames et al. [34] adapted a Nearest Neighbours-based strategy to address the energy
consumption forecasting problem in a Big Data environment. Torres et al. [35] developed a novel
strategy based on Deep Learning to predict times series and tested such strategy on electricity
consumption data recorded in Spain from 2007 to 2016. Zheng et al. [36] also presents a Deep Learning
approach to deal with forecasting short term electric load time series. Galicia et al. [37] compared
Random Forest with Decision Trees, Linear Regression and the gradient-boosted trees on Spanish
electricity load data with a ten-minute frequency. Furthermore, Evolutionary Algorithms have been
applied to short-term forecasting energy demand by Castelli et al. in [38,39]. Burger and Moura [40]
tackled the forecasting of electricity demand by applying an ensemble learning approach that uses
Ordinary Least Squares and k-Nearest Neighbors. In [41], Papadopoulos and Karakatsanis explore
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the ensemble learning approach and compare four dfferent mehtods: seasonal autoregressive moving
average (SARIMA), seasonal autoregressive moving average with exogenous variable (SARIMAX),
random forests (RF) and gradient boosting regression trees (GBRT). Finally, Li et al. [42] proposed a
novel ensemble method for load forecasting based on wavelet transform, extreme learning machine
(ELM) and partial least squares regression.

For a more exhaustive review of the state of the art in the field of time series forecasting, we refer
the reader to, for example, Martínez-Álvarez et al. [16], where an extensive review of machine learning
methods is proposed, while Daut et al. [43] and Deb et al. [15] review conventional and artificial
intelligence methods.

3. Materials and Methods

In this section we will provide details about the data and the methods used in this paper.

3.1. Data

The dataset used in this work records the general electricity consumption in Spain (expressed
in MW) over a period of 9 years and 6 months, with a 10 min period between each measurement.
Thus, what is measured is the electricity consumption taken as a whole, not relative to a specific sector.
In total, the dataset is composed by 497.832 measurements, which go from 1 January 2007 at midnight
till 21 June 2016 at 11:40 p.m. The dataset is available on request.

Figure 1 shows both the AutoCorrelation Function (ACF) and the Partial AutoCorrelation Function
(PACF) for the dataset considered in this paper. Both graphs have a few significant lags but these
die out quickly, so we can conclude our series is stationary. In order to support this conclusions,
we have run different tests, namely the Ljung-Box, the Augmented Dickey–Fuller (ADF) and the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS). All the test have return a very low p-value, confirming
the stationarity of the series.

(a) (b)

Figure 1. Correlation plots for the original time series. (a) AutoCorrelation Function (ACF); (b) Partial
AutoCorrelation Function (PACF).

The original dataset has been pre-processed in order to be used, as in [35]. First, the attribute
corresponding to consumption has been extracted, and a consumption vector has been obtained.
After that, the consumption vector has been redistributed in a matrix depending on a historical
window, w, and a prediction horizon, h. The historical window, or data history (w) represents the
number of previous entries taken into consideration in order to train a model that will be used to
predict the subsequent values (h). This process is detailed in Figure 2.

In this study, the prediction horizon (h) has been set to 24, corresponding to a period of 4 h.
Moreover, different values of the data history have been used. In particular, w has been set to the
values 24, 48, 72, 96, 120, 144 and 168, corresponding to 4, 8, 12, 16, 20, 24 and 28 h, respectively.
The resulting datasets have been divided into 70% for the training set and 30% for the test set. Table 1
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provides the details of each dataset. Notice that for all the obtained datasets, the last 24 columns
represent the values to be predicted, and thus are not considered for training purposes.

Figure 2. Dataset pre-processing. w determines the amount of the historical data used, while h
determines the prediction horizon.

Table 1. Dataset information depending on the value of w.

w #Rows #Columns File Size (In MB)

24 20,742 48 6
48 20,741 72 9
72 20,740 96 11.9
96 20,739 120 14.9
120 20,738 144 17.9
144 20,737 168 20.9
168 20,736 192 23.9

3.2. Ensemble Learning

In the last few years, ensemble models are taking more relevance due to the good performance
obtained in several tasks like classification or regression problems [44]. These methods consist in
combining different learning models in order to improve the results obtained by each individual model.

The earliest works on ensemble learning were carried out in 1990s, e.g., [45–47], where it was
proven that multiple weak learning algorithms could be converted into a strong learning algorithm. In a
nutshell, ensemble learning [48,49] is a procedure where multiple learner modules are applied on a data
set to extract multiple predictions. Such predictions are then combined into one composite prediction.

Usually two phases are employed. In a first phase a set of base learners are obtained from training
data, while in the second phase the learners obtained in the first phase are combined in order to
produce a unified prediction model. Thus, multiple forecasts based on the different base learners are
constructed and combined into an enhanced composite model superior to the base individual models.
This integration of all good individual models into one improved composite model generally leads to
higher accuracy levels.

According to [48] there are three main reasons why ensemble learning is successful in ML.
The first reason is statistical. Models can be seen as searching a hypothesis space H to identify the best
hypothesis. However, since usually the datasets are limited, we can find many different hypotheses
in H which can fit reasonably well, and we cannot establish a priori which one will generalize better,
i.e., will perform the best on unseen data. This makes it difficult to choose among the hypotheses.
It follows that the use of ensemble methods can help to avoid this issue by using several models to get
a good approximation of the unknown true hypothesis.

The second reason is computational. Many models work by performing some form of local search
to minimize error functions. These searches can get stuck in local optima. An ensemble constructed by
starting the local search from many different points may provide a better approximation to the true
unknown function.

The third argument is representational. In many situations, the unknown function we are looking
for may not be included in H. However, a combination of several hypotheses drawn from H can
enlarge the space of representable functions, which could then also include the unknown true function.
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The most used and well-known of the basic ensemble methods are bagging, boosting and stacking.

Bagging in this scheme, a number of models are built, the results obtained by these models are
considered equally, and a voting mechanism is used in order to settle on the majority result.
In case of regression the average predictions is usually the final output.

Boosting is similar to bagging, but with one conceptual modification. Instead of assigning equal
weighting to models, boosting assigns different weights to classifiers, and derives its ultimate
result based on weighted voting. In case of regression a weighted average is usually the
final output.

Stacking builds its models using different learning algorithms and then a combiner algorithm is
trained to make the ultimate predictions using the predictions generated by the base algorithms.
This combiner can be any ensemble technique.

In this paper we have used a stacking approach, since we believe it to be the most suitable in
case of the regression problem considered in this work. Figure 3 shows a general scheme of such
approach. In the following section we will specify which learning algorithms have been used in the
scheme we propose. We can define a stacking ensemble scheme more formally in the following
way. Given a set of N different learning algorithms Lk, k = 1, . . . , N and the pair < x, y >,
with x = (x1, . . . , xw) representing the w recorded values and y = (xw+1, . . . , xw+h) the h values
to predict. Let mkj, k = 1, . . . , N, j = 1, . . . , h be the model induced by the learning algorithm Lk on
x to predict xw+j, and let f j be the generalizer function responsible for combining the models for
predicting such value. f j can be a generic function, such as the average, or a model induced by a
learning algorithm. Then, the estimated x̂w+j value is given by the expression:

x̂w+j = f j(m1j, . . . , mNj)

Figure 3. An example scheme of stacking ensemble learning.

Ensemble methods have been successfully applied for solving pattern classification, regression and
forecasting in time series problems [50,51]. For example, Adhikari [52] proposed a linear combination
method for time series forecasting that determines the combining weights through a novel
neural network structure. Bagnal et al. [53] proposed a method using an ensemble of classifiers
on different data transformations in order to improve the accuracy of time-series classification.
Authors demonstrated that the simple combination of all classifiers in one ensemble obtained better
performance than any of its components. Jin and Dong [51] proposed a deep neural network-based
ensemble method that integrates filtering views, local views, distorted views, explicit and implicit
training, subview prediction, and Simple Average for classification of biomedical data. In particular,
they used the Chinese Cardiovascular Disease cardiograms database. Chatterjee et al. [54] developed
an ensemble support vector machine algorithm for reliability forecasting of a mining machine.
This method is based on least square support vector machine (LS-SVM) with hyper parameters
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optimized by a Genetic Algorithm (GA). The output of this model was generalized from a combination
of multiple SVM predicted results in time series dataset. Additionally, the advantages of ensemble
methods for regression from different viewpoints such as strength-correlation or biasvariance was also
demonstrate in the literature [55].

Ensemble learning based methods have been also applied in energy time series forecasting
context. For example, Zang et al. [56] proposed a method, called extreme learning machine (ELM),
which was successfully applied on the Australian National Electricity Market data. Another example
was presented by Tan et al. in [57] where the authors proposed a price forecasting method based on
wavelet transform combined with ARIMA and GARCH models. The method was applied on Spanish
and PJM electricity markets. Fan et al. [58] proposed a ensemble machine learning model based on
Bayesian Clustering by Dynamics (BCD) and SVM. The proposed model was trained and tested on the
data of the historical load from New York City in order to forecasts the hourly electricity consumption.
Tasnim et al. [59] proposed a cluster-based ensemble framework to predict wind power by using an
ensemble of regression models on natural clusters within wind data. The method was tested on a large
number of wind datasets of locations across spread Australia.

