
energies

Article

Nonlinear Modeling and Inferential Multi-Model
Predictive Control of a Pulverizing System in a
Coal-Fired Power Plant Based on Moving
Horizon Estimation

Xiufan Liang, Yiguo Li *, Xiao Wu and Jiong Shen

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University,
Nanjing 210096, China; lxf@seu.edu.com (X.L.); wux@seu.edu.cn (X.W.); shenj@seu.edu.cn (J.S.)
* Correspondence: lyg@seu.edu.cn; Tel.: +86-139-1397-0596

Received: 28 January 2018; Accepted: 5 March 2018; Published: 8 March 2018

Abstract: Fuel preparation is the control bottleneck in coal-fired power plants due to the unmeasurable
nature or inaccurate measurement of key controlled variables. This paper proposes an inferential
multi-model predictive control scheme based on moving horizon estimation for the fuel preparation
system in coal-fired power plants, i.e., the pulverizing system, aimed at improving control precision
of key operating variables that are unmeasurable or inaccurately measured, and improving system
tracking performance across a wide operating range. We develop a first principle model of the
pulverizing system considering the nonlinear dynamics of primary air, and then employ the genetic
algorithm to identify the unknown model parameters. The outputs of the identified first principle
model agree well with measured data from a real pulverizing system. Thereafter we derive a
moving horizon estimation approach to estimate the desired, but unmeasurable or inaccurately
measured, controlled variables. Estimation constraints are explicitly considered to reduce the
influence of measurement uncertainty. Finally, nonlinearity of the pulverizing system is analyzed
and a multi-model inferential predictive controller is developed using the extended input-output
state space model to achieve offset-free performance. Simulation results show that the proposed soft
sensor can provide improved estimates than conventional extended Kalman filter, and the proposed
inferential control scheme can significantly improve performance of the pulverizing system.

Keywords: pulverizing system; soft sensor; inferential control; moving horizon estimation; multi-
model predictive control

1. Introduction

The pulverizing system is one of the most important auxiliary parts in coal-fired power plants,
and has two main functions: to grind crushed coal lumps of several cm in diameter to very fine powder
(~50–100 µm in diameter), and sending the pulverized coal into the furnace and provide oxygen
for its combustion [1]. The operation performance of the pulverizing system can strongly affect the
fuel combustion in the furnace, and thus improving its control performance is of great significance
to achieve flexible power plant operation. There are three fundamental control requirements in the
pulverizing system.

(1) Pulverized coal flow into the furnace should rapidly track the power plant fuel demand, allowing
power generation to be adjusted in a timely way, as required by power grids.

(2) The air to coal ratio (the ratio of primary air mass flow to raw coal mass flow) should be kept
close to optimal to maintain coal combustion efficiency and reduce generation of nitrogen oxide
pollutants [2].
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(3) The coal mill outlet temperature must be controlled within the safe operation region to avoid wet
coal conditions and coal firing [3].

However, most power plants are unable to measure pulverized coal flow into the furnace in
real-time, which can significantly reduce control precision of the pulverizing system and power plant
load [4]. Although hardware sensors, such as digital holography techniques [5], provide some options
to solve this problem, they requires very high equipment investment, retrofitting, and maintenance
costs, which make their widespread use difficult. The raw coal feed rate and primary air mass flow are
also only measured approximately due to measurement technology limitations [6], which introduces
many disturbances to the control system and causes fluctuation of the controlled variables.

A practical way to control unmeasurable or inaccurately measured process variables is to apply
inferential control schemes, where the desired controlled variables are first estimated by a soft sensor,
and subsequently employed as the feedback signal for the controller [7]. Modeling the pulverizing
system provides a theoretical foundation to develop soft sensors. Agrawal et al. developed a unified
thermal-mechanical model of the pulverizing system that divided coal mill internal regions into four
zones and coal particles into ten size groups to consider the fineness of the pulverized coal flow
into the furnace [4]; however the model is quite complex and unsuitable for control system design.
Niemczyk et al. constructed and validated a dynamic pulverizing system model for different coal
mill types under various operating conditions [8], and discussed the influence of classifier speed on
pulverized coal flow into the furnace; however many plant details are required in their model, such as
the roller breakage rate and flow parameters of the pulverized coal flow. Jin et al. established the
dynamic relation between coal mill differential pressure and pulverized coal stored in the mill [9],
and Zeng et al. modeled moisture content in pulverized coal by energy balance [10]; however their
models ignored the nonlinear dynamics of primary air. Wei et al. developed a multi-segment model
that considers coal mill dynamics from startup to shutdown separately [11], however they did not
consider the moisture content and grindability of raw coal. In summary, current pulverizing system
models are either too simple, too complex, or require many internal plant details, which limit their
application for designing soft sensors or control systems. Most previous research has focused on
simulation or fault detection of the grinding process, with primary air system dynamics simplified to
linear steady-state. In practice, the primary air system is controlled via two air baffles, which have
typically nonlinear dynamics. Ignoring these effects will significantly reduce accuracy when the model
is used for control system or soft sensor design.

