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Abstract: Smart grid (SG) vision has come to incorporate various communication technologies, which
facilitate residential users to adopt different scheduling schemes in order to manage energy usage
with reduced carbon emission. In this work, we have proposed a residential load management
mechanism with the incorporation of energy resources (RESs) i.e., solar energy. For this purpose,
a real-time electricity price (RTP), energy demand, user preferences and renewable energy parameters
are taken as an inputs and genetic algorithm (GA) has been used to manage and schedule residential
load with the objective of cost, user discomfort, and peak-to-average ratio (PAR) reduction. Initially,
RTP is used to reduce the energy consumption cost. However, to minimize the cost along with
reducing the peaks, a combined pricing model, i.e., RTP with inclining block rate (IBR) has been used
which incorporates user preferences and RES to optimally schedule load demand. User comfort and
cost reduction are contradictory objectives, and difficult to maximize, simultaneously. Considering
this trade-off, a combined pricing scheme is modelled in such a way that users are given priority
to achieve their objective as per their requirements. To validate and analyze the performance
of the proposed algorithm, we first propose mathematical models of all utilized loads, and then
multi-objective optimization problem has been formulated. Furthermore, analytical results regarding
the objective function and the associated constraints have also been provided to validate simulation
results. Simulation results demonstrate a significant reduction in the energy cost along with the
achievement of both grid stability in terms of reduced peak and high comfort.

Keywords: demand side management; demand response; appliances scheduling; real-time pricing;
inclining block rate; genetic algorithm; renewable energy sources

1. Introduction

The growing energy demand has led the researchers to establish a new energy management
mechanism or to find alternate energy resources. For this purpose, the utility is transforming its
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infrastructure into smart grids (SGs) by using bi-directional communication technologies to make
intelligent decisions [1,2]. For bi-directional flow of information between energy generators and users, a
reliable and effective communication infrastructure is required in SGs [3,4]. In doing so, SG can provide
more benefits to end users such as cost saving, reduction in brownouts and surges, energy consumption
controlling through smart meters (SMs), energy consistency and protecting the environment with
integration of RESs [5,6]. In this way, the establishment of SG can be additionally elevated by utilizing
demand side management (DSM) methods [7,8]. DSM mechanisms have been adopted to manage
the load demand by either convincing consumers to change their consumption patterns [9,10] or to
reduce the load demand. Furthermore, DSM been designed to motivate consumers to utilize less
energy and pinnacle hours or to move time of energy utilization from pinnacle schedule vacancies to
off-top availabilities [11,12]. To adopt DSM mechanisms, utility has introduced a demand response
(DR) mechanism [13,14] to further facilitate energy consumers to modify their consumption patterns.
In response, they can get incentives in terms of bill reduction. However, DR programs can be further
characterized into two broad categories: incentive-based and price-based [15]. Generally, the DR can
change the load demand in response to the price policies provided by the utility [16,17]. Therefore,
among all price based DR programs, RTP has a higher adaptability than other pricing schemes,
i.e., time of use (TOU), critical peak pricing (CPP) and day ahead pricing (DAP). Furthermore, it is more
promising to combine various loads at a moderately low peak price time slot [18,19]. Then, moving all
loads from on-peak hours to off-peak hours may disturb consumer comfort along with high PAR [20,21].
In literature, various researchers have proposed numerous methods to manage load demand with the
objective of cost and discomfort minimization with rebound peaks, which are caused by considering
cost reduction as a primary objective [22,23]. However, there are still gaps to be fulfilled by developing
optimal mechanisms having the ability to handle uncertainties and limitations. Thus, there is a need for
such types of mechanisms that can handle all respective constraints and limitations while preserving
user comfort and rebound peaks. In light of the aforementioned limitations, we have proposed an
efficient mechanism to manage the load demand while considering user comfort and cost reduction
objectives to prioritize one objective on other, which is decided by the customers. Then, the customers
having cost reduction as a primary objective can enhance their bill, while compromising their comfort
and vice versa. To further manage the load demand and rebound peaks occurring when a high load is
shifted to off-peak hours, RES has been utilized. A part of this work is already published in [24]. The
main contributions of our work can be listed as follows:

1.1. Contributions

• This work proposes an efficient load management mechanism which takes into consideration:
length of operation time (LOT), electricity prices, user preferences, minimum waiting cost and
integration of RESs.

• To reduce the probability of rebound peaks while scheduling, load has been categorized on
the basis of: (I) customer requirements and (II) mathematical models. Then, a multi-objective
optimization problem has been formulated and solved by using GA (Section 7).