Ensembles of ANNs have been recently applied in the literature with the aim of energy
consumption or price forecasting. For instance, the authors in [60] presented a building-level neural
network-based ensemble model for day-ahead electricity load forecasting. The method showed that it
outperforms the previously established best performing model by up to 50%, in the context of load
data from operational commercial and industrial sites. Jovanovic et al. [61] used three artificial neural
networks for prediction of heating energy consumption of a university campus. The authors tested the
neural networks with different parameter combinations, which, when used in an ensemble scheme,
achieved better results.

3.3. Methods

As already stated in Section 3.2, in our proposal we used a stacking ensemble scheme. In particular,
we employed a scheme formed by three base learning methods and a top method. The basic learning
methods are regression trees based on Evolutionary Algorithms, Artificial Neural Networks and
Random Forests. At the top level, we have used the Generalized Boosted Regression Models in order
to combine the predictions produced by the bottom level. The employed scheme is graphically shown
in Figure 4.

Figure 4. A graphical representation of the ensemble scheme used in this paper. NN: Artificial Neural
Network; RF: Random Forests; GBM: Generalized Boosted Regression Models.

In the following, we provide some basic notions regarding the methods used in the
ensemble scheme.

Evolutionary Algorithms (EAs) for Regression Trees EAs [62] are population-based strategies that
use techniques inspired by evolutionary biology such as inheritance, mutation, selection and
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crossover. Each individual i of the population represents a candidate solution to a given problem
and is assigned a fitness function, which is a measure of the quality of the solution represented
by i. Typically EAs start from an initial population consisting of randomly initialised individuals.
Each individual is evaluated in order to determine its fitness value. Then a selection mechanism
is used in order to select a number of individuals. Usually the selection is based on the fitness,
so that fitter individuals have more probabilities of being selected. Selected individuals generate
offspring, i.e., new solutions, by means of the application of crossover and mutation operators.
This process is repeated over a number of generations or until a good enough solution is found.
The idea is that better and better solutions will be found at each generation. Moreover, the use of
stochastic operators, such as mutation, allows EAs to escape from local optima. For the problem
tackled in this paper, each individual encodes a regression tree. A regression tree is a decision
tree similar to a classification tree [63]. Both classification and regression trees aim at modeling a
response variable Y by a vector of P predictor variables X = (X1, . . . , XP). The different is that
for classification trees, Y is qualitative and for regression trees Y is quantitative. In both cases Xi
can be continuous and/or categorical variables.

Regression trees are commonly used in regression-type problems, where we attempt to predict
the values of a continuous variable from one or more continuous and/or categorical predictor
variables. An advantage of using regression trees is that results can be easier to interpret.
Other greedy strategies have been used in order to obtained regression trees, for example [64,65].
The main challenge of such strategiesis that the search space is typically huge, rendering full-grid
searches computationally infeasible. Due to their search capabilities, EAs have proven that they
can overcome this limitation.

In this paper, we have used the R evtree package (from now on EVTree) [66], with the
following parameters:

• minbucket: 8 (minimum number of observations in each terminal node)
• minsplit: 100 (minimum number of observations in each internal node)
• maxdepth: 15 (maximum tree depth)
• ntrees: 300 (number of tree in the population)
• niterations: 1000 (maximum number of generations)
• alpha: 0.25 (complexity part of the cost function)
• operatorprob: with this parameter, we can specify, in list or vector form, the probabilities for

the following variation operators:

– pmutatemajor: 0.2 (Major split rule mutation, selects a random internal node r and
changes the split rule, defined by the corresponding split variable vr, and the split
point sr [66])

– pmutateminor: 0.2 (Minor split rule mutation is similar to the major split rule mutation
operator. However, it does not alter vr and only changes the split point sr by a minor
degree, which is defined by four cases describes in [66])

– pcrossover: 0.8 (Crossover probability)
– psplit: 0.2 (Split selects a random terminal-node and assigns a valid, randomly generated,

split rule to it. As a consequence, the selected terminal node becomes an internal node r
and two new terminal nodes are generated)

– pprune: 0.4 (Prune chooses a random internal node r, where r > 1, which has two
terminal nodes as successors and prunes it into a terminal node [66])

Artificial Neural Networks (ANNs) ANNs [67] are computational models inspired by the structure
and functions of biological neural networks. The basic unit of computation is the neuron,
also called node, which receives input from other nodes or from an external source and
computes an output. In order to compute such output, the node applies a function f called
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the Activation Function, which has the purpose of introducing non-linearity into the output.
Furthermore, the output is produced only if the inputs are above a certain threshold.

Basically, an ANN creates a relationship between input and output values and is composed of
interconnected nodes grouped in several layers. Among such layers we can distinguish the outer
ones, called input and output layers, from the “internal” ones, called hidden layers. In contrast to
biological neurons networks, ANNs usually consider only one type of node, in order to simplify
the model calculation and analysis.

The intensity of the connection between nodes is determined by weights, which are modified
during the learning process. Therefore, the learning process consists in adapting the connections
to the data structure that model the environment and to characterize its relations.

According to the structure, there are different types of ANN. The suitability of the structure
depends on several factors as, for example, the quality and the volume of the input data.
The simplest type of ANN is the so called feedforward neural network. In such networks,
nodes from adjacent layers are interconnected and each connection has a weight associated to it.
The information moves forward from the input to the output layer through the hidden nodes.
There is only one node at the output layers, which provides the final results of the network,
being it a class label or a numeric value.

In this paper we have used the nnet package of R [68], a package for feed-forward neural networks
with a single hidden layer, and for multinomial log-linear models.

The following parameters were used in this paper:

• size: 10 (number of hidden units)
• skip: true (add skip-layer connections from input to output)
• MaxNWts: 10,000 (maximum number of weights allowed)
• maxit: 1000 (maximum number of iterations)

Random Forests (RF) The term Random Forest was introduced by Breinman and Cutle in [69],
and refers to a set of decision trees which form an ensemble of predictors. Thus, RF is basically
an ensemble of decision trees, where each tree is trained separately on a idependent randomly
selected training set. It follows that each tree depends on the values of an input dataset sampled
independently, with the same distribution for all trees.

In other words, the trees generated are different since they are obtained from different training
sets from a bootstrap subsampling and different random subsets of features to split on at each
tree node. Each tree is fully grown, in order to obtain low-bias trees. Moreover, at the same
time, the random subsets of features result in low correlation between the individual trees,
so the algorithm yields an ensemble that can achieve both, low bias and low variance [70].
For classification, each tree in the RF casts a unit vote for the most popular class at input.
The final result of the classifier is determined by a majority vote of the trees. For regression,
the final prediction is the average of the predictions from the set of decision trees.

The method is less computationally expensive than others tree-based classifiers that adopt
bagging strategies, since each tree is generated by taking into account only a portion of the input
features [71].

In this paper, we have used the implementation from the randomForest package of R [72],
which provides a R interface to the original implementation by Breiman and Cutle. For this study,
the algorithm is used with the following parameters:

• ntree : 100 (number of trees to be built by algorithm).
• maxnodes: 100 (maximum number of terminal nodes trees in the forest can have).
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Generalized Boosted Regression Models (GBM) [73,74]. This method iteratively trains a set of
decision trees. The current ensemble of trees is used in order to predict the value of each
training example. The prediction errors are then estimated, and poor predictions are adjusted,
so that in the next iterations the previous mistakes are corrected. Gradient boosting involves
three elements:

• A loss function to be optimised. Such function is problem dependent. For instance,
for regression a squared error can be used and for classification we could use logarithmic
loss.

• A weak learner to make predictions. Regression trees are used to this aim, and a greedy
strategy is used in order to build such trees. This strategy is based on using a scoring
function used each time a split point has to be added to the tree. Other strategies are
commonly adopted in order to constrain the trees. For examples one may limit the depth of
the tree, the number of splits or the number of nodes.

• An additive model to add trees to minimise the loss function. This is done in a sequential
way, and the trees already contained in the model built so far are not changed. In order to
minimise the loss during this phase, a gradient descend procedure is used. The procedure
stops when a maximum number of trees has been added to the model or once there is no
improvement in the model.

Overfitting is common in gradient boosting, and usually, some regularisation methods are
used in order to reduce it. These methods basically penalise various parts of the algorithm.
Usually some mechanisms are used in order to impose constraints on the construction of decision
trees, for example limit the depth of the trees, the number of nodes or leafs or the number of
observation per split.

Another mechanism is shrinkage, which is basically weighting the contribution of each tree to
the sequential sum of the predictions of the trees. This is done with the aim of slowing down the
learning rate of the algorithm. As a consequence the training takes longer, since more trees are
added to the model. In this way a trade-off between the learning rate and the number of trees
can be reached.

