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Abstract: Considerable prime global energy is used in the transport sector. Significant energy is
lost to overcome the internal friction of engines in transport vehicles. Journal bearings are crucial
tribo-pairs and passive components that cause energy loss. Frictional losses increase extensively
during the warm-up period of an engine due to high lubricant viscosity. Recent tribological
developments have shown that surface textures can be a potential solution to reduce friction.
A numerical investigation is performed to evaluate the effect of surface texture on the frictional
and lubrication performance of a journal bearing at varying thermal operating conditions in an
internal combustion engine. Temperature variations during engine warm-up are considered with
oil rheology to observe texture-based improvements. Surface texture substantially reduces frictional
energy loss during engine warm-up. Eight different monograde and multigrade engine oils are
considered, and consistency is observed in texture-based improved outcomes.
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1. Introduction

Worldwide transportation of humans and goods consumes 20% of global primary energy;
road vehicles account for 72% of this energy consumption [1]. Hydrodynamic friction-based energy
losses are also particularly high during the engine warm-up period [2,3], especially at cold engine
start-up because of high lubricant viscosities at low engine temperatures. Moreover, most vehicles
operate at a temperature lower than the designed value because the length of intra-city journey is not
sufficient to increase engine temperature to hot working conditions [4,5]. These conditions put a heavy
burden on fuel economy and related environmental protection.

The performance of mating surfaces in an internal combustion (IC) engine is a major research
concern because tribological interfaces cause energy losses. Recent studies suggest laser surface texture
(LST) on relative surfaces as a potential option to reduce the hydrodynamic and boundary frictions [6].
These frictions are the main cause of energy losses in an engine, in particular, hydrodynamic friction
at low temperatures during cold start-up and warm-up, and boundary friction at elevated engine
temperatures. Mechanisms of friction reduction caused by surface textures include a small lubricating
area, texture acting as an oil trap and micro-reservoir, and the micro-hydrodynamic effect [7]. Based on
these mechanisms, surface texturing can be widely applied and benefit the mechanical seal, flat-faced
tribo-pair, piston ring, thrust bearing, and journal bearing. The aforementioned adverse effects of
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low engine temperatures were studied by few researchers, and energy losses were minimized with
the use of surface textures [8]. However, such studies are rarely reported. Therefore, comprehensive
optimization is needed to categorize surface textures for varying conformabilities of contact and
operating conditions.

Most of the interfaces in an IC engine are non-elliptical contacts under sliding and/or reciprocating
motions. Crankshaft bearings, piston ring–liner, piston skirt–liner, journal and thrust bearings, and
cam–follower are some examples of such contacts. These machine components are widely used in
numerous engineering applications aside form IC engines, thereby emphasizing the importance of
understanding the effects of modern surfaces on the tribological performance of these contacts.
Tribo-interfaces in an IC engine experience high-frequency fluctuating thermal and structural loads.
Therefore, studies of such interfaces provide insight into the tribological performance of a wide-range of
contacts in considerable applications.

A plain bearing is a crucial tribological component in IC engines; it contributes to increasing energy
losses at cold temperatures [3]. Surface grooves in an interface improve the tribological performance
in a number of engineering applications [9–12]. Therefore, this study numerically investigates the
effect of grooves on the journal surface of big-end bearing in an IC engine during warm-up. In this
study, transverse grooves are considered for modifying a journal–bearing interface. A 2D Reynolds
equation is solved with realistic oil rheology at varying load and temperatures during the warm-up of
an IC engine. The effects of hydrodynamic pressure, temperature, and shear rate on lubricant rheology
are considered. Eight modern mono- and multigrade engine oils are used to draw a comprehensive
conclusion. Texture-based tribological improvements are discussed in comparison with an untextured
tribo-pair working under identical operating conditions.