The pulverizing system is a nonlinear multi-variable system with large process inertia and
measurement uncertainty, which is difficult for conventional proportional-integral-derivative (PID)
controllers to control. Hence, various advanced control techniques have been proposed to improve
operational performance. Lu et al. designed a fuzzy PID controller to control outlet temperature [12],
however the fuzzy PID cannot handle the large process inertia well. Internal stability and tracking
performance of the pulverizing system can be guaranteed with a Lyapunov function, and Fei et al.
developed a robust fuzzy tracking control method [13]; however their control scheme cannot achieve
the decoupling control of pulverizing system. Cortinovis et al. designed a nonlinear model predictive
controller (NMPC) based on a nonlinear pulverizing system model, and updated the model parameters
online with an extended Kalman Filter [14]. Although the simulation results show their control strategy
is effective, NMPC is generally unable to be solved in real-time. Gao et al. designed a multi-model
predictive controller for different operating points, explicitly considering the moisture content of raw
coal [6], and developed an optimization control scheme for pulverized coal flow into the furnace;
however they did not consider the inaccurate measurements of the key controlled variables. Zeng et al.
proposed an economic control method to improve coal combustion efficiency by controlling the
moisture content in the pulverized coal to an optimized set point [10]; however they did not discuss
the control of pulverized coal flow into the furnace.

Although control problems associated with nonlinearities, coupling effects, and large process
inertia have been widely studied for the pulverization system in previous research, few have focused
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on development of a soft sensor to address issues caused by the fact key controlled variables, i.e.,
pulverized coal flow into the furnace and primary air mass flowrate, are either unmeasurable or
inaccurately measured. The most direct method to estimate desired controlled variables is to solve the
model differential equations given measured inputs [4,6,10]. However, this can produce unreliable
results. As discussed earlier, raw coal feed rate and primary air mass flow are only measured
approximately, and using them directly to estimate pulverized coal flow into the furnace will lead
to large errors. Other process measurements, such as mill electric current and outlet temperature,
which could reflect the operating status of the grinding process, have not been considered for estimating
pulverized coal flow into the furnace.

Considering these issues, this study develops an inferential multi-model predictive control
scheme for pulverizing systems. A first principle model of the pulverizing system considering
primary air nonlinear dynamics was developed, with model complexity and accuracy balanced
by combining physical and empirical relationships. Based on the established model, a soft sensor
was derived to estimate desired controlled variables using a moving horizon estimation (MHE)
approach, where estimation constraints were explicitly considered to reduce the influence of
measurement uncertainty. Finally, the pulverizing system nonlinearity was analyzed, and an inferential
multi-model predictive controller designed using the extended input-output state space model to
achieve offset-free performance.

The current study has two major contributions:

(1) A first principle model of the pulverizing system was developed that explicitly considered the
nonlinear dynamics of primary air, which is suitable for designing a system controller and
soft sensor.

(2) An inferential multi-model predictive control scheme was established based on MHE that
provided improved pulverizing system control precision and tracking performance.

The main content of this paper is organized as follows: Section 2 presents the first principle model
of the pulverizing system. Section 3 derives the soft sensor using MHE, and Section 4 discusses the
formulation of the inferential multi-model predictive controller. Section 5 presents simulation results,
including accuracy validation of the soft sensor and performance validation of the proposed inferential
control scheme. Finally, Section 6 concludes the paper.

2. Dynamic Model of the Pulverizing System

2.1. Pulverizing System Description

Figure 1 shows a typical pulverizing system consisting of coal mill and the primary air systems.
In the coal mill, raw coal enters the grinding region from the coal chute and is crushed. Primary air
then enters the coal mill through the air ring, drying the pulverized coal and transporting it to the
coarse classifier in the upper grinding zone for separation. Suitably pulverized coal is transported by
the primary air to the furnace for combustion, whereas unsuitable coal falls back into the coal chute for
grinding. The air pre-heater is deployed at the rear of the flue gas tunnel of the boiler, and can heat
cold air to ~220 ◦C. Primary air is generated by mixing cold and hot air, controlled by two air baffles.
The primary air fan maintains constant pressure at the entrance of the air baffles. Since the pressure
has very fast dynamics, and generally can be well controlled by the primary air fan, the primary air
fan has little influence on the pulverizing system operation.
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Figure 1. Simplified diagram of a typical pulverizing system. 
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Figure 1. Simplified diagram of a typical pulverizing system.

2.2. First Principle Model of the Pulverizing System

The pulverizing system parameter model was established with the following assumptions:

(1) Raw coal grinding and pulverized coal delivery are separate processes;
(2) Pulverized coal fineness is neglected, and the coal is categorized into raw and pulverized

coal only;
(3) The classifier operates at its designed rotating speed;
(4) Primary air is regarded as an ideal gas.

The pulverizing system has 24 unknown parameters to be identified: 8 in the primary air system
(Si, i = 1, 2, . . . , 8), and 16 in the coal mill system (Ki, i = 1, 2, . . . , 16).

The dynamics of the primary air system can be described as:

qair,cold = S1(µcold)
S2 , (1)

qair,hot = S3(µhot)
S4 , (2)

S5
dtair
dt

=
qair,cold

qair,hot + qair,cold
· tcold +

qair,hot

qair,hot + qair,cold
· thot − S6tair, (3)

and:
S7

dqair
dt

= qair,cold + qair,hot − S8qair, (4)

where tair is the primary air temperature, qair is the primary air mass flow, µcold is the cold air
baffle opening, µhot is the hot air baffle opening, tcold is the cold air temperature, and thot is the hot
air temperature.

Remark 1. The air baffle has similar characteristics to valves [15]. Figure 2 shows typical valve inherent flow
characteristics, and all of the curves can be well approximated by power functions with different exponents. Thus,
we used (1) and (2) to identify air baffle flow characteristics.
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Figure 2. Typical inherent valve characteristics [16].

The mass balance of raw and pulverized coal is:

dmraw

dt
= qraw − K1 ·mraw (5)

and:
dmpul

dt
= K1 ·mraw − qpul , (6)

where qraw is the mass of raw coal provided by the coal feeder per unit time, qpul is mass flowrate
of pulverized coal into the furnace, mraw is the mass of raw coal stored in the mill, and mpul is the
pulverized coal stored in the mill.