In this paper we have used the GBM package of R [75] with the following parameters:

• distribution: Gaussian (function of the distribution to use)
• n.trees: 3000 (total number of trees, i.e., the number of gradient boosting iteration)
• interaction.depth: 40 (maximum depth of variable interactions)
• shrinkage: 0.9 (learning rate)
• n.minobsinnode: 3 (minimum number of observations in the trees terminal nodes)

All the parameters used in this paper were set after running preliminary experiments on the data.
We have selected the strategies forming our ensemble scheme based on their popularity and

good results achieved in similar problems. Moreover, we have selected algorithms that base the
predictions on decision trees, and complemented the possible weakness of such methods by using
Artificial Neural Networks. In particular, both RF and GBM are based on an ensemble of decision
trees, but the set of trees is obtained in a different way, with RF building each tree independently.
EAs provide the ability of escaping local optima, thus we believe that these methods complement each
other. Moreover, in order to overcome possible representation limitations of decision trees, we have
used NNs, which can handle very well non-linear learning and are tolerant to noise. GBM training
generally takes longer than RF, since trees are built sequentially. Moreover, decision trees obtained
are prone to overfitting, so we have used it on the top layer, where the predictions are based on three
columns, i.e., the output of the three base learners.
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The final ensemble scheme we proposed is depicted in Figure 5. We can see that the training set
is used in order to obtain the predictions of the base level, consisting of RF, NN and EVTree. The so
obtained predictions are then used by the top layer (GBM) in order to produce the final predictions for
each problem.

Figure 5. A scheme of the ensemble learning strategy used in this paper. w determines the size of the
historical window used, while h determines the prediction horizon.

Then, according to the notation introduced in Section 3.2, L1 = EVTree, L2 = ANN and L3 = RF,
m1j, m2j and m3j are the models induced by EVTree, ANN and RF, respectively, while f j is the model
produced by GBM. Thus the final predictions are produced by GBM, which builds the model using the
predictions generated by the three bottom layer methods.
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4. Results

In this section we provide the results obtained on the dataset described in Section 3.1 and draw
the main conclusions. In order to assess the performances of both the ensemble scheme and the
base methods, we used five measures commonly used in regression: the mean relative error (MRE),
the mean absolute error (MAE), the symmetric mean absolute percentage error (SMAPE), the coefficient
of determination R2, and the root mean squared error (RMSE), which are defined as [16]:

MRE =
1
n

n

∑
i=1

|Yi − Ŷi|
Yi

(1)

MAE =
1
n

n

∑
i=1
|Yi − Ŷi| (2)

sMAPE =
1
n

n

∑
i=1

2|̇Yi − Ŷi|
|Yi + Ŷi|

(3)

R2 = 1−
n

∑
i=1

(Yi − Ŷi)
2

|Yi + Yi|
(4)

RMSE =

√
1
n ∑

i=1
(Yi − Ŷi)2 (5)

In the above equations, Ŷi is the predicted value, Yi the real value and Yi is the mean of the
observed data.

Figures 6–10 show the results obtained on all the problems (h) for each historical window (w) used
by both the algorithms employed in the bottom layer (EVTree, NN and RF) and by the top layer of the
ensemble scheme (GBM). The average results obtained are also shown in the bar graphs. The detailed
results obtained by the ensemble scheme and by the base methods can be found in Appendix A,
and in particular in Tables A1–A5, where results are grouped by the size of the historical window used,
as indicated by the first row.

The first and main conclusion that we can draw from these graphs is that the best results were
obtained when all the predictions of the baseline methods were combined by GBM at the top level of
the ensemble scheme. In particular, when using a historical window of 168 measuraments, the average
MRE obtained was 1.88, while the R2 was 0.97, the MAE was 513.50, the RMSE 714.56 and the average
sMAPE was 0.02 . In order to assess the significance of the results with respect to the results obtained,
we applied a statistical paired two-tailed t-test with confidence level of 1%. According to this test,
all the results are significantly different, a part from the MRE, MAE, RMSE and sMAPE obtained by
EVTree and NN when historical windows of 120, 96 and 48 were used. Moreover, when w was set to 24,
all the results obtained by the bottom layer methods were not significantly different, as far as MRE,
MAE and sMAPE are concerned. When we consider MAE, RMSE and sMAPE, results obtained by RF
and NN are considered equal for a historical window of 168. The same holds when R2 is considered,
moreover, in the case of R2, results obtained by these two methods are not considered significantly
different for a historical window of 120 as well. Considering again R2, results obtained by EVTree and
NN are considered equal for historical windows of size 120 and 72. The results produced by the top
layer were always significantly better in all the cases but when considering R2 for a historical window
equal to 120. In this case results obteind by RF are not significantly different. Results obtained by
RF and NN are not considered different for historical window values of 144 and 120 as far as RMSE
is concerned.

Results are summarized in Table 2, where a ranking of the methods is shown, according to the
MRE obtained.
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Figure 6. Comparison of the MRE obtained by the base algorithms and the ensemble scheme on each
subproblem for each value of w used. (a) w = 168; (b) w = 144; (c) w = 120; (d) w= = 96; (e) w = 72;
(f) w = 48; (g) w = 24; (h) average MRE.
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Figure 7. Comparison of the MAE obtained by the base algorithms and the ensemble scheme on each
subproblem for each value of w used. (a) w = 168; (b) w = 144; (c) w = 120; (d) w= = 96; (e) w = 72;
(f) w = 48; (g) w = 24; (h) average MAE.
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Figure 8. Comparison of the R2 obtained by the base algorithms and the ensemble scheme on each
subproblem for each value of w used. (a) w = 168; (b) w = 144; (c) w = 120; (d) w= = 96; (e) w = 72;
(f) w = 48; (g) w = 24; (h) average R2.
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Figure 9. Comparison of the sMAPE obtained by the base algorithms and the ensemble scheme on
each subproblem for each value of w used. (a) w = 168; (b) w = 144; (c) w = 120; (d) w= = 96; (e) w = 72;
(f) w = 48; (g) w = 24; (h) average sMAPE.
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Figure 10. Comparison of the RMSE obtained by the base algorithms and the ensemble scheme on
each subproblem for each value of w used. (a) w = 168; (b) w = 144; (c) w = 120; (d) w= = 96; (e) w = 72;
(f) w = 48; (g) w = 24; (h) average rMSE.
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Table 2. Ranking of the methods according to their performances obtained on different values of w,
according to the MRE.

168 144 120 96 72 48 24

GBM GBM GBM GBM GBM GBM GBM
NN NN RF RF RF RF RF,NN,EV
RF RF NN,EV NN,EV EV NN,EV
EV EV NN

In general, we can also notice the degradation of performances of NN when the historical window
used is reduced. In fact, for a historical window of 168, NN obtains the best results among the
three bottom layer methods, while for smaller historical windows, starting from 120 measurements,
the predictions obtained by this method are always worst than those obtained by RF, and are
comparable or worst than the predictions produced by EVTree. Similar consideration can be extracted
for the other measures.

We can also notice that the predictions are less and less accurate for increasing values of p,
meaning that it is easier to predict the very near future demand than the medium-far future demand.
In this sense, we can also observe that NN performs really well on the first two problems. In fact,
for values of p equals to 1 or 2, in many cases the predictions obtained by NN are superior to those
obtained by the top layer. However, as the value of p increments, the results obtained by the top layer
are much better than the results achieved by the three bottom methods. Basically the real difference is
made when the problems become harder and harder.

Finally, in Figure 11, we present a comparison of the real and predicted values for a subset of the
time series when a historical window of 168 was used. For readability reasons, we have selected two
subsets of 250 and 1000 readings, respectively shown in Figure 11a,b. We have included the figure
regarding 250 in order to provide a more detailed view of the predictions. We can notice that the
predictions are very accurate, and that they can describe in a very precise way the original time series.
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Figure 11. Comparison of real and predicted values for a subset of the time serie, for w = 168.
(a) 250 readings; (b) 1000 readings.

In order to globally assess the performance of our proposal, we have compared the results
achieved by our ensemble scheme with the results obtained by the single components used in our
proposal, i.e., Random Forest (RF), Neural Networks (NN) and Evolutionary Decition Trees (EV),
and the results obtained by other four state of the art methods: linear regression (LR), ARMA and
ARIMA, Deep Learning (DL) and a decision tree algorithm (DT). In particular we have taken into
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account linear regression, as a reference time series forecasting strategy [76,77]. The well-known
stochastic gradient descent method has been used to minimise the mean square error for the training
set in order to obtain the model. We have used a decision tree greedy algorithm [78] that performs
a recursive binary partitioning of the feature space in order to build a decision tree. This algorithm
uses the information gain in order to build the decision trees, and we have used the default parameter
as in the package rpart of R [79]. For the conventional methods ARMA and ARIMA, we have used
a tool [80] for determining the order of auto-regressive (AR) terms (p), the degree of differencing
(d) and the order of moving-average (MA) terms (q). The values obtained are p = 4, d = 1 and
q = 3. The deep learning-based methodology has been designed using H2O framework of R [81].
This framework implements a Feed Forward Neural Network (also called multi-layer perceptron) that
can be launched in distributed environments. The network is trained with stochastic gradient descend
using back-propagation algorithm. In order to set the parameters for this algorithm, we have used a
grid search approach. As a consequence, we have used a hyperbolic tangent function as activation
function, the number of hidden layer was set to 3 and the number of neurons to 30. The distribution
function was set to Poisson and in order to avoid overfitting, one of two regularization parameter
(Lambda) has ben set to 0.001. The other parameter were set as default as in [35].

