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Abstract: This paper proposed a distributed genetic algorithm (DGA) to solve the energy efficient
coverage (EEC) problem in the wireless sensor networks (WSN). Due to the fact that the EEC
problem is Non-deterministic Polynomial-Complete (NPC) and time-consuming, it is wise to use a
nature-inspired meta-heuristic DGA approach to tackle this problem. The novelties and advantages in
designing our approach and in modeling the EEC problems are as the following two aspects. Firstly,
in the algorithm design, we realized DGA in the multi-processor distributed environment, where a
set of processors run distributed to evaluate the fitness values in parallel to reduce the computational
cost. Secondly, when we evaluate a chromosome, different from the traditional model of EEC problem
in WSN that only calculates the number of disjoint sets, we proposed a hierarchical fitness evaluation
and constructed a two-level fitness function to count the number of disjoint sets and the coverage
performance of all the disjoint sets. Therefore, not only do we have the innovations in algorithm,
but also have the contributions on the model of EEC problem in WSN. The experimental results show
that our proposed DGA performs better than other state-of-the-art approaches in maximizing the
number of disjoin sets.
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1. Introduction

Wireless sensor networks (WSN) have become a hot research topic and have been widely used in
numerous real-world applications, such as traffic monitoring [1], mobile computing [2], environmental
observation [3], and many others [4–6]. In these sophisticated environments, in order to make full
coverage and get more accurate results, many nodes should be randomly deployed in the area, causing
a waste of resources. Since the sensor nodes are equipped with limited battery resources and the
replacement of the battery is not feasible in many applications, low power consumption has become
a critical factor to be considered when designing the WSN. Therefore, research into energy saving
to prolong the network lifetime has become one of the most significant issues in WSN. Moreover,
the energy saving in WSN is a significant research topic in smart and sustainable energy systems and
applications [7–9].

Due to the significance of the energy efficient problem in the WSN [10–12], many efforts have been
made to tackle this problem. These proposed techniques are generally divided into two categories,
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where one is to design efficient protocols to reduce the energy consumption and the other one is to
schedule the nodes to work efficiently. For the first category, protocols such as for the medium access
control [13], for transmission [14], and for communication [15] have been proposed in the literature for
reducing energy consumption. While the second categorized technique concentrates on scheduling
the nodes, resulting in energy preservation and longer network lifetime. These two categories both
have contributions to the energy efficiency for WSN from different approaches. The focus of this
paper belongs to the second category, which is the energy efficient coverage (EEC) problem in the
WSN [16,17].

In EEC, the sensor nodes are divided into different disjoint sets with the constraint that each
set can guarantee the full coverage of the whole monitored area. In that way, in any time, only the
necessary sensor nodes in one set are activated while the other sensor nodes that monitor the same
regions can be turned off. These different disjoint sets work one by one and therefore the network
lifetime can be prolonged. Moreover, with more disjoint sets that can be formed, longer network
lifetime can be obtained because the nodes are scheduled to work energy efficiently [18–20]. Therefore,
it is very interesting and promising for the approaches in [21–23] to divide the deployed sensor nodes
into maximal disjoint sets and schedule the sets to work in turn. In this paper, we also focus on
maximizing the number of disjoint sets.

Even though the above methods have been applied to the EEC problem [21–23], they can easily
get trapped into local optima and cannot achieve or guarantee the full coverage because the EEC
problem is NPC [21]. Therefore, in this paper, we proposed distributed genetic algorithm (DGA) to
solve the EEC problems in WSN to further improve the performance due to the superior adaptation
and strong global search ability of GA. Moreover, two major novel designs and advantages of DGA
are described as follows:

(1) DGA is realized in the multi-processor distributed environment by the master-slave distributed
model, where a set of processors run distributed to evaluate the fitness values in parallel to reduce the
computational cost.

(2) When we evaluate a chromosome, different from the traditional model of EEC problem in
WSN that only calculates the number of disjoint sets, a hierarchical fitness evaluation mechanism
is proposed and a two-level fitness function with biased attention to the sets with larger coverage
percentage is designed.

Therefore, not only do we have the innovations in algorithm, but also have the contributions on
the model of EEC problem in WSN. The experimental results show that our proposed DGA performs
better than other state-of-the-art approaches in maximizing the number of disjoin sets.