The primary air blows part of the pulverized coal to the furnace, which is proportional to the
differential pressure of primary air (∆pair) and pulverized coal stored in the mill [6]:

qpul ∝ ∆pair ·mpul , (7)

and from Bernoulli’s equation:

∆pair = λ · ρair ·
v2

air
2g

, (8)

where ρair and νair are the primary air density and flow speed, and λ is the flow resistance. Since the
primary air is assumed to be an ideal gas, ρair is proportional to the air temperature air, hence:

qpul = K2(273.15 + tair) · q2
airmpul . (9)

Using conservation laws, the total energy balance in the mill is:

∆Emill = Qin −Qout, (10)

Qin = Qair,in + Qcoal,in + QI , (11)

and:
Qout = Qair,out + Qcoal,out + Qvapor + Qloss, (12)

where ∆Emill is the increment of inner energy; Qair,in and Qcoal,in are the energy brought to the mill
by the primary air and raw coal, respectively; QI is the heat generated by the mill electric current;
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Qair,out and Qcoal,out are the energy removed by primary air and pulverized coal flow to the furnace,
respectively; Qvapor is the heat loss from evaporation; and Qloss is the heat loss to the environment.

Various terms in (10), (11) and (12) can be expressed as follows:

∆Emill = Cmill
d(Mmill tm)

dt = Cmilltm
dMmill

dt + Cmill Mmill
dtm
dt

= K3tm(
dmraw

dt +
dmpul

dt ) + K3(K4 + mraw + mpul)
dtm
dt

, (13)

Qair,in = Caqairtair, (14)

Qcoal,in = K5qrawtenvi, (15)

QI = K6 I, (16)

Qair,out = Caqairtm, (17)

Qcoal,out = K7qpultm, (18)

Qvapor = K8qwater, (19)

and:
Qloss = K9(tm − tenvi), (20)

where tenvi is the environment temperature, I is the coal mill electric current, tm is the outlet
temperature, qwater is the mass flow rate of evaporated water, Ca is the heat capacity of air, Cmill is the
heat capacity of the pulverizing system, and Mmill is the total mass of pulverizing system.

Evaporation mainly occurs inside the coal mill, hence moisture evaporation speed depends on
the raw and pulverized coal stored in the coal mill, and is also exponentially related to the air mass
flow [10]. Thus:

qwater = θ(mraw + mpul)tm(1− exp(− qair
K10

)), (21)

where θ is the moisture content in raw coal.
Mill differential pressure, ∆pmill , depends on the amount of pulverized coal carried by the

primary air and flow resistance, which is assumed to be linearly related to the raw coal stored in the
mill [4]. Thus:

∆pmill = (K11 + K12mc)q2
air + K13qpul . (22)

The pulverizing system electric current is determined by the raw and pulverized coal stored in
the mill, and the no-load current, K16:

I = K14 · η ·mraw + K15mpul + K16, (23)

where η is the grindability of raw coal.
Thus, the model has six measurable inputs, qraw, µcold, µhot, tenvi, tcold, thot; two unmeasurable

inputs, θ, η; five model states, tair, qair, mraw, mpul , tm; and five measurable outputs, tair, qair, I, ∆pmill ,
tm. The desired controlled variables are qpul , qair, and tm and the manipulated variables are qraw, µcold,
and µhot, i.e., a three input, three output control system.

2.3. Parameter Identification

The data set to identify the unknown parameters was collected from a historical database
of a 660 MW power plant in China. The output prediction error was employed to evaluate the
model accuracy:

E({Si}i=1,2,...,8,
{

Kj
}

j=1,2,...,17) =
N

∑
t=1

 w1‖ q̂air(t)−qair(t)
qair(t)

‖+ w2‖ t̂air(t)−tair(t)
tair(t)

‖+ w3‖ Î(t)−I(t)
I(t) ‖

+w4‖∆ p̂mill(t)−∆pmill(t)
∆pmill(t)

‖+ w5‖ t̂m(t)−tm(t)
tm(t) ‖

, (24)
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where N is number of data points; qair(i), tair(i), I(i), ∆pmill(i), and tm(i) are the ith measured outputs;
q̂air(i), t̂air(i), Î(i), ∆ p̂mill(i), and t̂m(i) are the ith model outputs; and w1, w2, w3, w4 and w5 are the
output weights. A genetic algorithm (GA) was used to minimize (24) and obtain optimal unknown
parameters. Compared with more recently developed particle swarm optimization (PSO), GA has
a better chance of finding a more qualified solution, since the mutation operation can make the
population cluster around several “good” solutions instead of one “good” solution [17]. Moreover
it has been demonstrated that GA is robust in the parameter identification problem and can achieve
good results [18,19]. GA processes are well explained elsewhere [20], and we present the identification
process of GA in Figure 3. Tables 1 and 2 show the GA tuning parameters and final optimal parameters,
respectively. The tuning parameters are set based on the simulation parameters proposed in [21].
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Table 1. Genetic algorithm tuning parameters.

Population
Size

Probability of
Mutation

Probability of
Crossover

Termination
Iterations

Generation
Gap w1 w2 w3 w4 w5

50 0.3 0.9 200 0.8 2 1 1 1.5 1

Table 2. Final optimal model parameters.