Table 3 shows the results of such comparison for each value of historical window considered.
We can notice that our proposal outperforms all the other methods, obtaining the best results in
all the historical window values considered. This is particularly noticeable for smaller values of w.
Another conclusion that we can draw from the table is that LR and NN obtains good results, which are
comparable, especially on higher values of the historical window w. Among the single methods,
RF obtains, in general, good results, especially for smaller values of historical. It can be noticed that RF
achieves better results than LR and NN strategies in all cases except for w values 144 and 168, while it
outperforms DL and EV in all cases. In general, the classical strategies ARMA and ARIMA do not
perform well on this problem. DT does not perform well on this problem either. This is probably
due to the greedy strategy used by this algorithm, which may cause it to get stuck in some local
optima. The same considerations may be done for GBM, even if the ensemble nature of this algorithm
provides an advantage over DT, and so the results obtained are better. In general we can conclude that
the results obtained on this problem by the ensemble scheme are satisfactory, as they achieve more
accurate predictions for this short-term electricity consumption forecast problem.
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Table 3. Average results for different historical window values. Standard deviation between brackets.

w LR ARMA ARIMA DL DT GBM RF EV NN ENSEMBLE

24

MRE 4.44 (2.27) 7.67 (5.37) 8.82 (5.31) 4.51 (0.52) 9.52 (1.55) 8.07 (3.82) 4.39 (2.13) 4.49 (1.91) 4.39 (2.23) 3.58 (1.65)
R2 0.86 (0.11) 0.56 0.45() 0.50 (0.45) 0.85 (0.03) 0.52 (0.14) 0.53 (0.37) 0.85 (0.11) 0.84 (0.11) 0.87 (0.11) 0.89 (0.08)
MAE 1224.06 (613.04) 2096.85 (1440.9) 2335.87 (1339.15) 1221.30 (153.89) 2570.06 (419.80) 2179.40 (1016.69) 1200.82 (564.23) 1232.31 (512.40) 1212.29 (605.33) 994.40 (450.33)
RMSE 1541.10 (731.72) 2564.07 (1691.68) 2854.95 (1596.35) 1712.24 (229.01) 3167.26 (507.99) 2847.41 (1322.07) 1619.18 (719.97) 1686.17 (702.20) 1530.60 (726.11) 1373.46 (611.06)
sMAPE 0.04 (0.02) 0.07 (0.05) 0.08 (0.05) 0.04 (0.01) 0.09 (0.01) 0.08 (0.04) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.03 (0.02)

48

MRE 4.28 (2.15) 8.67 (4.71) 8.26 (4.73) 3.46 (0.33) 9.45 (1.48) 6.59 (2.71) 3.69 (1.71) 3.98 (1.52) 4.27 (2.16) 2.95 (1.19)
R2 0.87 (0.10) 0.42 (0.48) 0.56 (0.39) 0.92 (0.02) 0.53 (0.13) 0.71 (0.19) 0.91 (0.07) 0.88 (0.07) 0.88 (0.10) 0.93 (0.05)
MAE 2416.92 (1306.55) 2162.29 (1177.52) 1183.61 (583.02) 940.30 (68.74) 2533.13 (402.45) 1767.13 (722.83) 683.95 (212.99) 882.94 (258.51) 914.31 (372.27) 661.85 (220.79)
RMSE 3088.10 (1695.05) 2673.49 (1451.80) 1502.38 (702.01) 1278.91 (96.08) 3123.00 (484.50) 2307.27 (938.98) 1346.35 (559.10) 1501.66 (569.11) 1478.45 (686.62) 1123.27 (448.52)
sMAPE 0.04 (0.02) 0.09 (0.05) 0.08 (0.04) 0.03 (0.01) 0.09 (0.01) 0.07 (0.03) 0.04 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01)

72

MRE 4.20 (2.11) 8.08 (4.54) 11.37 (10.43) 3.39 (0.30) 9.33 (1.39) 5.73 (2.23) 2.93 (1.16) 3.48 (1.18) 4.13 (2.05) 2.64 (0.99)
R2 0.88 (0.09) 0.55 (0.43) −0.07 (1.97) 0.91 (0.02) 0.54 (0.11) 0.77 (0.15) 0.94 (0.04) 0.91 (0.05) 0.88 (0.09) 0.94 (0.03)
MAE 1160.92 (568.26) 2240.28 (1253.74) 2964.83 (2665.97) 933.16 (57.97) 2501.64 (382.32) 1554.40 (616.75) 807.90 (311.53) 958.09 (321.24) 1135.84 (551.56) 733.53 (274.41)
RMSE 1479.29 (680.59) 2728.97 (1490.84) 3562.36 (3098.46) 1268.38 (70.18) 3088.75 (457.78) 2062.79 (819.53) 1095.35 (402.20) 1308.87 (450.01) 1452.17 (664.60) 1002.69 (372.10)
sMAPE 0.04 (0.02) 0.08 (0.05) 0.10 (0.08) 0.03 (0.01) 0.09 (0.01) 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.04 (0.02) 0.03 (0.01)

96

MRE 3.57 (1.57) 4.66 (1.81) 14.03 (13.00) 3.12 (0.42) 9.40 (1.45) 5.33 (2.08) 2.78 (1.04) 3.42 (1.15) 3.55 (1.56) 2.57 (0.97)
R2 0.91 (0.05) 0.86 (0.08) −0.79 (3.57) 0.92 (0.02) 0.53 (0.12) 0.79 (0.13) 0.94 (0.03) 0.91 (0.05) 0.91 (0.05) 0.95 (0.03)
MAE 989.02 (429.51) 1264.58 (479.21) 3689.22 (3335.65) 852.76 (82.42) 2522.55 (397.32) 1461.03 (555.86) 768.15 (278.34) 942.47 (312.53) 974.30 (420.29) 714.16 (266.36)
RMSE 1279.62 (522.56) 1619.73 (613.18) 4562.39 (4075.72) 1179.32 (114.33) 3104.58 (472.31) 1959.78 (735.49) 1032.84 (358.21) 1277.09 (431.31) 1262.61 (513.00) 969.66 (351.15)
sMAPE 0.04 (0.02) 0.04 (0.02) 0.12 (0.09) 0.03 (0.01) 0.09 (0.01) 0.05 (0.02) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.02 (0.01)

120

MRE 3.33 (1.37) 5.21 (1.87) 6.79 (2.53) 2.98 (0.28) 9.08 (1.12) 5.02 (1.81) 2.45 (0.79) 3.19 (0.95) 3.15 (1.41) 2.38 (0.81)
R2 0.92 (0.05) 0.84 (0.08) 0.73 (0.14) 0.94 (0.02) 0.55 (0.10) 0.81 (0.11) 0.96 (0.02) 0.93 (0.04) 0.92 (0.05) 0.96 (0.02)
MAE 932.07 (381.65) 1423.16 (499.93) 1858.88 (682.36) 814.90 (48.48) 2440.62 (330.11) 1368.47 (477.79) 683.95 (212.99) 882.94 (258.51) 914.31 (372.27) 661.85 (220.79)
RMSE 1215.03 (475.89) 1758.60 (623.36) 2282.80 (817.39) 1094.97 (72.06) 3047.58 (430.15) 1857.81 (655.27) 920.01 (287.27) 1184.92 (354.34) 1197.00 (464.15) 905.00 (300.87)
sMAPE 0.03 (0.01) 0.05 (0.02) 0.07 (0.03) 0.03 (0.01) 0.09 (0.01) 0.05 (0.02) 0.02 (0.01) 0.03 (0.01) 0.03 (0.01) 0.02 (0.01)

144

MRE 2.15 (0.77) 2.57 (0.91) 7.63 (2.54) 2.32 (0.29) 8.86 (1.01) 4.49 (1.54) 2.22 (0.71) 3.15 (0.90) 2.16 (0.78) 1.94 (0.69)
R2 0.96 (0.02) 0.95 (0.03) 0.66 (0.17) 0.96 (0.01) 0.57 (0.09) 0.85 (0.09) 0.96 (0.02) 0.93 (0.03) 0.96 (0.02) 0.97 (0.02)
MAE 589.62 (211.22) 712.61 (247.39) 2048.65 (653.32) 624.32 (54.92) 2366.77 (403.55) 1220.77 (403.55) 608.67 (188.85) 866.84 (244.39) 589.27 (211.57) 530.28 (184.26)
RMSE 845.03 (302.78) 969.86 (335.40) 2579.71 (835.12) 852.89 (85.96) 2966.20 (355.50) 1694.63 (574.47) 837.13 (269.50) 1184.39 (352.66) 845.01 (303.06) 745.31 (278.77)
sMAPE 0.02 (0.01) 0.03 (0.01) 0.07 (0.02) 0.02 (0.01 0.08 (0.01) 0.04 (0.02) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)

168

MRE 2.07 (0.77) 2.43 (0.97) 6.92 (2.97 ) 2.46 (0.29) 8.79 (0.96) 4.45 (1.56) 2.15 (0.69) 3.09 (0.84) 2.08 (0.74) 1.88 (0.67)
R2 0.97 (0.02) 0.96 (0.03) 0.71 (0.19) 0.96 (0.01) 0.58 (0.08) 0.85 (0.09) 0.97 (0.02) 0.93 (0.03) 0.97 (0.02) 0.98 (0.02)
MAE 562.39 (209.83) 660.20 (261.58) 1836.62 (757.95) 661.24 (51.93) 2386.25 (296.70) 1712.81 (611.79) 585.67 (182.05) 847.30 (226.72) 571.54 (217.91) 513.50 (181.09)
RMSE 785.84 (296.05) 889.18 (356.54) 2332.30 (965.02) 901.78 (84.22) 2988.47 (370.41) 1712.81 (611.78) 792.58 (303.12) 1145.55 (324.05) 795.58 (303.12) 714.56 (266.00)
sMAPE 0.02 (0.01) 0.02 (0.01) 0.07 (0.02) 0.02 (0.01 0.08 (0.01) 0.04 (0.02) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)



Energies 2018, 11, 949 22 of 31

5. Conclusions and Future Works

Accurate short-term forecasting regarding the electric energy demand would provide several
benefits, both economical and environmental. For instance, predictions can be taken into account
in order to reduce the costs of energy productions, decreasing in the same way the impact on the
environment. The predictions are made by taking into consideration data regarding the past demand
of electricity, i.e., taking into account historical data. In short-term forecasting, the aim is to be able to
predict the near future demand.