The rest of this paper is organized as follows. Section 2 gives the problem description of the EEC
in the WSN and reviews some related work. Section 3 proposes our methodology for solving EEC in
the WSN by using DGA. Section 4 presents the experimental results between our approach and other
state-of-the-art approaches in the literature. Conclusions are given in Section 5.

2. Energy Efficient Coverage Problem in WSN

The EEC problem is a fundamental and significant research topic in the WSN. In this section,
we present the formulation of the EEC and review the related work on this problem.

2.1. Problem Formulation

Given an L × W (Length × Width) rectangle area A and D randomly deployed sensor nodes.
The EEC is to divide the nodes into several disjoint sets and then schedule these sets to work one by
one. As the nodes do not have to work all the time, the energy can be significantly preserved. The aim
of the EEC is to maximize the number of disjoint sets, with the constraint that each set can provide the
full coverage for the monitored area.

In order to know whether the sensor network provides full coverage in the area A, we assume
that the location of each sensor node is known in advance [19,24]. Moreover, the area is divided into
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many grids and the coverage issue can be transformed to check whether each grid is covered by at
least one active sensor node [19].

All the D sensors form the sensors set S = {s1, s2, . . . , sD}, where each sensor node si is with the
location (xi, yi) and the sensor radius R. For any grid g(x, y) ∈ A in the monitored area, the relationship
between the si and the g is defined as:

P(si, g) =

{
1, if (x− xi)

2 + (y− yi)
2 ≤ R2

0, otherwise
(1)

where 1 means that the grid g is covered by the sensor si while 0 means the sensor si does not cover the
grid g. Therefore, for any grid g in the monitored area, if there exist at least one sensor si(1 ≤ i ≤ D)
that makes P(si, g) = 1, we say that A is fully covered by the sensor network.

In the EEC, the set S is divided into M subsets Sj (1≤ j≤M), and with the objective of maximizing
the value of M, as:

f = max K
subject to (i) ∪K

i=1 Si ⊆ S
(ii) Si ∩ Sj = Φ

(iii)
(
⊕sj∈Si P(sj, g)) = 1, ∀g ∈ A

(2)

Here, the constraint (i) means that the unitization of all the subsets Sj must belong to the original
set S. The (ii) indicates that there is no intersection between any two different subsets Sj1 and Sj2.
The (iii) represents that for any grid g in area A, there exists at least one sensor si in Sj which can
cover the grid g. Obviously, these constraints can guarantee that each subset Sj can fully cover the
monitored area.

2.2. Related Work

With the development of evolutionary computations (ECs) like GA [25,26], ant colony
optimization (ACO) [27,28], particle swarm optimization (PSO) [29,30], and differential evolution
(DE) [31,32], many researchers have applied ECs into solving the EEC problems in WSN, such as
PSO-based [33] and ACO-based [34] approaches. Specifically, in [33], Zhan et al. extended the
binary PSO (BPSO) to solve the EEC problem by finding a minimal set of nodes again and again to
maximize the number of disjoint sets. Lin et al. [34] proposed the ACO-based approach to maximize
the number of connected covers, called ACO-MNCC, to maximize the lifetime of heterogeneous WSNs
by transforming the search space of the problem into a construction graph. Besides, in [35], Yang et al.
proposed a probabilistic model to tackle the EEC problem in WSN, which transforms the area converge
into point converge. It greatly reduces the dimension of problem. Lee et al. [36] also tried to solve the
EEC problem in the WSN by using the ACO, which designs three pheromones to balance the local
exploitation and global exploration. Meanwhile, they also introduced a probabilistic sensor detection
model, which makes the algorithms more realistic [37].

Some researchers have also used GA for solving the EEC in the WSN recently. For example,
Lai et al. [25] proposed a GA-based method to maximize the disjoint sensor covers called GAMDSC.
However, there is still much room for improvement. First, their works only solved the small-scale
problems (up to 140 sensors). When the scales of problems increase, their performance often face
difficulties. Second, parallel or distributed methods can further improve the performance and save the
computational time.