• To achieve the objective of cost and user discomfort reduction, simultaneously, a combined
pricing model IBR-RTP (Section 4.2.1) is used which provides the priority to users to modify
their requirements, i.e., comfort or cost reduction. To analyse the performance of proposed
mechanism, various test cases have been implemented and tested via analytical and simulation
results. Furthermore, we also integrate the solar energy to further reduces the electricity cost in
high peak hours to ensure un-interruptible supply of electricity.

• Finally, convergence results are obtained to check the performance of GA, and analytical and
simulation results are obtained to validate the effectiveness of proposed mechanism. It is evident
from the results that proposed mechanism effectively manages the load demand while taking
customer preferences.
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The remaining section paper is organised as follows. Related work has been discussed in Section 3,
the system model is explained in Section 4, Section 5 states the problem formulation, and Section 6
presents the simulation results. Conclusions are given in Section 7.

2. Literature Review

Related works are characterized into two categories: (1) central energy management; (2) distributed
energy management. In order to optimally schedule smart appliances, numerous techniques have been
demonstrated in literature. Some of the techniques are conversed as follows:

2.1. Central Energy Management

With a centralized coordination, a basic objective is to manage the load by one prevalent element
which is an aggregator or the utility [25,26]. Centralized coordination can result in powerful outcomes;
however, it requires point by point data of homes [27], which is not functional and furthermore tends
to cause a substantial calculation burden. Furthermore, users are not happy to see their appliances
being controlled by another person [28,29]. In [30], authors utilized the DAP plan to decide the power
utilization for every user that fulfilled all constraints. Secondly, they set the demand block according
to energy utilization that brings down the cost of energy consumption. In [31], authors used two
algorithms, tabu search (TS) and enhanced differential evolution (EDE) with RTP for deferrable loads
and thermostatically-controlled loads. The primary focus was to get the optimal load schedules. In [32],
to manage and control the user energy consumption with TOU, authors provide different services.
Thus, the main target is to achieve the lowest cost and energy consumption, when TOU was used with
different demand limits, multiple users and priority model. Therefore, bacterial foraging optimization
algorithm (BFOA) and bat algorithm were applied. The proposed models showed that DSM played
a key role in managing energy usage by scheduling load in off-peak hours. In [18], authors used
the mixed integer linear programming (MILP) and proposed an energy management program for
an exclusive home that reduces the user bill. Furthermore, the house was equipped with a grid tied
rooftop photovoltaic (PV) system with prosumer oriented DSM using the appliance clustering and
feed in tariff for the system stability. Therefore, it maximized the user comfort and minimized the
energy use of appliances and services in an appropriate manner. Nevertheless, this program increased
the installation cost of PV system in a single household. In [33], authors used the dynamic pricing
method with appliance scheduling and energy sharing (among SHs) to cut down the electricity bills of
the users by using consumer centric (CC) and data analytical demand response (DADR) algorithm.
In [34,35], authors applied the differential evolution (DE) algorithm that limits the user frustration and
electricity cost for household appliance. On the other hand, lower energy consumption users were
affected because of more bill payments on low energy consumption. In [36], authors inspected the
issues related to the SG including its cyber-physical security and perils for electric vehicle frameworks
security. Fundamentally, these attacks influence the most basic security advantage essentials in the
SG, particularly: demolishing the exchanges between the utility and the customers, avoiding the
aggressors from obtaining private information, discouraging unapproved customers from changing
the data and favouring a customers uniqueness. However, this work [37] overcomes instability issues
of the power system due to its physical layer reliability analysis in DSM. In [38], authors applied the
pareto optimality in order to cut down the user consumption that can lead to cost saving from 6%-12%
without significantly fluctuating the power consumption behaviour of the consumers.

In [39], the artificial neural network (ANN) has been used to tune prediction intervals (PIs), where
a GA and simulated annealing algorithms are used to optimally adjust the weights for aggregation.
This may decrease the disturbances and uncertainties with forecast. Authors in [40] used recursive
least squares (RLS-ESN), particle swarm optimization (PSO-ESN) and harmony search-echo state
networks (HS-ESN) algorithms to tune ESN for better prediction. A similar work is reported in [41],
where grey wolf optimization (GWO) algorithm is used to tune fuzzy control system parameters in
order to reduce computational cost. A complete summary of literature work is depicted in Table 1.
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Table 1. Comparison of proposed work against various related works.