In this paper, we have approached the electric energy short-term forecasting problem with a
methodology based on ensemble learning. Ensemble learning allows to combine the predictions
made by different learning mechanisms in order to achieve predictions that are usually more accurate.
More specifically, we have used a stacking ensemble learning scheme, where two levels of learning
methods are used. The prediction made by the first level methods are passed to a top method which
combines them in order to produce the final forecastings. In this paper, we have used three base
learning methods, i.e, regression trees based on Evolutionary Computation, Random Forest and
Artificial Neural Networks. At the top layer we have used an algorithm based on Gradient Boosting.
We have considered different historical windows, i.e., different amount of historical data used in order
to obtain a prediction, and we have focused on predicting the electricity demand of the following four
hours. We have compared the results obtained by the ensemble method with the results obtained by
the single methods and by linear regression and a decision tree algorithm. Predictions obtained by
the ensemble scheme were always superior to the result of the other methods. We have also observed
that some methods, like NN, are able to make very precise predictions in the very near future, but that
results degenerates the further in the future we aim to predict. Moreover, when the size of historical
windows used is small, results are significantly improved when the ensemble scheme is employed.
This is due to the degradation in performances of single methods that need the support of more
historical data in order to achieve acceptable results.

As for future works, we intend to explore other ensemble schemes, using different methods,
for example methods based on support vector machines, deep learning [82] or methods based on SP
Theory of Intelligence [83]. Moreover, we are planning on using other datasets, both regarding the
electric energy consumption, but also other kind of time series, in order to check if our approach can
be generalized to other kind of problems.
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Appendix A. Detailed Results of the Ensemble Scheme

Table A1. MRE obtained for each historical window considered and each problem. In the table EV stands for EVTree, RF for Random Forest, NN for Neural Network.
GBM stand for the Gradient Boost Models, the method used at the top level, and thus represent the final MRE obtained by the ensemble method.

h
w 168 144 120 96 72 48 24

EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM

1 1.15 0.66 0.53 0.57 0.98 0.67 0.55 0.59 1.08 0.58 0.57 0.64 1.01 0.70 0.57 0.63 1.11 0.69 0.59 0.64 0.93 0.73 0.59 0.64 0.94 0.74 0.59 0.64
2 1.63 0.96 0.98 0.75 1.58 0.98 0.78 0.82 1.44 1.03 0.88 0.93 1.36 1.05 0.88 0.95 1.30 1.06 0.89 0.97 1.39 1.09 0.91 0.96 1.43 1.15 0.92 1.00
3 1.81 1.18 1.10 0.95 1.75 1.21 1.01 1.01 1.83 1.27 1.28 1.21 1.79 1.34 1.27 1.23 1.77 1.32 1.33 1.31 1.86 1.42 1.34 1.31 1.79 1.53 1.35 1.37
4 2.10 1.28 1.14 1.09 2.09 1.33 1.19 1.13 1.97 1.43 1.54 1.38 2.08 1.45 1.56 1.41 2.10 1.48 1.63 1.43 2.10 1.60 1.64 1.50 2.09 1.79 1.66 1.65
5 2.31 1.46 1.26 1.16 2.11 1.53 1.38 1.27 2.30 1.65 1.87 1.54 2.22 1.70 1.85 1.58 2.29 1.72 1.98 1.63 2.34 1.86 1.98 1.73 2.58 2.11 2.00 1.85
6 2.57 1.54 1.40 1.32 2.46 1.63 1.51 1.38 2.34 1.80 2.15 1.69 2.53 1.86 2.13 1.76 2.37 1.90 2.30 1.78 2.79 2.11 2.29 1.95 2.76 2.42 2.34 2.14
7 2.71 1.69 1.55 1.43 3.23 1.76 1.64 1.47 2.70 2.02 2.34 1.87 2.73 2.11 2.42 1.94 2.77 2.14 2.51 1.99 2.87 2.40 2.64 2.15 3.17 2.76 2.66 2.38
8 2.63 1.83 1.67 1.54 2.80 1.91 1.80 1.56 2.73 2.21 2.65 2.06 2.92 2.35 2.70 2.10 2.99 2.38 2.79 2.22 3.23 2.68 2.94 2.37 3.49 3.11 2.97 2.76
9 2.90 1.91 1.84 1.63 2.99 2.00 1.99 1.69 2.98 2.28 2.96 2.21 2.99 2.43 3.00 2.30 3.20 2.50 3.23 2.29 3.37 2.82 3.19 2.50 3.90 3.34 3.36 2.89

10 2.92 2.07 2.01 1.75 3.45 2.13 2.12 1.81 3.15 2.43 3.21 2.33 3.33 2.66 3.32 2.37 3.30 2.70 3.52 2.46 3.58 3.05 3.58 2.66 3.75 3.71 3.68 3.07
11 3.23 2.21 2.10 1.86 3.21 2.23 2.21 1.88 3.40 2.58 3.43 2.53 3.57 2.81 3.56 2.48 3.27 2.85 3.77 2.49 3.86 3.36 3.85 2.83 4.15 4.00 4.02 3.30
12 3.24 2.24 2.20 1.90 3.58 2.28 2.28 1.96 3.47 2.63 3.45 2.53 3.62 2.92 3.72 2.70 3.66 2.99 4.14 2.74 4.30 3.70 4.10 3.04 4.55 4.33 4.33 3.56
13 3.26 2.36 2.25 1.98 3.21 2.39 2.36 2.02 3.71 2.75 3.69 2.63 3.72 3.07 3.77 2.79 3.90 3.20 4.44 2.82 4.19 3.92 4.54 3.22 4.79 4.69 4.71 3.84
14 3.58 2.50 2.30 2.08 3.29 2.48 2.42 2.10 3.50 2.81 3.86 2.63 3.75 3.20 4.19 2.75 4.12 3.37 4.56 3.00 4.59 4.21 4.92 3.29 4.99 4.95 5.04 3.90
15 3.45 2.43 2.37 2.16 3.41 2.56 2.48 2.21 3.59 2.83 4.09 2.66 4.05 3.24 4.43 2.93 3.91 3.41 5.09 2.93 4.79 4.42 5.19 3.38 5.63 5.19 5.42 4.29
16 3.54 2.53 2.47 2.37 3.51 2.62 2.57 2.30 3.88 2.91 4.23 2.80 4.24 3.34 4.57 3.06 4.25 3.51 5.16 3.05 5.21 4.65 5.35 3.53 5.40 5.46 5.76 4.24
17 3.52 2.58 2.48 2.36 3.89 2.70 2.58 2.36 3.77 2.98 4.40 2.88 4.24 3.40 4.90 3.12 4.24 3.61 5.73 3.20 5.07 4.86 5.87 3.70 5.74 5.82 6.09 4.51
18 3.75 2.61 2.55 2.27 3.70 2.69 2.65 2.28 3.78 2.99 4.48 2.86 4.02 3.42 4.84 3.18 4.12 3.67 5.93 3.37 5.37 5.11 6.14 3.77 6.03 6.00 6.45 4.75
19 3.55 2.70 2.62 2.41 3.65 2.77 2.72 2.47 4.20 2.99 4.53 3.01 3.97 3.47 5.18 3.21 4.46 3.77 6.22 3.35 5.37 5.29 6.40 3.96 6.28 6.19 5.74 4.91
20 3.75 2.78 2.78 2.55 3.99 2.81 2.87 2.56 3.95 3.12 4.66 3.12 4.24 3.57 5.19 3.38 4.50 3.87 6.49 3.54 5.55 5.38 6.54 4.08 6.14 6.45 6.89 5.17
21 4.02 2.91 2.89 2.72 4.05 3.01 2.93 2.80 4.10 3.23 4.64 3.28 4.94 3.85 5.13 3.75 4.89 4.09 6.26 3.74 5.49 5.63 6.57 4.18 6.55 6.79 6.84 5.45
22 4.02 2.95 3.01 2.63 4.06 3.09 3.08 2.85 4.14 3.34 4.76 3.32 4.79 4.12 5.26 3.88 4.93 4.39 6.55 3.95 5.98 6.03 7.14 4.72 6.85 7.16 7.16 5.63
23 4.38 3.05 3.16 2.83 4.14 3.16 3.24 2.95 4.40 3.43 0.85 3.44 5.14 4.33 5.38 4.07 5.01 4.70 6.71 4.03 5.71 6.08 7.24 4.63 7.21 7.62 7.53 6.10
24 4.13 3.08 3.30 2.93 4.46 3.21 3.36 3.04 4.21 3.48 5.03 3.48 4.89 4.43 5.39 4.09 4.98 5.00 7.37 4.37 5.68 6.30 7.59 4.78 7.52 7.97 7.86 6.60