3. Methodology: DGA for the EEC Problem

In this section, the DGA for solving the EEC problem in WSN is implemented and described.
The master-slave distributed framework is first given. Then the chromosome representation and the
hierarchical fitness evaluation mechanism are described. After that, the genetic operators, including
the selection, crossover, and mutation are proposed. At last, the overall algorithm is presented.
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3.1. Distributed Framework of DGA

In DGA, the master-slave distributed model is used. The processor whose role is to control the
whole evolutionary process including crossover, mutation, and selection operations, is called MASTER.
The other processors, which are responsible for chromosomes’ evaluation to reduce the computational
costs, act as SLAVEs. To give an overview of the DGA, the master-slave distributed structure is
depicted in Figure 1. In each generation, the master sends chromosomes to slaves, while the slaves
evaluate the chromosomes and return their corresponding fitness values back to the master [38].
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Figure 1. The distributed framework of the distributed genetic algorithm (DGA).

3.2. Chromosome Representation

The aim of the EEC problem is to maximize the number of disjoint sets. Therefore, the first thing
is to determine how many sets the nodes can be divided into at most. This is also the upper bound
of the disjoint sets number K [23]. Since the area has been divided into many grids, for each grid i,
we find out the number of sensors ki that cover the grid i. Then, the minimal ki is the upper bound
number of disjoint sets, i.e., K = min{ki}.

With the upper bound K determined, we can encode the chromosome in a very intuitive manner
that each gene is an integer in the range of [1, K]. Therefore, the chromosome is a string of integers
with the length of D, where D is the number of sensor nodes. The representation is

X = [x1, x2, . . . , xD], where xi ∈ Z and 1 ≤ xi ≤ K (3)

In (3), the value of xi denotes which set the ith sensor belongs to. Figure 2 gives two examples
of the chromosome representation. In the examples, D is 4 and K is 2. In Figure 2a, the chromosome
is Xa = [1, 2, 1, 2], meaning that the first and the third sensors belong to the 1st set while the second
and the fourth sensors belong to the 2nd set. In this case, it can be observed that both the 1st and the
2nd sets can provide full coverage for the monitored area. However, in Figure 2b, the chromosome is
Xb = [1, 2, 1, 1], meaning that the first, the third, and the fourth sensors belong to the 1st set while only
the second sensor belongs to the 2nd set. In this case, only the 1st set can provide full coverage for the
monitored area, but the 2nd set cannot.
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3.3. Hierarchical Fitness Evaluation

In order to evaluate the chromosome, herein, a hierarchical fitness evaluation mechanism and a
two-level fitness function are proposed.

First, the genes are grouped into different sets according to their values. Then a check procedure
is performed on each set to see whether the nodes in the set can provide full coverage. As we divide
the monitored area into L ×W grids, for each set Si, we can count the grids number G that is covered
by the sensor nodes in set Si. Therefore, we can obtain the coverage percentage fi as:

fi =
G

L×W
(4)

Note that if fi is equal to 1, it means that the set Si can provide full coverage for the monitored
area. In this way, we can count and obtain the number of disjoint sets (denoted as M) in the population
which can achieve the full coverage. When two chromosomes A and B are compared, A wins B if A
has a larger disjoint set number (larger M). The number of disjoint sets M is regarded as the first-level
fitness evaluation.

However, to meet the case where the two chromosomes A and B have the same disjoint set
number, we further designed a fitness function with biased attention to the sets with larger coverage
percentage, so called the second-level fitness evaluation, which is calculated as:

F = ∑K
i=1 wi × fi (5)

where K is the upper bound of the disjoint sets and wi is the weight for the set Si. Herein, we give
the biased attention to the sets with larger coverage percentage. That is because the set with a higher
coverage percentage has a higher probability to achieve the full coverage. Therefore, we first sort the
sets according to their coverage percentages in descending order, then the weight wi for the set Si is set
as wi = 10,000.0/ri, where ri is the rank of the set Si in the sort of coverage percentage.

In that way, if two chromosomes A and B have the same disjoint set number, then the one with a
larger fitness value is preferred (larger F).

3.4. Genetic Operators

The genetic operators in DGA consist of the selection, crossover, and mutation. In this subsection,
we will briefly describe the implementations of these operators.

3.4.1. Selection

In the selection implementation, we use the tournament selection strategy. Specifically, in each
selection, partial of the chromosomes are randomly selected to compete for survival. The winner enters
into the next generation. Repeat the selection operator until a population size of chromosomes have
been selected.