2. Mathematical Model

The distribution (h) of film thickness in a plain bearing interface with textures on the journal
surface can be expressed as follows:

h(x, y) = (c(1 + ε cos θ) + ht), (1)

where x and y are the coordinates of a Cartesian coordinate system, θ can be calculated by arctangent
(y, x) with two arguments, c is the difference between the radii of the bearing (RB) and the journal (RJ),
ε is the eccentricity ratio, and ht is the film thickness based on surface textures.

Figure 1 represents the journal bearing hydrodynamic conjunction. Eccentricity ratio ε is used to
reflect the effect of load, hence, hydrodynamic pressure (p) is computed accordingly. Figure 2 illustrates
the film thickness distribution over a partially textured journal surface compared with an untextured
surface. Here, the axis of rotation is along the positive z-axis. As the perfectly aligned journal bearing
is considered in the axial direction, a symmetric boundary condition is considered (as illustrated in
Figure 2) at mid-plane of the bearing to reduce the computational domain to achieve a shortened
computational time. Figure 3 illustrates the film thickness in the said mid-plane in a circumferential
direction of textured and untextured journal–bearing interfaces.
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The boundary separation between the oil film and the cavitation regions in the tribo-interfaces
was made easy when Elrod [13] and Elrod and Adams [14] presented their work and algorithm.
Based on their work, a modified Reynolds equation is used to compute hydrodynamic pressures in the
journal–bearing interface in the present study. The equation is as follows:

∂
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where ρc is the density of cavitation region, µ is the oil viscosity (Equation (7)), u is the sliding velocity of
the journal surface, β is the bulk modulus of the typical lubricant oils and is 109 Pa [13], therefore,
1 GPa is the considered value in the present study, g is the switch function presented as follows:

g =

{
0 i f 0 < Φ < 1
1 i f Φ ≥ 1

(3)

Uniform lubricant density is considered in the cavitation region; striated oil flow causes Φ < 1
because Φ = ρ/ρc. Fluid film region results in Φ > 1 because ρ > ρc. The corresponding film
pressure is:

p = pc + β(Φ− 1), (4)

where pc is the cavitation pressure, set at 50 kPa (absolute pressure) [15].
Bearings are subjected to dynamic structural and thermal loads in an IC engine. Variations in

lubricant viscosity, calculated by the formulation presented in this study, at varying temperatures and
pressures are shown in Figure 4. Using well-established models of lubricant rheology predicted the
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depicted change under thermal and structural loads. Vogel [16] and Roelands–Houpert equations [17]
and Cross [18] formulation were used to predict temperature, pressure, and shear rate-based changes
in lubricant viscosity, respectively.

µ1 = µ0e
K1

(T−K2) e[ln (µ0)+9.67]{(1+(1.51×10−9)p)Z−1}, (5)

Z =
1× 10−8

(5.1× 10−9)(ln(µ0) + 9.67)
(6)

where K1 and K2 are oil-dependent constants to match the temperature–viscosity behavior, and µ0

is the viscosity atmospheric temperature. The pressure–viscosity coefficient used in Equation (5)
considers the effect of variation of oils (Equation (6)) and is valid over the range of temperatures used
in this study [17].

Figure 5 shows the effect of the operating conditions on the shear rates for an untextured journal
surface. The Cross equation [18] is used to calculate shear-dependent viscosity, as follows:

µ = µ2 +
(µ1 − µ2)

1 + m
.
γ

k (7)

where µ1 is the limiting viscosity at zero shear rate, µ2 is the limiting viscosity at high shear rate,
m and k are fitting parameters and are considered to be 0.001 and 2/3, respectively, and

.
γ = |u|/h is the

shear rate. Table 1 presents the oil parameters used in this study. Since the low shear rate viscosity (µ1)
varies with operating temperatures and pressure (Equation (5)), the ratio of high shear rate viscosity to
low shear rate viscosity (µ2/µ1) is used in to determine µ2 accordingly. Multigrade oils are particularly
subjected to pseudoplastic behavior [17], hence, µ2/µ1 is considered equal to 1 for monograde oils,
as reported in the following table.

Table 1. Oil parameters used in this study.