Parameter S1 S2 S3 S4 S5 S6 S7 S8

Value 0.70 0.66 0.75 0.77 150.1 1.06 22.5 1.08
Parameter K1 K2 K3 K4 K5 K6 K7 K8

Value 0.053 1.47 × 10−6 1423 10,530 1309 2398 1306 5893
Parameter K9 K10 K11 K12 K13 K14 K15 K16

Value 7037 95 5.29 0.0095 10.26 0.114 0.0292 19.11
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2.4. Model Validation

The proposed model derived in Section 2.3 was validated using a different historical data set
where the pulverizing system had a wide operating range (47.03–90.97% load rate), as shown in
Figure 4. The real process trends and time constant were well captured by the proposed model. Thus,
the model can be employed as the simulation platform for design of the soft sensor and control system.
Table 3 shows the cumulative relative fitting error for the five outputs, defined as:

N

∑
i=1

∣∣∣∣∣yi
model − yi

real

yi
real

∣∣∣∣∣, (25)

where N is the number of data samples, and yi
model and yi

real are the model output and process
measurement, respectively. The primary air temperature is accurately predicted, whereas the primary
air mass flowrate has significantly higher fitting error than other outputs due to the primary air mass
flowrate being inaccurately measured in the real plant, as discussed above, and we cannot improve
this prediction accuracy by adjusting the model parameters. However, the primary air temperature is
accurately measured and the model shows high prediction accuracy.

Table 3. Cumulative relative fitting error.

Primary Air
Temperature

Primary Air Mass
Flowrate Electric Current Outlet

Temperature
Differential

Pressure

664 1806 852 799 995
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3. Formulation of the Soft Sensor

The soft sensor to estimating the desired controlled variables was developed using MHE.
We first derived the general MHE problem for the pulverizing system, and then discuss updating the
arrival cost.

Artificial neural networks have been employed to develop soft sensors for many industrial
processes to control unmeasurable variables [22–26]. Although such soft sensors can exhibit high
fitting precision on the test data sets, they cannot explain process mechanisms, and hence can lack of
robustness in the presence of process uncertainty.

Therefore, we developed the soft sensor using MHE. Moving horizon estimation is a model based
optimization method to estimate the states and unknown parameters online and was originally derived
as an approximation for the full-information maximum likelihood estimator (FIE) to avoid issues with
FIE dimensionality [27]. Similar to model predictive control, MHE solves a finite horizon optimization
problem dynamically at each sample time. Hence, the latest measurements available are employed
to calculate current estimates. An important advantage of MHE over other soft sensor types is that
the estimate constraints can be explicitly considered. Therefore, we can set the operating variable
constraints based on prior knowledge of the pulverizing system to improve estimation accuracy.

The pulverizing system model can be expressed as:{
dx
dt = f (x, u, p)
y = h(x, u, p)

, (26)

where:
x =

[
tair qair mraw mpul tm

]T
, (27)

p =
[

θ η
]T

, (28)

u =
[

µhot µcold qraw tenvi tcold thot

]T
, (29)

y =
[

tair qair I ∆pmill tm

]T
, (30)
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f (x, u, p) =



( S1(µcold)
S2

S3(µhot)
S4+S1(µcold)

S2
· tcold +

S3(µhot)
S4

S3(µhot)
S4+S1(µcold)

S2
· thot − S6tair)/S5

(S1(µcold)
S2 + S3(µhot)

S4 − S8qair)/S7

qraw − K1 ·mraw

K1 ·mraw − K2(273.15 + tair) · q2
airmpul

(Qin−Qout)−K3tm(qraw−K2(273.15+tair)·q2
airmpul)

K3(K4+mraw+mpul)


, (31)

Qin = Caqairtair + K5qrawtenvi + K6 I, (32)

Qout = Caqairtm + K7K2(273.15 + tair) · q2
airmpultm + K8θ(mraw + mpul)tm(1− e−

qair
K10 ) + K9(tm − tenvi), (33)

and:

h(x, u, p) =


tair
qair

K14 · η ·mraw + K15mpul + K16

(K11 + K12mc)q2
air + K13qpul

tm

. (34)

Then the MHE soft sensor is formulated as a nonlinear least squares optimization problem:

min
x̂k−N+1, . . . , x̂k
p̂k−N+1, . . . , p̂k

(‖ x̂k−N+1 − xL
p̂k−N+1 − pL

‖
2

PL

+
k−1
∑

i=k−N+1
‖ x̂i+1 − φ(x̂i, p̂i, ui)

p̂i+1 − p̂i
‖

2

W
+

k
∑

i=k−N+1
‖yi − h(x̂i, p̂i, ui)‖2

V), (35)

where:

φ(x̂i, p̂i, ui) =
∫ T

0
f (x̂i, p̂i, ui)dt; (36)

k represents the present time instance; N is the estimation horizon; T is the sampling time;
x̂k−N+1, . . . , x̂k are the state estimates from time k − N+1 to k; p̂k−N+1, . . . , p̂k are the parameter
estimates from time k − N+1 to k; yi is the measured outputs at time i; PL, V, and W are constant
positive definite weighting matrixes; and xL and pL are constant scalars representing the influence from
past measurements. The first term in the cost function (35) is typically called the arrival cost, and is
important for MHE stability [28]. xL, pL, and PL are updated when the MHE calculates a new estimate.

The analytical solution for φ(x̂i, p̂i, ui) is difficult to find, and we approximate it using
forward difference:

φ(x̂i, p̂i, ui) ≈ x̂i + T · f (x̂i, p̂i, ui), (37)

where T should be as small as possible to avoid large approximation error, or it may reduce estimation
precision and possibly make the soft sensor unstable. However, since the pulverizing system has
large inertia, f (x̂i, p̂i, ui) cannot change sharply during the sampling interval, hence (37) will not cause
significant approximation error.