3.4.2. Crossover

After the selection, the survived chromosomes recombine to create offspring. First, for each
chromosome, a random value in range [0, 1] is generated. If the value is smaller than the crossover
probability pc, then the chromosome is used as one of the parents. After all the parents have been
determined, every two parents are randomly mated to create two offspring. A crossover position
k is randomly generated and the genes from the kth position of the two parents are exchanged,
as shown in Figure 3a. In this way, two new chromosomes, so called offspring are generated and enter
the population.
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3.4.3. Mutation

The chromosomes will perform a mutation operation after the crossover. For each gene in a
chromosome, a random value in range [0, 1] is generated and compared with the mutation probability
pm. If the random value is smaller than pm, then the mutation occurs. As shown in Figure 3b, when the
mutation occurs, the gene is set as a random integer in the range [1, K].
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3.5. Complete Algorithm

With the designs of the chromosome representation, fitness function, and the genetic operators,
the DGA for solving the EEC problem is shown in Figure 4 and is described as the following seven steps.Energies 2018, 11, x FOR PEER REVIEW  7 of 14 
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Step 1: Initialization. The N chromosomes in the population are initialized at master. Each gene
in the chromosome is set as a random integer value in the range [1, K] as (3).
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Step 2: Evaluation. Each chromosome is evaluated as (5) at the slave and returns its fitness to the
master. Then the best chromosome with the highest fitness can be determined. This chromosome is
compared with the historical best one and will replace the historical best one if it is better. Otherwise,
the historical best chromosome will replace the worst chromosome in the current generation.

Step 3: Selection. The selection operation has been discussed in Section 3.4.1.
Step 4: Crossover. The crossover operation has been discussed in Section 3.4.2.
Step 5: Mutation. The mutation operation has been discussed in Section 3.4.3.
Step 6: Termination check. If the termination criteria is met, go to Step 7. Herein, the termination

criteria include the obtaining of the upper bound K or reaching the maximal generation number.
Otherwise, the algorithm goes to Step 2 and continues the next generation evolution.

Step 7: Terminate. Output the best chromosome as the final solution.

3.6. Computational Complexity

Herein, we denote the population size and the dimension of problem (the number of sensors) as
N and D, respectively. First, in the initialization, the computational complexity of DGA is O(N × D),
which is obtained by step 1 in MASTER process of Figure 4. Then, as for the chromosomes evaluation,
the computational complexity is O(N), as obtained by steps 3–4 in the MASTER process and steps
2–4 in the SLAVE process of Figure 4. After that, in the chromosome evolution, since we used the
tournament selection, the computational complexity is O(N2 × D), as obtained by steps 6–8 in the
MASTER process of Figure 4. Therefore, the overall computational complexity of DGA is O(N2 × D).

4. Experiments and Comparisons

4.1. Algorithms Configurations

The parameter configurations of the DGA are listed as Table 1 and are described as follows.

Table 1. The Parameters Configurations of DGA.

Parameter Configuration

N 40
Generation 200

pc 0.8
pm 0.01

The population size is 40. Several processors are used here to evaluate the fitness of chromosomes.
In each tournament selection round, 20% of the chromosomes are randomly chosen and compete
for survival. The crossover probability pc and mutation probability pm are 0.8 and 0.01, respectively.
The algorithm terminates at the maximal generations of 200 or it obtains the upper bound K of the
disjoint sets number.

4.2. Experimental Results and Comparisons

In our experiments, we choose several EA-based algorithms, including a PSO-based method
(BPSO [33]) and a GA-based method (GAMDSC [25]) to compare with our proposed DGA. To have a
reliable and fair comparison, the parameter configurations of all the competitor algorithms are set the
same as suggested in their original papers.

Herein, the network topology configurations used in [19] are adopted. That is, with the monitored
area 50 m by 50 m, the sensing range R spans 8 m, 10 m, and 12 m, whilst the deployed nodes number N
can be 100, 150, 200, 250, and 300. For each case with N original deployed nodes, we randomly deploy
the D nodes in the network to form the topology. Note that the D nodes must provide the full coverage.
Otherwise, the nodes are randomly deployed again until the network is fully covered. On each case,
we generate three different random topologies. Therefore, there are totally 3 × 3 × 5 = 45 cases in
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this experiment. Due to the stochastic characteristic of the algorithms, we simulate each case on each
topology 10 times and the mean results are recorded for statistics. All the approaches are dealing with
the same test environments, resulting in a fair comparison.