avg 3.09 2.15 2.08 1.88 3.15 2.22 2.16 1.94 3.19 2.45 3.15 2.38 3.42 2.78 3.55 2.57 3.48 2.93 4.13 2.64 3.98 3.70 4.27 2.95 4.49 4.39 4.39 3.58

stdev 0.84 0.69 0.75 0.67 0.90 0.71 0.78 0.69 0.95 0.80 1.41 0.81 1.15 1.04 1.56 0.97 1.18 1.16 2.05 1.00 1.52 1.71 2.16 1.20 1.91 2.14 2.23 1.65
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Table A2. R2 obtained for each historical window considered and each problem. In the table EV stands for EVTree, RF for Random Forest, NN for Neural Network.
GBM stand for the Gradient Boost Models, the method used at the top level, and thus represent the final R2 obtained by the ensemble method.

h
w 168 144 120 96 72 48 24

EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM

1 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00
2 0.98 0.99 1.00 1.00 0.98 0.99 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
3 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.98
4 0.97 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.97 0.98 0.98 0.99 0.97 0.98 0.98 0.99 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.97 0.98 0.98
5 0.96 0.98 0.99 0.99 0.97 0.98 0.99 0.99 0.96 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.96 0.98 0.97 0.98 0.96 0.97 0.97 0.98 0.95 0.97 0.97 0.97
6 0.96 0.98 0.99 0.99 0.96 0.98 0.98 0.99 0.96 0.98 0.97 0.98 0.96 0.97 0.97 0.98 0.96 0.97 0.96 0.98 0.95 0.96 0.96 0.97 0.95 0.95 0.96 0.96
7 0.95 0.98 0.98 0.99 0.93 0.98 0.98 0.99 0.95 0.97 0.96 0.97 0.95 0.97 0.96 0.97 0.95 0.97 0.95 0.97 0.94 0.95 0.95 0.96 0.93 0.94 0.95 0.96
8 0.95 0.98 0.98 0.98 0.95 0.98 0.98 0.98 0.95 0.97 0.95 0.97 0.94 0.96 0.95 0.97 0.94 0.96 0.94 0.96 0.93 0.94 0.94 0.96 0.91 0.93 0.94 0.94
9 0.94 0.97 0.97 0.98 0.94 0.97 0.97 0.98 0.94 0.96 0.94 0.96 0.94 0.96 0.94 0.96 0.93 0.95 0.94 0.96 0.92 0.94 0.93 0.96 0.89 0.91 0.92 0.93

10 0.94 0.97 0.97 0.98 0.92 0.97 0.97 0.98 0.93 0.96 0.93 0.96 0.93 0.95 0.93 0.96 0.93 0.95 0.92 0.96 0.91 0.93 0.92 0.95 0.90 0.90 0.91 0.93
11 0.94 0.97 0.97 0.98 0.93 0.97 0.96 0.98 0.93 0.96 0.93 0.96 0.92 0.95 0.92 0.96 0.93 0.94 0.91 0.96 0.90 0.92 0.91 0.94 0.88 0.88 0.90 0.92
12 0.93 0.97 0.97 0.98 0.92 0.97 0.96 0.97 0.92 0.95 0.92 0.96 0.92 0.94 0.92 0.95 0.91 0.94 0.90 0.95 0.88 0.91 0.90 0.94 0.86 0.87 0.90 0.91
13 0.93 0.97 0.97 0.97 0.94 0.96 0.96 0.97 0.92 0.95 0.92 0.95 0.91 0.94 0.91 0.95 0.90 0.93 0.89 0.95 0.88 0.90 0.89 0.93 0.85 0.86 0.88 0.90
14 0.92 0.96 0.97 0.97 0.93 0.96 0.96 0.97 0.92 0.95 0.92 0.96 0.91 0.94 0.90 0.95 0.89 0.93 0.88 0.94 0.86 0.89 0.89 0.93 0.84 0.84 0.87 0.90
15 0.93 0.96 0.96 0.97 0.93 0.96 0.96 0.97 0.92 0.95 0.90 0.96 0.90 0.93 0.90 0.95 0.90 0.93 0.87 0.95 0.86 0.88 0.86 0.93 0.80 0.83 0.85 0.88
16 0.92 0.96 0.95 0.96 0.91 0.96 0.96 0.96 0.91 0.95 0.90 0.95 0.89 0.93 0.88 0.94 0.88 0.92 0.85 0.94 0.83 0.88 0.85 0.92 0.81 0.82 0.86 0.88
17 0.93 0.96 0.96 0.96 0.90 0.95 0.95 0.96 0.91 0.95 0.89 0.95 0.89 0.93 0.88 0.94 0.89 0.92 0.83 0.94 0.84 0.87 0.85 0.91 0.79 0.80 0.83 0.87
18 0.91 0.96 0.96 0.97 0.91 0.95 0.95 0.96 0.91 0.95 0.89 0.95 0.90 0.93 0.87 0.94 0.89 0.91 0.82 0.93 0.81 0.86 0.82 0.91 0.77 0.79 0.80 0.86
19 0.92 0.96 0.95 0.96 0.91 0.95 0.95 0.96 0.89 0.94 0.88 0.94 0.90 0.93 0.89 0.94 0.88 0.91 0.80 0.92 0.82 0.85 0.81 0.90 0.75 0.77 0.78 0.84
20 0.91 0.95 0.94 0.96 0.90 0.95 0.94 0.95 0.90 0.94 0.88 0.94 0.88 0.92 0.87 0.93 0.87 0.91 0.79 0.92 0.79 0.83 0.77 0.89 0.74 0.76 0.76 0.82
21 0.89 0.95 0.94 0.95 0.89 0.94 0.94 0.94 0.89 0.93 0.88 0.92 0.83 0.91 0.85 0.91 0.83 0.89 0.79 0.90 0.79 0.82 0.80 0.88 0.72 0.72 0.73 0.80
22 0.89 0.94 0.94 0.95 0.89 0.93 0.93 0.93 0.89 0.93 0.87 0.92 0.84 0.90 0.84 0.90 0.83 0.88 0.77 0.90 0.77 0.80 0.71 0.85 0.70 0.69 0.70 0.79
23 0.87 0.94 0.93 0.94 0.88 0.93 0.92 0.94 0.87 0.92 0.85 0.92 0.83 0.89 0.83 0.89 0.82 0.87 0.71 0.89 0.78 0.78 0.69 0.85 0.66 0.66 0.67 0.74
24 0.88 0.93 0.93 0.94 0.85 0.92 0.92 0.93 0.87 0.92 0.84 0.91 0.84 0.88 0.82 0.89 0.83 0.85 0.69 0.87 0.77 0.77 0.66 0.84 0.63 0.63 0.63 0.69

average 0.93 0.97 0.97 0.98 0.93 0.96 0.96 0.97 0.93 0.96 0.92 0.96 0.91 0.94 0.91 0.95 0.91 0.94 0.88 0.95 0.88 0.90 0.88 0.93 0.84 0.85 0.87 0.89

stdev 0.03 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.04 0.02 0.05 0.02 0.05 0.03 0.05 0.03 0.05 0.04 0.09 0.03 0.07 0.07 0.10 0.05 0.11 0.11 0.11 0.08
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Table A3. sMAPE obtained for each historical window considered and each problem. In the table EV stands for EVTree, RF for Random Forest, NN for Neural
Network. GBM stand for the Gradient Boost Models, the method used at the top level, and thus represent the final sMAPE obtained by the ensemble method.

h
w 168 144 120 96 72 48 24

EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM

1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
2 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
3 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01
4 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02
5 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02
6 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02
7 0.03 0.02 0.02 0.01 0.03 0.02 0.02 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.02
8 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03
9 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.04 0.03 0.03 0.03