Conventionally, xL, pL and PL are updated using the Kalman filter. However, this introduces large
errors for nonlinear systems in the approximation of the full information estimator, which necessitates
a large estimation horizon, and increases the online computational burden [29]. Considering this
problem, we propose an efficient arrival cost update, based on Kuhl et al. [30]. Arrival cost updating
was derived for the discretized pulverizing system model as follows.

The ideal arrival cost can be expressed as:

C(xL, pL) = min
xL−1,pL−1

(‖ xL−1 − xL−1

pL−1 − pL−1
‖

2

PL−1

+ ‖y− h(xL−1, pL−1)‖2
V + ‖ xL − φ(xL−1, pL−1)

pL − pL−1
‖

2

W
), (38)

where xL−1 and pL−1 are the states and parameters in the arrival cost term at the previous sampling
time. To approximate C(xL, pL) using a linear quadratic expression, nonlinear mappings f (xL−1, pL−1)

and h(xL−1, pL−1) are approximated using Taylor expansion:
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f (xL−1, pL−1) ≈ f (x∗, p∗) + fx · (xL−1 − x∗) + fp · (pL−1 − p∗), (39)

and:
h(xL−1, pL−1) ≈ h(x∗, p∗) + hx · (xL−1 − x∗) + hp · (pL−1 − p∗), (40)

where:

fx =
∂ f (x, p)

∂x

∣∣∣∣
xL−1=x∗ ,pL−1=p∗

, (41)

fp =
∂ f (x, p)

∂p

∣∣∣∣
xL−1=x∗ ,pL−1=p∗

, (42)

hx =
∂h(x, p)

∂x

∣∣∣∣
xL−1=x∗ ,pL−1=p∗

, (43)

hp =
∂ f (x, p)

∂p

∣∣∣∣
xL−1=x∗ ,pL−1=p∗

, (44)

and x∗ and p∗ are the best available estimate at time k − N. Then:

φ(xL−1, pL−1) ≈ xL−1 + T · f (xL−1, pL−1). (45)

Substituting (39), (40), and (45) into (38):

C(xL, pL) ≈ min
XL−1
‖A

[
XL−1

XL

]
− b‖

2

2

, (46)

where:

A =


−Vhx

∣∣−Vhp O

−W

[
I + T · fx T · fp

O I

]
W

PL−1 O

, (47)

b =


V( f (x∗, p∗)− fx · x∗ − fp · p∗ − y)

W

[
h(x∗, p∗)− hx · x∗ − hp · p∗

O

]

PL−1

[
xL−1

pL−1

]
, (48)

XL =

[
xL
pL

]
, (49)

XL−1 =

[
xL−1

pL−1

]
, (50)

and O and I are zero and unit matrices, respectively, with appropriate dimensions.
Equation (46) can be transformed using QR factorization of A to:

C(xL, pL) ≈ min
XL−1
‖
[

Q1 Q2 Q3

] R1 R12

O R2

O O

[ XL
XL−1

]
− b‖

2

2

, (51)

which has the analytic solution:
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C(xL, pL) ≈ ‖Q3 · b‖2
2 + ‖Q2 · b + R2

[
xL
pL

]
‖

2

2

, (52)

where:

A =
[

Q1 Q2 Q3

] R1 R12

O R2

O O

, (53)

PL = R2, (54)[
xL
pL

]
= R−1

2 ·Q2 · b, (55)

and xL, pL and PL are employed to update the MHE arrival cost.

4. Inferential Multi-Model Predictive Controller Design

Nonlinearity of the pulverizing system was analyzed to select proper local models for the
multi-model controller, then the predictive controller was designed based on an extended input-output
state space model to achieve offset-free performance in the presence of modeling error and unknown
disturbances. Figure 5 shows an overall view of the inferential control system.
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The soft sensor can not only estimate desired controlled variables but can also detect a change of
raw coal. Since different raw coal types have different grindability and moisture content, pulverizing
system outputs can change significant when the power plant uses a new raw coal type. Therefore,
the soft sensor can be used to update model parameters online.

4.1. Nonlinearity Analysis

The basic control task for the pulverizing system is to track power plant coal demand. Hence raw
coal feed rate was selected as the scheduling variable to analyze process nonlinearity. In practice,
the setpoint of primary air mass flow is set according to the desired air to coal ratio, and is proportional
to the raw coal feed rate. There is also a lower limit on primary air mass flow, to avoid coal jamming,
and in this case the lower limit = 10 kg/s. Table 4 shows the selected operating points.
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Table 4. Selected operating points.

Raw Coal
Feed Rate

(kg/s)

Primary Air
Mass Flow

(kg/s)

Primary Air
Temperature

(K)

Cold Air
Baffle

Position (%)

Hot Air
Baffle

Position (%)

Outlet
Temperature

(◦C)

Mill Electric
Current (A)

Mill
Differential

Pressure (kPa)

3 10.0 195.6 10.7 16.5 70 26.77 0.5995
5 12.5 218.0 9.3 26.2 70 31.10 0.9646
7 17.5 224.2 14.3 46.9 70 35.00 1.9944
9 22.5 235.1 16.6 74.1 70 39.06 3.5074

Local linear models at typical operating points can be obtained by linearizing the first principle
model of the pulverizing system. Then the gap metric was employed to quantitatively measure
nonlinearity between local models. The gap metric between two local linear systems P1 and P2 is
defined as [31]:

δ(P1, P2) = max
{

inf
Q∈H∞

‖
[

M1

N1

]
−
[

M2

N2

]
Q‖

∞

, inf
Q∈H∞

‖
[

M2

N2

]
−
[

M1

N1

]
Q‖

∞

}
, (56)

where P1 = N1M−1
1 and P2 = N2M−1

2 are the normalized right coprime factorization on P1 and
P2, respectively.