Oil
SAE

10 30 50 5W30 10W30 10W50 20W40 20W50

µ2/µ1 1.00 1.00 1.00 0.71 0.86 0.49 0.40 0.43
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Available studies and optimization of surface texture results obtained by the authors of this study
revealed that the area density (Sp) and the aspect ratio (ε) are important parameters. These parameters
are described mathematically as follows:

Sp =
lg × wg

lcell × wcell
(8)

ε =
hg

wg
(9)

where hg is the height of grooves, lg and lcell are the lengths of a groove and of the texture cell,
respectively, and wg and wcell are the widths of the groove and of the cell. Figure 6 illustrates said
geometric parameters in a schematic view.Energies 2018, 11, x FOR PEER REVIEW  7 of 16 
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Based on the aforementioned studies on surface texturing, shallow dimples with a depth of 20 µm
and 19 grooves are considered on the journal surface. These values are considered after exhaustive
optimization was performed by the authors for maximum friction reduction when load carrying
capacity is affected to a minimum extent [20].

Journal bearings are designed to operate in the hydrodynamic regime of the lubrication. Oil film
supports the applied load, and hydrodynamic pressure may be integrated over the journal surface to
compute the load-carrying capacity of the interface [21]:



Energies 2018, 11, 3515 7 of 15

Wh =

w∫
0

2π∫
0

pdθdz (10)

where w is the width of the journal along the z-axis of the coordinate system.
Similarly, friction in this hydrodynamic interface can be computed by the following equation [17]:

Ff riction =

2π∫
0

w∫
0

µ
u
h
± h

2
∂p
∂x

dA (11)

Integrating the power loss over the time elapsed during the warm-up period of the engine

(i.e.,
∫ tcycle

0 Ff riction·R·ωdt) can determine the energy consumed by the friction. Subsequently, energy
saving owing to the texturing of the surfaces can be evaluated.

3. Numerical Procedure and Result Methodology

COMSOL Multiphysics (5.0, COMSOL Inc, Stockholm, Sweden) is a Finite Element Method-based
commercial package used to solve the aforementioned mathematical model. A tolerance of 10−3 is
used in numerical iterations. Table 2 shows the vales of the parameters used in this study.

Table 2. Vales of geometric parameters used in this study.

Parameter Value

Radius of the bearing 30 mm
Width of the bearing 50 mm
Minimum clearance 30 µm

Groove depth 20 µm
No. of grooves 19

The number of grooves and the corresponding depth are selected after performing exhaustive
numerical simulations to achieve the optimum tribo-performance. Moreover, the outcomes of the
mathematical model used in this study are compared, by the authors of the present work, with
those related to lubricated sliding contacts already available in the literature (Figure 7). Negligible
errors were found in the hydrodynamic lubricating regime used in this study. A mesh dependency
(Figure 8) test was then performed to ensure the correctness of the results presented in this research
work. The hydrodynamic pressure profile varies for varying mesh sizes. However, the difference
in the spatial pressure values for two consecutive mesh sizes remains negligible (i.e., less than 2%).
Therefore, keeping in view the safety factor to avoid any possible numerical diffusion and in order to
save computational time, Mesh B is used in the present study.
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Figure 8. Hydrodynamic pressure variation for varying mesh sizes; mesh-dependency test. The left
side of the figure presents a magnified view for a better appreciation of the difference shown in the
right side of the figure.

A comparison is made for the tribological performance of textured and untextured journal
bearings in the warm-up period (20 ◦C to 80 ◦C) of an IC engine crankcase temperature. This warm-up
process of the engine was based on a time step corresponding to temperature changes of 20 ◦C to
show the improvements caused by the surface textures. Unless stated otherwise, the results presented
refer to SAE 10W30 engine oil.