The simulation results are presented and compared in Table 2. For clarity, the best results are
highlighted in boldface. The results show that the DGA outperforms the other approaches on most of
the cases. Also, DGA can maximize the number of disjoin sets and obtain the upper bound K in most of
the cases, except cases 34, 42–44, while other algorithms can only find few disjoin sets. Moreover, with
the increase in the number of nodes, especially in cases 37–45, the superiority of DGA is increasingly
obvious, which further indicates the dominance of DGA when solving the complicated EEC problem
in WSN.

Table 2. Experimental Results of Comparisons.

Case No.
Topology Upper

Bound K
All

Combinations

Mean Disjoint Set Number M Error

Node Range GAMDSC BPSO DGA GAMDSC BPSO DGA

1
100 8

2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
2 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
3 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000

4
100 10

2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
5 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
6 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000

7
100 12

2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
8 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
9 4 4ˆ100 3.900 3.600 4.000 0.025 0.100 0.000

10
150 8

2 2ˆ150 2.000 2.000 2.000 0.000 0.000 0.000
11 2 2ˆ150 2.000 2.000 2.000 0.000 0.000 0.000
12 2 2ˆ150 2.000 2.000 2.000 0.000 0.000 0.000

13
150 10

3 3ˆ150 3.000 3.000 3.000 0.000 0.000 0.000
14 4 4ˆ150 3.500 3.200 4.000 0.125 0.200 0.000
15 3 3ˆ150 3.000 3.000 3.000 0.000 0.000 0.000

16
150 12

5 5ˆ150 4.200 5.000 5.000 0.000 0.000 0.000
17 3 3ˆ150 3.000 3.000 3.000 0.000 0.000 0.000
18 4 4ˆ150 3.800 4.000 4.000 0.050 0.000 0.000

19
200 8

2 2ˆ200 2.000 2.000 2.000 0.000 0.000 0.000
20 2 2ˆ200 2.000 2.000 2.000 0.000 0.000 0.000
21 3 3ˆ200 3.000 3.000 3.000 0.000 0.000 0.000

22
200 10

3 3ˆ200 3.000 3.000 3.000 0.000 0.000 0.000
23 4 4ˆ200 3.500 3.300 4.000 0.125 0.175 0.000
24 5 5ˆ200 5.000 4.600 5.000 0.000 0.080 0.000

25
200 12

7 7ˆ200 5.900 6.200 7.000 0.157 0.114 0.000
26 8 8ˆ200 7.200 6.600 8.000 0.100 0.175 0.000
27 9 9ˆ200 7.300 7.500 9.000 0.189 0.166 0.000

28
250 8

3 3ˆ250 3.000 3.000 3.000 0.000 0.000 0.000
29 3 3ˆ250 3.000 3.000 3.000 0.000 0.000 0.000
30 5 5ˆ250 4.900 4.100 5.000 0.020 0.180 0.000

31
250 10

5 5ˆ250 5.000 5.000 5.000 0.000 0.000 0.000
32 7 7ˆ250 6.300 6.600 7.000 0.100 0.057 0.000
33 6 6ˆ250 5.700 5.900 6.000 0.050 0.016 0.000

34
250 12

11 11ˆ250 9.900 9.700 10.00 0.100 0.118 0.091
35 9 9ˆ250 8.600 8.700 9.000 0.044 0.033 0.000
36 8 8ˆ250 8.000 8.000 8.000 0.000 0.000 0.000

37
300 8

6 6ˆ300 6.000 6.000 6.000 0.000 0.000 0.000
38 3 3ˆ300 3.000 3.000 3.000 0.000 0.000 0.000
39 5 5ˆ300 5.000 5.000 5.000 0.000 0.000 0.000

40
300 10

7 7ˆ300 7.000 6.600 7.000 0.000 0.057 0.000
41 7 7ˆ300 7.000 6.800 7.000 0.000 0.029 0.000
42 9 9ˆ300 8.300 7.400 8.400 0.100 0.178 0.067

43
300 12

11 11ˆ300 10.60 10.00 10.10 0.036 0.091 0.082
44 12 12ˆ300 10.80 10.90 11.30 0.100 0.092 0.058
45 9 9ˆ300 8.800 8.600 9.000 0.022 0.044 0.000
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We also compare the Error values of these approaches when dealing with the EEC problem.
The Error is calculated as

Error = (K −M)/K (6)

where K is the upper bound in each case and M is the mean disjoint set number obtained by the
approach. The Error values of DGA are smaller than 0.1 in all the cases and most of the Error values
are 0, indicating the DGA is very promising in producing high quality solutions.