If the δ(P1, P2) ≈ 1, dynamic behavior between the local linear models is significantly different
and process nonlinearity is strong between the two operating points. In contrast, if the δ(P1, P2) ≈ 0,
dynamic behavior between the two local models is similar, and process nonlinearity is weak. Figure 6
shows the gap metric between all the local models.
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The gap metric is approximately linear with local linear model distance, i.e., the difference
of the raw coal feed rate. Therefore, we divided the operating range uniformly by selecting local
models with 5 and 9 kg/s raw coal feed rate and employed the selected local models for controller
design. When δ(P1, P2) < 0.3 between any operating point and one of the selected operating points,
nonlinearity within the local controller working range is not strong. The proposed division of
the operating range can satisfy this condition. Although we can select all four models to set up
the multi-model controller, this will lead to heavy online computation overhead, for insignificant
improvement in control performance.
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4.2. Multi-Model Predictive Controller Based on Extended Input-Output State Space Model

Modeling error and unknown disturbances always exist in practice. Therefore, integration must
be included in the control algorithm. To achieve this, we can transform the original local linear models
into the equivalent extended input-output state space for offset-free tracking performance [32,33]. In
this control scheme, past values of the manipulated and controlled variables together with the tracking
error form the new state variables. Therefore the method is free from the difficulties of observer based
control techniques, such as convergence rate and observer robustness [32]. When the pulverizing
system operates over a wide range, a single linear model for the MPC design will cause model
discrepancies due to nonlinearities, with consequential control performance degradation. Therefore,
two local MPC controllers were assigned with different operating ranges according the nonlinearity
analysis. The proposed controller algorithm for the pulverizing system is as follows:

The selected local linear models can be described using the input-output linear difference model:

y(k + 1) + F1y(k) + F2y(k− 1) + . . . + Fny(k− n + 1)
= H1u(k) + H2u(k− 1) + . . . + Hnu(k− n + 1)

, (57)

where Fi ∈ R3×3, Hi ∈ R3×6 (i = 1, 2, . . . , n), y =
[

qpul qair tm

]T
is the controlled variables,

u =
[

uT
mpc uT

d

]T
is the input variables, umpc =

[
qraw µcold µhot

]T
is the manipulated variables,

and ud =
[

tenvi tcold thot

]T
is the feed forward signal of measured disturbances. The local linear

models are continuous and can be obtained by linearizing the model differential equations using
first-order Taylor expansion.

Equation (57) can be transformed into the differenced form using the backshift operator, ∆:

∆y(k + 1) + F1∆y(k) + F2∆y(k− 1) + . . . + Fn∆y(k− n + 1)
= H1∆u(k) + H2∆u(k− 1) + . . . + Hn∆u(k− n + 1)

, (58)

where ∆y(i) = y(i)− y(i− 1), ∆u(i) = u(i)− u(i− 1).
We define the input–output states as:

∆xm =
[

∆y(k)T ∆y(k− 1)T · · · ∆y(k− n + 1)T ∆u(k− 1)T ∆u(k− 2)T · · · ∆u(k− n + 1)T
]T

(59)

Thus, the corresponding state space model can be expressed as:{
∆xm(k + 1) = Am∆xm(k) + Bm∆u(k)
∆y(k) = Cm∆xm(k)

, (60)

where:

Am =



−F1 −F2 · · · −Fn−1 −Fn H2 · · · Hn−1 Hn

I O · · · O O O · · · O O
O I · · · O O O · · · O O
...

... · · ·
...

...
... · · ·

...
...

O O · · · I O O · · · O O
O O · · · O O O · · · O O
O O · · · O O I · · · O O
...

... · · ·
...

... · · ·
...

...
...

O O · · · O O O · · · I O


, (61)

Bm =
[

HT
1 O O · · · O I O O

]
(62)
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and:
Cm =

[
I O O · · · O O O O

]
(63)

Since the states are formed using input and output variables, the MPC controller does not require
the design of state observers.

The output tracking error is defined as:

e(k) = y(k)− r(k), (64)

where r(k) is the reference signal. Combining (60) and (64):

e(k + 1) = e(k) + Cm Am∆xm(k) + CmBm∆u(k)− ∆r(k + 1), (65)

by augmenting e(k) into the state variables and:

z(k) =

[
∆xm(k)

e(k)

]
. (66)

The extended input–output state space model can be expressed as:

z(k + 1) = Az(k) + B∆u(k) + C∆r(k + 1), (67)

where:

A =

[
Am 0

Cm Am I

]
, (68)

B =

[
Bm

CmBm

]
(69)

and:

C =

[
0
−I

]
. (70)

Note that when the system is in steady-state, the elements in z(k) must be zero and hence can
guarantee y(k) = r(k), which indicates, using the extended input–output state space model as the
prediction model in MPC, the desired controlled variables can track the reference signal with no offset.

The optimal control moves can be calculated by minimizing the objective function:

argmin
{∆umpc(k+i)i=1,2...,M}

J =
P
∑

j=1
zT(k + j)Qjz(k + j) +

M
∑

j=1
∆uT(k + j)Rj∆u(k + j)

s.t.