4. Results and Discussion

Figure 9 shows the friction torque caused by the hydrodynamic conjunction at the journal–bearing
interface for a textured journal surface compared with plain bearing tribo-pairs without surface
textures. The developing behavior of the friction torque is also illustrated over the entire warm-up
period. Viscous friction was elevated at the cold start of the engine, due to high lubricant viscosity.
The viscosities of engine oils decrease with increasing temperature, thereby reducing the friction torque.
Textures cause a significant improvement in the frictional behavior of the interface for the time steps
considered during warm-up of an IC engine.

Energies 2018, 11, x FOR PEER REVIEW  9 of 16 

 

Figure 8. Hydrodynamic pressure variation for varying mesh sizes; mesh-dependency test. The left 
side of the figure presents a magnified view for a better appreciation of the difference shown in the 
right side of the figure. 

A comparison is made for the tribological performance of textured and untextured journal 
bearings in the warm-up period (20 °C to 80 °C) of an IC engine crankcase temperature. This warm-
up process of the engine was based on a time step corresponding to temperature changes of 20 °C to 
show the improvements caused by the surface textures. Unless stated otherwise, the results presented 
refer to SAE 10W30 engine oil. 

4. Results and Discussion 

Figure 9 shows the friction torque caused by the hydrodynamic conjunction at the journal–
bearing interface for a textured journal surface compared with plain bearing tribo-pairs without 
surface textures. The developing behavior of the friction torque is also illustrated over the entire 
warm-up period. Viscous friction was elevated at the cold start of the engine, due to high lubricant 
viscosity. The viscosities of engine oils decrease with increasing temperature, thereby reducing the 
friction torque. Textures cause a significant improvement in the frictional behavior of the interface 
for the time steps considered during warm-up of an IC engine. 

 

Figure 9. Cont.



Energies 2018, 11, 3515 9 of 15

Energies 2018, 11, x FOR PEER REVIEW  9 of 16 

 

Figure 8. Hydrodynamic pressure variation for varying mesh sizes; mesh-dependency test. The left 
side of the figure presents a magnified view for a better appreciation of the difference shown in the 
right side of the figure. 

A comparison is made for the tribological performance of textured and untextured journal 
bearings in the warm-up period (20 °C to 80 °C) of an IC engine crankcase temperature. This warm-
up process of the engine was based on a time step corresponding to temperature changes of 20 °C to 
show the improvements caused by the surface textures. Unless stated otherwise, the results presented 
refer to SAE 10W30 engine oil. 

4. Results and Discussion 

Figure 9 shows the friction torque caused by the hydrodynamic conjunction at the journal–
bearing interface for a textured journal surface compared with plain bearing tribo-pairs without 
surface textures. The developing behavior of the friction torque is also illustrated over the entire 
warm-up period. Viscous friction was elevated at the cold start of the engine, due to high lubricant 
viscosity. The viscosities of engine oils decrease with increasing temperature, thereby reducing the 
friction torque. Textures cause a significant improvement in the frictional behavior of the interface 
for the time steps considered during warm-up of an IC engine. 

 
Figure 9. Hydrodynamic frictional torque in a (a) textured journal surface—bearing interface;
(b) untextured journal bearing during the warm-up period of an IC engine.

This improved frictional response remains consistent for the monograde and multigrade oils
considered in the study. Friction is higher at the same temperature for high viscous lubricant oils than
for low viscous oils, such as SAE 10W30. Thus, lowly viscous lubricant oils are preferred in high-speed
engines of domestic vehicles. However, the surface texture on the journal surface provides a similar
quantity (%) of friction reduction for the engine oil considered in the study, as shown in Figure 10.
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Figure 10. Surface texture-based friction reduction for the journal–bearing interface at varying
temperatures of the IC engine for eight different multi- and monograde engine oils.