10 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.04 0.02 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.03
11 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.02 0.03 0.03 0.04 0.02 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.03
12 0.03 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04
13 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.05 0.03 0.05 0.05 0.05 0.04
14 0.04 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.05 0.03 0.05 0.04 0.05 0.03 0.05 0.05 0.05 0.04
15 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.05 0.03 0.05 0.04 0.05 0.03 0.06 0.05 0.05 0.04
16 0.04 0.03 0.03 0.02 0.04 0.03 0.03 0.02 0.04 0.03 0.04 0.03 0.04 0.03 0.05 0.03 0.04 0.03 0.05 0.03 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04
17 0.03 0.03 0.03 0.02 0.04 0.03 0.03 0.02 0.04 0.03 0.04 0.03 0.04 0.03 0.05 0.03 0.04 0.04 0.06 0.03 0.05 0.05 0.05 0.04 0.06 0.06 0.06 0.04
18 0.04 0.03 0.03 0.02 0.04 0.03 0.03 0.02 0.04 0.03 0.04 0.03 0.04 0.03 0.05 0.03 0.04 0.04 0.06 0.03 0.05 0.05 0.06 0.04 0.06 0.06 0.06 0.05
19 0.04 0.03 0.03 0.02 0.04 0.03 0.03 0.02 0.04 0.03 0.05 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.06 0.03 0.05 0.05 0.06 0.04 0.06 0.06 0.07 0.05
20 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.06 0.04 0.05 0.05 0.06 0.04 0.06 0.06 0.07 0.05
21 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.05 0.06 0.06 0.04 0.06 0.07 0.07 0.05
22 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04 0.06 0.06 0.07 0.05 0.07 0.07 0.07 0.06
23 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.05 0.04 0.05 0.04 0.05 0.05 0.07 0.04 0.06 0.06 0.07 0.05 0.07 0.07 0.07 0.06
24 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.05 0.04 0.05 0.04 0.05 0.05 0.07 0.04 0.06 0.06 0.07 0.05 0.07 0.08 0.08 0.07

average 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04

stdev 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02
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Table A4. MAE obtained for each historical window considered and each problem. In the table EV stands for EVTree, RF for Random Forest, NN for Neural Network.
GBM stand for the Gradient Boost Models, the method used at the top level, and thus represent the final sMAPE obtained by the ensemble method.

h
w 168 144 120 96 72 48 24

EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM

1 315.06 183.84 141.20 154.12 269.76 186.59 148.87 159.90 293.55 191.03 157.33 174.33 276.20 194.46 157.72 172.48 304.90 197.39 159.39 175.95 257.80 202.16 160.19 176.54 258.43 203.61 161.48 175.66
2 444.69 266.97 190.80 204.59 425.13 272.91 209.06 222.03 395.66 288.96 239.10 258.01 371.90 294.44 240.53 261.22 355.27 289.69 249.19 268.96 384.45 306.45 247.31 263.48 391.60 319.37 252.14 274.50
3 492.27 327.51 257.04 260.41 488.19 339.33 278.43 278.55 503.03 359.57 356.13 338.13 497.62 367.68 350.54 342.75 489.06 371.16 367.66 366.09 521.11 397.33 376.64 362.84 495.70 427.91 374.66 382.52
4 580.65 358.72 299.64 299.16 575.93 373.70 327.27 312.64 546.29 405.41 436.83 385.62 578.36 411.12 434.09 393.85 577.60 413.16 441.61 399.27 582.53 451.24 461.76 420.55 584.82 500.47 468.88 461.21
5 633.24 405.73 345.38 318.82 591.43 428.35 374.48 349.61 646.47 464.54 520.46 433.05 609.88 477.01 509.80 442.70 636.29 477.60 533.51 458.29 648.89 521.81 556.55 487.17 719.36 585.39 562.29 518.34
6 708.86 435.43 382.18 361.47 689.03 457.39 412.02 380.15 650.78 507.12 597.92 475.11 697.23 528.56 584.98 496.39 653.91 530.68 647.32 497.37 781.15 592.72 652.18 549.64 768.48 689.36 670.26 603.58
7 749.47 467.70 413.95 392.33 889.64 492.57 447.50 404.27 752.55 570.38 651.44 526.94 758.87 595.00 678.23 543.33 768.36 597.30 735.48 559.00 800.87 679.71 744.49 601.35 882.54 777.91 750.64 668.62
8 727.03 509.72 458.95 422.22 776.29 530.44 487.05 431.16 755.20 625.97 748.03 577.38 807.79 642.63 750.07 585.73 822.29 669.54 819.31 619.75 893.67 755.07 829.21 660.66 970.28 871.32 837.41 774.29
9 819.41 532.20 511.86 451.38 833.20 563.57 549.43 469.61 842.12 649.88 840.47 625.19 830.74 679.61 828.03 648.79 891.82 701.85 831.44 642.54 937.45 797.36 894.48 703.20 1094.66 943.37 953.01 816.23
10 810.18 568.26 553.47 485.61 952.72 596.12 575.04 504.84 879.64 694.50 905.87 659.69 941.04 733.60 919.11 670.39 917.64 754.63 999.09 694.16 990.46 873.23 984.90 746.00 1051.81 1044.24 1037.51 864.31
11 891.89 610.32 581.75 509.68 880.88 619.85 605.61 516.43 943.19 729.25 867.36 714.20 985.22 781.22 1002.23 698.04 912.41 798.29 1063.46 700.09 1084.70 930.09 1091.99 796.09 1155.79 1124.08 1121.68 926.88
12 894.93 608.21 603.37 520.96 980.53 631.34 633.63 544.41 977.36 739.77 980.95 715.08 997.67 811.46 1036.33 756.64 1013.89 845.35 1152.37 769.42 1196.85 1010.00 1175.20 850.54 1266.59 1197.12 1176.20 1000.95
13 896.87 644.11 619.53 543.39 883.43 658.74 655.42 555.72 1019.40 772.30 1052.90 744.52 1036.05 849.83 1103.87 778.87 1084.55 895.18 1240.51 786.21 1169.42 1101.20 1264.23 899.78 1332.77 1303.18 1299.24 1067.64
14 980.38 669.09 632.18 567.50 910.84 677.33 667.50 578.08 974.63 791.25 1017.97 736.47 1030.03 887.58 1161.53 770.37 1136.91 923.95 1319.33 830.44 1254.91 1155.72 1304.93 917.16 1383.11 1377.41 1395.14 1088.89
15 946.78 665.24 656.31 592.82 948.26 707.41 687.23 604.83 995.99 797.77 1138.44 749.47 1120.29 912.03 1209.66 824.11 1078.36 952.71 1344.57 818.24 1325.75 1223.90 1443.44 948.72 1562.89 1448.23 1504.66 1205.16
16 973.29 694.25 790.18 642.25 967.61 723.83 704.26 632.21 1077.44 816.18 1190.03 784.79 1145.19 930.93 1304.47 852.28 1176.16 979.54 1505.64 852.82 1420.22 1277.15 1533.88 982.40 1500.13 1516.81 1478.19 1190.47
17 966.73 697.08 691.12 640.49 1068.00 740.52 713.60 646.13 1040.81 835.82 1238.88 803.80 1162.00 953.57 1333.90 867.07 1185.67 1010.28 1578.23 893.40 1379.96 1299.29 1530.59 1025.86 1575.81 1587.22 1614.37 1257.03
18 1026.92 707.66 707.79 617.42 1021.08 734.31 717.33 620.93 1054.04 826.92 1236.60 793.85 1119.67 950.62 1386.93 883.76 1135.04 1018.89 1651.35 939.36 1453.18 1394.12 1661.93 1038.76 1660.72 1621.78 1751.41 1325.89
19 974.38 723.85 727.31 649.87 1009.15 752.29 759.06 676.86 1153.30 845.25 1278.66 827.00 1094.84 957.74 1233.45 882.07 1228.42 1027.76 1713.54 929.81 1451.42 1412.65 1702.21 1082.61 1701.79 1689.89 1824.47 1357.30
20 1016.35 738.07 825.27 686.70 1091.03 756.30 776.08 696.34 1077.74 843.78 1263.89 854.55 1159.40 972.47 1339.16 934.35 1208.89 1034.46 1677.34 973.78 1486.86 1452.52 1773.52 1112.47 1650.19 1722.46 1858.16 1410.17
21 1084.94 784.41 780.49 737.43 1100.86 813.31 806.97 756.25 1130.04 891.35 1216.28 898.95 1361.37 1035.03 1418.94 1037.13 1338.84 1110.02 1625.71 1031.83 1474.94 1499.52 1615.87 1142.60 1757.34 1817.20 1877.55 1486.30
22 1088.14 800.66 812.81 710.88 1112.60 833.29 837.48 771.22 1133.53 903.25 1255.31 912.97 1302.74 1105.47 1437.69 1069.70 1357.54 1207.39 1697.42 1089.46 1607.87 1549.45 1900.73 1283.69 1839.99 1925.60 1940.77 1531.37
23 1184.70 815.42 852.09 761.96 1122.55 851.76 858.68 796.52 1197.91 921.17 1365.60 941.51 1388.61 1159.52 1471.60 1111.57 1367.94 1245.60 1928.57 1110.24 1533.30 1611.61 1976.61 1260.10 1938.54 2006.35 2036.47 1670.22
24 1128.05 841.73 882.38 792.66 1216.07 866.71 910.49 818.01 1149.93 943.40 1386.94 953.71 1346.51 1203.82 1490.43 1116.21 1352.31 1337.19 1978.07 1198.21 1524.72 1641.11 2053.84 1303.85 2032.20 2119.41 2148.37 1808.10

average 847.30 585.67 571.54 513.50 866.84 608.67 589.27 530.28 882.94 683.95 914.31 661.85 942.47 768.14 974.30 714.16 958.09 807.90 1135.84 733.53 1090.10 1005.64 1164.03 817.34 1232.31 1200.82 1212.29 994.40

stdev 226.72 182.05 217.91 181.09 244.39 188.85 211.57 184.26 258.51 212.99 372.27 220.79 312.53 278.34 420.29 266.36 321.24 311.53 551.56 274.41 402.84 443.22 570.18 324.38 512.40 564.23 605.33 450.33
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Table A5. RMSE obtained for each historical window considered and each problem. In the table EV stands for EVTree, RF for Random Forest, NN for Neural Network.
GBM stand for the Gradient Boost Models, the method used at the top level, and thus represent the final sMAPE obtained by the ensemble method.