∆umax

mpc ≤ ∆umpc(k + i) ≤ ∆umin
mpc0 ≤ j < M

umax
mpc ≤ umpc(k + i) ≤ umin

mpc0 ≤ j < M
∆umpc(k + i) = 0j ≥ M

, (71)

where:
Qj = diag

{
qj,y1, qj,y2, qj,y3, qj,u1, qj,u2, . . . , qj,u6, qj,e1, qj,e2, qj,e3

}
; (72)

Rj = diag
{

rj,u1 rj,u2 rj,u3

}
; (73)

P and M are the prediction and control horizons, respectively; and Qj and Rj are the weighting
matrices. Generally, qj,ei (i = 1, 2, 3) and rj,ui (i = 1, 2, 3) cannot be set to zero, because the tracking error
and control effort must be considered in the cost function.

Tuning of the MPC parameters is actually a compound problem owing to the lack of agreement
on what satisfactory controller performance is [34]. Generally the weighting matrixes should be tuned
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based on practical needs. In the pulverizing system, since safe operation is the primary concern,
the controller cannot take aggressive moves and hence rj,ui should be large enough to avoid overshot
or oscillation of the controlled variables. To achieve this, we first fix qj,ei and then gradually increase
rj,ui until overshot or oscillation disappears. In practice, the error weights qj,ei can be tuned empirically:
if one or more process variables are more important than others, larger weights should be set on them
to ensure the tracking performance [35]. We put more weights on the tracking error of primary air mass
flow to maintain the economic air to coal ratio. The prediction and control horizons can be determined
using empirical formulas proposed in [35].

Solving the optimization problem (71) for the two local controllers provides their control inputs,
U1 and U2. Then the control move of the multi-model predictive controller can be expressed as:

u = ϕ1U1 + ϕ2U2, (74)

where ϕ1 and ϕ2 are the weighting functions, and Figure 7 shows their relationship with the scheduling
variable (raw coal mass flow). Trapezoidal relationship is employed owing to its simplicity in design.
The switching points are placed at the 1/4 points on the line segment between the adjacent selected
operating points, i.e., the 6 kg/s and 8 kg/s raw coal mass flowrate, so that the local controllers can
switch smoothly.

The design procedures of the proposed MMPC are summarized in Figure 8.Energies 2018, 11, x FOR PEER REVIEW  18 of 27 
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5. Simulation Results

We tested the proposed inferential multi-model predictive control performance. The soft sensor
effectiveness is presented first, and then the inferential multi-model control system is compared with
proportional-integral (PI) control strategy for a real power plant.

5.1. Soft Sensor Test

The proposed soft sensor was compared with a conventional extended Kalman filter (EKF),
with the same weighting matrixes for states and outputs both cases. Sampling time for the soft
sensor = 1 s, the same as the power plant DCS sampling time. Weighting matrixes in (27) were
W = diag(0.5, 0.3, 0.1, 0.5, 0.5, 1), V = diag(1, 1, 10, 0.1, 5), which was a trade-off between model
prediction and measurement data. Estimation horizon N = 10. Table 5 shows the input and state
estimate constraints, where k represents the present sample time, i represents the ith estimate in (27)
(i = k−N+1, . . . , k), and ∆ means the difference between estimates at time k and k− 1. State constraints
can be determined from the input constraints by simulating the first principle model.

Table 5. State estimate constraints.

State
Constraints |∆tair(k, i)| |∆qair(k, i)| |∆mraw(k, i)|

∣∣∣∆mpul(k, i)
∣∣∣ |∆tm(k, i)| |∆θ(k, i)| |∆η(k, i)|

Value 0.9 K/s 0.3 kg/s 0.5 kg/s 0.3 kg/s 0.2 K/s 0.01 0.01

Input
Constraints |∆qraw| |∆µcold| |∆µhot| |∆tenvi| |∆tcold| |∆thot|

Value 0.05 kg/s 2%/s 2%/s 0.1 ◦C/s 0.1 ◦C/s 1.5 ◦C/s

As discussed earlier, raw coal and primary air mass flow cannot be accurately measured.
Therefore, we set±5% measurement uncertainty in the simulation, and±1% measurement uncertainty
for other input and output signals. Additionally, at 200 s we increased the raw coal moisture content
and grindability to simulate the power plant changing raw coal type. Figure 9 shows unmeasurable
states and parameters estimates, and Figure 10 shows controlled variables estimates. Since pulverized
coal flow into the furnace is unmeasurable, the measured raw coal feed rate was also regarded as the
pulverized coal flow for the simulation. Table 6 shows the root-mean-square (RMS) errors and 3-sigma
error bounds of the estimates for MHE and EKF.
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Table 6. RMS errors and 3-sigma error bounds of the estimates.

Raw Coal Stored
in the Mill

Pulverized Coal
Stored in the Mill

Moisture
Content Grindability

RMS of MHE 2.8493 0.9084 0.0391 0.028
RMS of EKF 6.0084 1.8175 0.0417 0.0585

Error bound of EKF ±18.0326 ±5.4549 ±0.1253 ±0.1757
Error bound of MHE ±8.5516 ±2.7263 ±0.1172 ±0.0839
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Figure 9 and Table 6 show that the proposed soft sensor provides satisfactory unmeasurable states
and parameter estimates in the presence of measurement uncertainty. Since the state constraint is
considered, which represents prior knowledge of the process, the proposed soft sensor is less affected
by measurement uncertainty than EKF. Previous studies have shown that, given the same tuning
parameters, MHE can provide improved estimates and greater robustness than EKF [36], which is
verified by the current simulation.