4.3. Effects of Parameters

The DGA involves two parameters, the crossover probability pc and the mutation probability pm.
In this part, we investigate the two parameters based on the same topologies as in Section 4.2.

First, the pc is set as 0.8 and the pm varies from 0.01 to 0.09. The mean Error values of the 45 cases
with different pm are plotted in Figure 5. As we can see, the small value of pm generally performs
better than the large value of pm. That may because the larger pm destroys the convergence ability,
which makes the algorithm act like a random search and cannot converge to a promising region.
Therefore, the investigated results indicate that the DGA obtains the best performance when the pm is
set as 0.01.
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Then, the pc is investigated, with the pm set as 0.01. The value of pc spans from 0.1 to 0.9, with
the step 0.1. The mean Error values of the 45 cases with different pc are plotted in the Figure 6. It can
be observed that the large value of pc may be generally better than the small value of pc. This may be
due to large pc can making the good information of the chromosome spread fast in the population.
This is very helpful for the algorithm to use good information to search in the promising region,
and therefore results in better performance. However, a too-large pc value will sometimes make the
algorithm converge too fast and be trapped into local optima. For example, when pc = 0.9, the mean
Error values are worse than that when pc = 0.8. In general, pc = 0.8 is promising for the DGA to obtain
satisfying results.
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4.4. Speedup Ratio

Another advantage of DGA is the parallel implementation, where several processors in DGA are
used to evaluate the fitness of chromosomes independently. Table 3 shows the computational times of
DGA on all the 45 cases with different processors.

Speedup ratio is the metric to measure the performance of a distributed or parallel algorithm,
and it varies with the numbers of processors and the computation cost of the case. Herein, we use the
small-scale case 1 and the large-scale case 45 as two representative instances. We test the speedup of
DGA on these two cases and draw the speedup curve with the increasing processors, from 2 to 10,
shown in Figure 7.
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Figure 7. Speedup ratios achieved by DGA on two typical cases.

As we can see, the speedup ratio consistently grows with the increase of the number of processors
on both of these two cases. However, the increase of speedup ratio slows down when the number
of processors increases from 6 to 10. That may due to the huge communication cost among many
processors. Even so, the speedup ratio still keeps growing with the increasing of the number of
processors. Moreover, the speedup ratio of case 45 is larger the case 1. That may because case 45 is
more complicated than case 1, which will cause more computation cost than case 1. Therefore, under a
similar communication cost, the higher computation cost will directly lead to a higher speedup ratio in
case 45.
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Table 3. Computational time of DGA (s).

Case No.
Processors

2 3 4 5 6 7 8 9 10

1 101.53 74.26 54.91 41.07 35.78 32.09 29.45 27.62 25.59
2 123.24 90.50 71.44 57.29 53.83 50.38 46.36 42.50 39.85
3 133.24 96.64 77.30 69.96 62.33 59.80 54.87 50.64 48.59

4 116.77 85.19 70.76 63.55 56.58 52.39 48.84 43.78 39.49
5 147.74 100.36 87.53 73.46 65.86 59.73 53.92 50.05 48.74
6 132.90 95.19 83.47 71.41 64.11 58.53 53.29 49.39 47.98

7 158.20 107.27 88.06 76.62 68.54 63.16 56.23 52.28 49.77
8 144.34 103.50 86.77 77.06 68.96 62.38 57.05 52.48 49.21
9 258.93 169.97 130.72 101.29 89.81 80.90 72.86 65.29 61.41

10 188.84 120.19 93.42 82.38 71.84 64.46 56.94 50.00 47.80
11 178.36 118.36 93.21 81.42 70.64 63.89 56.37 49.08 46.32
12 206.96 128.08 98.24 84.18 73.99 65.19 58.03 53.99 50.02

13 253.12 142.81 110.06 94.95 84.88 77.37 73.10 69.00 67.81
14 321.11 205.79 158.70 139.89 126.43 113.42 100.45 90.67 84.10
15 272.37 164.89 142.60 123.77 105.18 90.94 78.09 69.07 63.82