The mean reduction in the friction at cold start temperatures for eight different oils is 14.58%
with a standard deviation of ± 0.70%. Similarly, the friction reduction for the considered oils is
14.13 ± 0.75% at a warm engine temperature of 80 ◦C. Hence, textures on the journal surface provide
nearly consistent friction reduction for varying lubricant oils and temperatures.
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Figure 11 shows the journal bearing friction torque with textures on the journal surface compared
with the untextured journal bearing for increasing load (i.e., ε ranging from 0.6 to 0.8) during
the considered time steps to observe the developing behavior during an increase in temperature
(20 ◦C to 80 ◦C). The results showing greater reduction of texture-based friction for increasing loads
and oil temperatures are highly encouraging. Similar trends are observed in the percentage reduction of
friction torque with increasing oil temperatures for different loads applied on the interface. Hence,
the textured journal surface led to improved behaviors of a dynamically loaded journal bearing with
transient loads.
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Figure 11. Friction and reduction in the friction for textured and untextured journal bearings at varying
loads during the warm-up process of an IC engine.

Pressure perturbation of the hydrodynamic interaction in the journal bearing reduces friction.
Figure 12 shows the variations in the pressure profiles for increasing temperatures during the
warm-up process. Metric measuring units are used in the coordinate system shown in the Figure 12.
This micro-hydrodynamic effect is more visible at low temperatures than at high temperatures.
This effect can also be observed for the mid-plane of the bearing in Figure 13. Moreover, the cavitation
pattern also changes with the changing temperatures and lubricant oils. Figure 14 presents the
fractional film content in a textured bearing. One multigrade (SAE 10W30) and two monograde
(SAE 10 and SAE 30) oils are used to illustrate the change in frictional film content over the warm-up
period. The developing effects of lubrication in the warm-up time are evident. Although the position of
film reformation varies with increasing temperatures, the film rupture position substantially varies
with increasing temperature. Surface textures also delay film reformation at the trailing edge compared
with the untextured interface.

The aforementioned change in the pressure gradient in the circumferential direction with the
reduced shear-based viscous friction reduce the total friction of the interface. The increased length of
cavitation also contributes to the decrease of hydrodynamic friction. These effects substantially reduce
friction. Energy consumed by textured and untextured journal bearings and energy saving caused by
texturing of the surfaces during warm-up of an IC engine at varying speeds and loads are shown in
Figures 15 and 16.

The energy saving trends for the oils (used in this study) remain consistent for a range of applied
loads on the interface. However, energy saving caused by surface textures increases in an interface
under high loads. Low-viscosity oils show a slightly better response to surface textures. Increase in
energy loss at the interface also increases with increasing speed. By contrast, texture-based reduction
in energy loss remains invariant with increasing engine warm-up speeds.
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Figure 13. Hydrodynamic pressure and cavitation length variations for textured and untextured plain
bearings at the crankshaft of an engine running at 1100 rpm in the warm-up period from 0 ◦C to 80 ◦C.
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Figure 14. Fractional film content for monograde and multigrade oils at increasing temperatures during
engine warm-up.
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Figure 16. Comparison of fuel energy consumption during the warm-up period of textured and
untextured bearing surfaces at varying engine speeds: (a) 1100 rpm; (b) 1300 rpm; (c) 1500 rpm;
(d) percentage of energy saving produced by the surface textures.

5. Conclusions

A numerical study was performed to predict the texture surface-based improved tribological
performance of a journal bearing. Transverse grooves normal to the sliding direction were considered
on the journal surface. Nineteen grooves with a shallow depth (texture depth ≤ 20 µm) were used to
produce textures on the surface. The aforementioned geometric parameters of the textures were
selected on the basis of previous studies performed by the authors of the present work. Temperature
variations during the warm-up process of an IC engine were considered to observe the performance
variations for varying thermal conditions. The performance of the textured journal surface was also
evaluated for increasing loads on the interface. The frictional response of the interface substantially
improved provided the said modifications were performed on the journal surface. Eight different
engine oils were tested, and frictional improvements were found to be consistent. Moreover, nearly
constant texture-dependent improved tribological performance was noted for the changing frictional
behavior corresponding to increased engine temperatures. Surface texturing reduced the friction, and
this reduction also increased with the applied load on the interface. Hence, grooves on the journal
surface are a potential solution for reducing friction of an IC engine during the warm-up process and
hot engine operations.
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