Raw coal property changes were successfully detected by the soft sensor. Therefore, when the
power plant changes raw coal type, we can slowly update the model parameters online rather then
re-identifying the model parameters. There was a large delay between real and estimated moisture
content, since the changed moisture content only influences outlet temperature slowly due to the large
energy balance inertia, hence the true value cannot be immediately estimated.

Figure 10 shows that pulverized coal flow into the furnace and primary air flow estimates are
significantly closer to the real values than were the measurements, and outlet temperature estimates
had similar precision to the measurements. Since the outlet temperature is already measured accurately,
the soft sensor cannot significantly improve its measurement accuracy. However, the other two
controlled variables are only approximately measured, and the soft sensor can significantly improve
their measurement quality because it employs accurately measured signals to reconstruct measurement
signals based on the first principle model. Therefore, using estimates rather than measurements
as the control system feedback signal can significantly enhance control precision of the desired
controlled variables.

5.2. Inferential Control Strategy Test

We tested tracking performance of the proposed inferential multi-model predictive controller.
Measurement uncertainty was set the same as the previous simulation, and sample time for the
controller = 5 s due to the large process inertia. We set qj,yi = 0 (i = 1, 2, 3) and qj,ui = 0 (i = 1, 2,
. . . , 8) to simplify (71), which also means that only tracking error and control effort were considered.
The weights for tracking error and control effort were qj,y1 = 4, qj,y2 = 8, qj,y3 = 1, qj,u1= 60, qj,u2 = 10,
and qj,u3 = 10. Prediction horizon = 100, long enough to cover key pulverizing system dynamics.
Tuning the control horizon was a trade-off between computation cost and control performance [37],
and was set = 5.

In real power plants, the pulverizing system is controlled via three independent single PI control
loops, which are tuned conservatively to ensure safe and reliable operation [6]. Hence the PI controllers
were employed to compare with proposed control system. Figure 11 shows the PI control structure
used for comparison, and Figure 12 shows the simulation results. Note that, in the PI control scheme,
the pulverized coal flow into the furnace is estimated by solving the model differential equations given
the input signals.
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To investigate control performance quantitatively, we introduce the cumulative tracking error:

T

∑
i=1

∣∣∣∣∣y
i
real − yi

re f

yi
re f

∣∣∣∣∣, (75)

where T is the total simulation time, and subscripts ref denotes the reference signal and real denotes
the real controlled variable value. Figure 12 shows the cumulative tracking error for the proposed and
PI controllers.

Figures 12 and 13 show that the proposed multi-model inferential controller can significantly
improve pulverizing system control precision and tracking performance over a wide operating range.
The reasons for this good performance are summarized as follows.

(1) The desired controlled variables are more accurately “measured” by the soft sensor, hence their
control precision is significantly improved. The proposed control scheme produces fewer
fluctuations around its set point for mass flowrate of primary air and pulverized coal into the
furnace, which indicates that the inferential controller is less sensitive to measurement uncertainty.

(2) The multi-model MPC controller can automatically handle nonlinearity, large inertia, and coupling
effects of the pulverizing system. At 500 s, the power plant coal demand increased to 9 kg/s.
Since the predictive controller can foresee the future outlet temperature increment, it opens
the cold air baffle in advance to compensate for the excess energy input by the hot air.
Hence temperature is successfully maintained around 70 ◦C. A similar result is observed at
1700 s, where coal demand falls to 7 kg/s. The PI controller cannot predict the influence from
other control loops and handle it timely, resulting in poorly controlled outlet temperature. The PI
controller can also easily result in oscillatory performance, due to the large energy balance inertia.
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Since the pulverized coal flow into the furnace is more accurately controlled within the proposed
control scheme, the power plant load will have fewer fluctuations caused by measurement uncertainty.
Primary air also tracks the set point faster than the PI controller, which indicates that the air to coal
ratio is better controlled. The outlet temperature exhibits almost no oscillations, showing that safe
operation of the system has been improved.

6. Conclusions

This paper proposed an inferential multi-model predictive control method to improve pulverizing
system control precision and tracking performance. A first principle model of the pulverizing
system was developed considering primary air nonlinear dynamics. The proposed model also
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considered the grindability and moisture content of raw coal to adapt to the change of raw coal type.
The unknown parameters in the pulverizing system model were identified using a genetic algorithm.
Model validation showed that the proposed model agreed well with measurement data from a
real plant, and hence it was employed as the simulation platform for the design of soft sensor and
inferential controller.

A soft sensor was developed based on the established model using an MHE approach to estimate
desired controlled variables that are unmeasurable or inaccurately measured. The proposed soft sensor
can reconstruct signals of the desired controlled variables from more accurately measured variables and
thus can improve their “measurement” accuracy. Moreover constraints in the estimates were explicitly
considered in the MHE, such that the influence of measurement uncertainty can be significantly
reduced. To improve accuracy and computation speed of the MHE, we derived an efficient arrival
cost update based on the pulverizing system model. Simulation results showed that the proposed soft
sensor can give improved estimates compared with conventional EKF.

Estimated outputs of the soft sensor were employed as feedback signals for an inferential
multi-model predictive controller, because, as shown in simulation results, the estimates were much
closer to the real value than measurements. We analyzed nonlinearity of the pulverizing system using
gap metric and then selected two linear models to construct the local MPC controller based on the
analysis. To achieve offset free performance in the presence of unknown disturbances and modeling
error, the local linear models were transformed into the extended input-output state space model for
controller design. The proposed controller was compared with conventional PI controllers applied in
real power plants. Simulation results showed that the proposed inferential method could significantly
improve control precision and tracking performance of pulverized coal flow into the furnace, primary
air mass flow and outlet temperature.
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