16 386.60 267.58 201.73 175.17 139.95 123.07 110.80 100.43 94.91
17 284.46 214.86 151.65 123.60 104.80 90.44 88.16 79.07 73.94
18 308.81 223.46 176.00 143.88 122.89 110.73 97.94 89.17 82.92

19 267.02 178.39 145.59 123.05 101.54 90.55 81.90 74.43 69.95
20 284.36 193.04 152.46 125.60 104.22 95.95 86.24 79.70 74.18
21 349.97 249.11 185.50 145.96 120.79 108.76 96.98 88.63 83.98

22 351.04 246.52 189.91 156.78 136.28 122.45 109.88 102.45 96.40
23 445.03 323.38 236.05 196.38 167.02 147.60 129.79 120.12 115.23
24 533.63 354.34 286.87 242.26 219.79 189.75 162.89 147.38 139.96

25 627.89 457.94 346.32 271.15 224.81 198.03 176.26 166.13 157.15
26 682.48 475.31 363.82 288.01 236.70 209.82 189.36 175.76 170.80
27 744.13 501.08 389.95 305.20 248.85 228.48 216.66 206.95 199.67

28 436.20 281.56 233.98 198.82 165.39 145.43 134.42 119.83 112.49
29 412.85 265.29 215.59 194.15 169.05 148.05 133.49 120.88 112.55
30 563.58 378.05 295.38 245.90 202.31 171.01 156.44 148.80 141.01

31 591.87 380.09 308.38 254.81 214.68 189.08 169.17 161.44 156.99
32 680.79 485.09 354.86 278.55 236.14 201.17 188.06 179.64 173.99
33 625.32 454.75 336.59 257.97 224.26 200.25 184.99 171.09 166.34

34 1687.20 1153.09 916.81 799.34 684.47 585.99 509.48 451.04 424.53
35 871.04 578.18 449.48 388.74 343.93 309.37 264.36 241.62 225.94
36 778.21 560.31 401.16 372.50 327.59 290.98 262.23 236.73 220.14

37 1014.52 697.61 580.35 502.69 439.96 384.46 321.52 288.86 272.87
38 836.59 580.41 446.17 385.78 332.98 294.35 251.36 222.99 210.33
39 958.63 635.55 528.04 418.04 350.24 303.71 264.91 244.66 233.68

40 1302.70 825.53 671.78 598.59 522.32 451.68 400.26 363.22 342.84
41 1412.63 915.99 732.56 603.58 508.87 449.00 414.48 382.68 367.28
42 2297.81 1542.50 1208.43 1048.97 915.04 801.93 713.63 638.74 586.86

43 2416.68 1651.56 1217.74 1082.13 951.69 837.25 732.56 651.62 606.25
44 2530.80 1754.12 1317.12 1181.00 1008.09 886.37 782.98 696.21 634.14
45 1916.47 1144.10 845.52 692.63 605.70 534.16 484.21 449.11 421.29

5. Conclusions

In this paper, DGA is proposed to solve the EEC problem in the WSN to achieve or guarantee the
full converge. In the implementation, DGA is realized in the multi-processor distributed environment,
where a set of processors run distributed to evaluate the fitness values in parallel to reduce the
computational cost. Moreover, when we evaluate a chromosome, different from the traditional model
of EEC problem in WSN that only calculates the number of disjoint sets, hierarchical fitness evaluation
mechanism is proposed and a two-level fitness function with biased attention to the sets with larger
coverage percentage is further designed. Therefore, not only do we have the innovations in the
algorithm, but we also have the contributions to the model of the EEC problem in WSN. Simulations
have been conducted and the experimental results confirm the effectiveness and efficiency of the
proposed approach when compared with the state-of-the-art approaches.
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For future work, we wish to further improve the performance of DGA by considering the potential
uncertainties, so as to make DGA more applicable in the real applications. Moreover, we wish to apply
the DGA into other more complicated optimization problems, like data routing [39], cloud resource
scheduling [40], supply chain managing, even in a dynamic and multi-objective environment [41,42],
not only in the WSN.
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Nomenclature

DGA distributed genetic algorithm
EEC energy efficient coverage
WSN wireless sensor networks
D the number of sensor nodes
M the number of disjoint subsets
K the upper bound of the disjoint sets number
N the number of chromosomes
pc crossover probability
pm mutation probability
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