h
w 168 144 120 96 72 48 24

EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM EV RF NN GBM

1 403.05 240.06 180.01 195.26 340.41 241.79 190.81 203.65 374.04 249.38 201.59 222.75 350.47 256.89 201.74 220.97 387.66 259.57 204.07 224.33 324.29 268.58 205.41 224.69 326.92 268.82 206.69 224.45
2 570.43 344.83 245.47 264.11 552.53 352.93 271.37 286.43 496.22 372.30 309.00 367.03 474.68 381.78 311.36 360.10 450.67 376.86 323.04 348.90 494.99 404.74 320.03 348.44 499.66 418.64 324.50 353.70
3 645.60 444.80 347.52 349.54 629.05 464.02 382.62 377.39 660.13 494.19 477.56 459.06 647.98 512.66 470.66 464.50 644.11 518.45 495.65 503.78 687.24 551.33 513.93 483.85 653.13 588.23 508.01 539.42
4 758.17 489.79 411.10 403.01 769.84 508.63 463.12 444.81 729.35 558.13 591.19 531.76 781.90 573.95 591.02 535.21 774.86 586.52 606.89 544.60 770.35 632.08 636.53 576.53 795.75 699.18 645.11 645.90
5 847.81 549.89 477.37 430.77 776.48 578.44 542.78 472.12 870.09 627.79 712.21 598.05 828.54 666.25 703.98 620.70 846.34 671.81 739.76 638.31 888.91 740.57 775.82 674.54 980.61 828.64 778.73 735.76
6 924.32 598.55 541.68 502.21 920.27 630.40 608.10 511.67 882.87 695.24 828.50 666.16 949.97 749.28 815.61 699.63 877.78 760.32 890.08 694.09 1050.03 858.18 911.27 764.11 1049.12 989.98 922.26 854.51
7 1007.64 637.70 586.40 533.55 1227.41 677.53 660.12 553.99 1016.41 774.09 913.02 744.11 1029.67 828.63 947.91 764.62 1055.54 842.27 1015.23 786.67 1119.70 974.20 1029.19 848.70 1216.51 1114.18 1030.94 955.43
8 968.98 684.48 646.39 561.79 1034.58 719.48 712.52 584.79 1026.90 827.73 1030.04 794.83 1107.53 877.28 1046.38 818.15 1149.43 920.49 1121.49 865.99 1221.53 1075.73 1129.39 912.25 1339.71 1239.58 1133.13 1094.88
9 1097.95 728.63 750.24 614.09 1136.86 772.11 818.41 635.59 1125.66 876.27 1159.09 870.29 1150.87 947.79 1157.99 914.34 1212.04 984.68 1157.62 897.49 1280.93 1130.34 1220.43 973.44 1510.11 1347.18 1291.91 1174.28

10 1117.05 767.29 789.16 679.71 1275.63 812.86 863.84 686.98 1190.81 928.09 1227.45 897.15 1268.50 1013.42 1258.38 926.30 1240.67 1053.77 1347.09 955.95 1387.06 1223.43 1324.01 1026.04 1467.22 1482.08 1377.53 1216.61
11 1154.29 812.06 824.40 675.66 1205.01 837.45 894.95 693.92 1239.51 973.13 1195.60 986.63 1318.39 1056.69 1345.94 956.72 1265.69 1101.42 1397.34 958.75 1509.76 1293.60 1421.72 1097.22 1640.48 1587.60 1455.15 1320.04
12 1224.45 816.16 850.80 696.54 1359.76 856.17 926.20 751.54 1348.85 1000.59 1326.27 973.41 1335.62 1110.46 1359.95 1050.50 1399.64 1167.86 1495.72 1059.41 1655.09 1383.65 1499.21 1171.55 1731.25 1667.97 1502.99 1400.90
13 1214.64 858.52 865.70 750.60 1195.35 893.13 952.12 760.30 1345.11 1046.96 1369.20 1010.10 1400.16 1145.88 1430.37 1059.68 1481.96 1224.14 1579.36 1060.25 1622.80 1491.07 1579.58 1227.31 1843.96 1785.34 1611.93 1457.79
14 1361.89 893.76 883.53 810.85 1249.99 921.21 946.59 810.73 1324.06 1057.99 1345.66 990.18 1384.87 1189.51 1498.75 1043.23 1593.56 1252.22 1661.32 1153.61 1738.17 1558.04 1600.94 1256.09 1884.66 1871.80 1707.61 1518.87
15 1293.15 906.16 925.68 833.34 1277.38 974.27 985.54 854.01 1341.75 1075.76 1470.71 1005.83 1525.86 1231.28 1539.37 1106.56 1485.43 1300.73 1725.74 1112.57 1797.09 1634.50 1774.40 1272.77 2131.74 1960.21 1830.89 1645.12
16 1326.64 940.90 1064.73 950.52 1393.31 995.60 1007.61 900.86 1435.81 1086.05 1514.00 1069.04 1605.61 1246.04 1650.60 1128.69 1632.78 1337.41 1874.66 1162.35 1956.05 1683.76 1871.56 1322.23 2082.90 2041.05 1819.21 1649.38
17 1300.90 946.44 962.58 927.54 1484.79 1014.45 1019.28 932.40 1410.07 1109.94 1573.61 1068.88 1603.19 1279.16 1669.35 1176.16 1612.51 1374.85 1946.83 1206.97 1925.75 1705.30 1869.41 1442.04 2164.98 2121.91 1961.90 1693.13
18 1407.34 967.12 985.02 868.39 1431.29 1022.81 1023.39 889.16 1394.62 1099.83 1570.92 1056.10 1474.10 1274.54 1731.62 1201.32 1574.25 1384.52 2028.61 1267.56 2068.55 1799.98 2018.37 1457.12 2268.87 2152.05 2102.83 1803.97
19 1304.73 993.92 1018.15 917.36 1408.02 1053.06 1089.48 970.30 1563.21 1135.27 1613.11 1133.37 1505.02 1280.03 1577.37 1196.01 1659.72 1401.42 2097.58 1293.51 1984.52 1828.49 2064.94 1482.20 2326.91 2238.31 2195.14 1861.62
20 1375.07 1011.70 1122.04 964.37 1475.62 1064.62 1097.93 1004.95 1431.09 1134.20 1611.17 1159.84 1586.67 1295.38 1678.08 1255.85 1684.51 1395.48 2086.25 1328.33 2096.41 1877.30 2194.60 1558.71 2338.57 2278.37 2272.22 1951.11
21 1490.47 1055.95 1085.26 1002.91 1493.00 1126.73 1129.52 1077.96 1504.16 1199.46 1561.24 1245.30 1874.16 1365.60 1770.82 1388.73 1840.22 1472.70 2043.77 1419.07 2070.40 1937.39 2027.48 1572.93 2395.71 2374.73 2337.82 2037.80
22 1510.81 1082.00 1132.06 996.70 1507.35 1156.41 1186.80 1166.15 1519.43 1224.90 1597.02 1253.53 1820.97 1442.39 1804.07 1439.54 1835.18 1577.25 2145.14 1454.30 2161.51 2005.99 2399.64 1765.56 2477.74 2488.62 2445.00 2072.15
23 1642.40 1106.39 1185.06 1090.47 1578.63 1196.24 1232.77 1114.49 1602.67 1253.78 1738.57 1274.36 1823.46 1501.16 1858.59 1460.09 1898.16 1612.45 2402.93 1503.51 2102.39 2102.84 2501.01 1708.49 2625.27 2599.10 2567.15 2275.37
24 1545.30 1143.79 1213.59 1130.07 1702.80 1220.67 1274.42 1203.26 1605.22 1279.14 1791.28 1342.22 1802.03 1562.13 1882.76 1484.21 1810.28 1711.11 2465.83 1624.30 2126.31 2151.32 2593.83 1791.81 2716.30 2716.84 2705.66 2480.75

average 1145.55 792.54 795.58 714.56 1184.39 837.13 845.01 745.31 1184.92 920.01 1197.00 905.00 1277.09 1032.84 1262.61 969.66 1308.87 1095.35 1452.17 1002.69 1501.66 1346.35 1478.45 1123.27 1686.17 1619.18 1530.60 1373.46

stdev 324.05 248.77 303.12 266.00 352.66 269.50 303.06 278.77 354.34 287.27 464.15 300.87 431.31 358.21 513.00 351.15 450.01 402.20 664.60 372.10 569.11 559.10 686.62 448.52 702.20 719.97 726.11 611.06
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