References Techniques Objective(s) Achievement(s) Limitation(s) RESs

[25] LP
Balance the daily
demand that minimize
the peaks

Efficiently overcomes the
peak hour load Time complexity No

[26] PSO and
DAP

Limit the power
consumption

Reduces the
consumption cost

User comfort not
considered No

[28,29] TS and EDE Schedule the daily load
for cost reduction

Better scheduling is
achieved for minimum
cost

User comfort is
neglected No

[30] BFOA and
BA Maximize the profit

Optimal scheduling of
household energy
demand

Slow convergence
rate No

[31] MILP and
GA

Overcome the cost and
peak load

Minimized the delay
time of appliances and
cost

Increased complexity
of system No

[18,32]
CC and
DADR
algorithm

Increase user comfort
and minimize delay
time

It efficiently reduces the
peak load at the grid to a
great extent

Big data management
and fault tolerance
issues in real time
rate increases
drastically

No

[33] DE and PSO User frustration and
electricity bill reduction Minimized electricity bill

Low energy
consumption users
are affected

No

[34,35] RLS
Scheduling based on
forecasting price and
cost minimization

Minimizing peak cost
and increasing user
satisfaction

Delay cost not
considered No

[36,37]
Quasi
random
process

Peak demand valuation
without considering
number of appliances

Recursive method is
used for load scheduling
for peak demand
achievement

User comfort and
peak demand is not
considered which
may cause
overburden utility

No

[38] Pareto
optimality

System reliability &
security analysis in DSM

Enhanced the reliability
of power system

System reliability in
terms of outage
failure cost not
considered

No

LP = Linear programming, BA = Bat algorithm.

2.2. Distributed Energy Management

Distributed demand-side energy management system among users that takes advantage of a
two-way digital communication infrastructure is envisioned in the future SG [42–45]. In [45,46],
authors used the wind driven optimization (WDO) technique for maximization in user comfort and the
main limitation of such a work is that maintenance and installation costs of RESs was not considered.
In [47,48], authors used the PSO algorithm to find out optimal energy mixing rates that can minimize
daily energy cost of a renewable micro-grids (MGs) under energy balance and anti-islanding constraints.
In DSM, the sparse load shifting is a scheduling problem introduced for smart users. In sparse load
interruption program, a nash equilibrium (NE) and newton method (NM)are used [49,50]. Through
this, maximum user comfort and electricity bill achievements are attained. In [51,52], authors focused
on more challenging situations in which electric appliances operations are non-shiftable power and cost
of electricity change with the load of the overall grid, and the generation from renewable is ambiguous.
Nowadays, solar systems are broadly available. Therefore, every consumer can have a PV system and
a storage supply to achieve the individual energy demand. The proposed scaleable and robust demand
side management (SRDSM) algorithm entails two parts: in the first part, electricity cost is reduced
for all consumers through scheduling. In the second part, cost is further reduced by using the RESs
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and power management algorithm, where a column and constraint generation (C&CG) mechanism
is used to solve a cost minimization problem. In [53,54], the researchers aim to improve the system
efficiency with the help of RESs and home energy storage system (HESS) in an SG. RESs support the
SG in terms of energy production in a place where the energy consumption is increasing day by day.
Therefore, HESS provides a good source to improve the power quality of energy produced by RESs.
For an energy storage system, batteries and ultra-capacitor units are used when considering solar
power generation. To attain the desired results, maximum power point tracking (MPPT) algorithm is
used [55]. Under the projection of the proposed algorithm, it is possible to minimize supply demand
mismatch while reducing the operational costs to increase the system efficiency [56]. The suggested
plan provides the best desired results; however, it increases the overall cost of the grid connected
system. In [57], authors used the nonlinear programming (NLP) and optimal flow (OPF) for cost
minimization with PV inverters. In [58], authors considered the particular qualities of week-ahead and
day-ahead DSM plan, where a multi-time-scale based DSM booking approach is proposed. With the
accessible recorded client load information from advanced metering infrastructure framework, it is
exhibited that the proposed dynamic situation age strategy can better catch qualities of indeterminate
loads by mimicking self-vulnerability of burdens at a specific time and also vulnerability connections
among numerous heaps at various time moments. In [59], authors used the C&CG method along
with coordination of distributed generation units within individual MGs for daily energy demand
cost is reduction. However, C&CG is an iterative method, and that is why computational complexity
is increased. In [16], Nash theorem was used to minimize electricity and electric vehicles cost with
the integrated RESs. The complete summary of literature work of distributed generation is depicted
in Table 2.

Table 2. Summarized literature work for distributed energy management.

References Techniques Objective(s) Achievement(s) Limitations RES

[45,46] ACO

Single and multiple
home appliance
scheduling using
knapsack problem

Minimize cost, and
maximize comfort with
RES

RES installation cost
is not calculated Yes

[47,48] PSO

To find out optimal
energy mixing rates
that can minimize daily
energy cost of a
renewable MGs with
RESs

Reduction in cost and
discomfort

low convergence
rate of algorithm Yes

[49,50] NE and
NM

Sparse load
interruption with
increment in
convergence rate

Minimize the customer
discomfort and
achieved better
convergence rate

The cost of peak
hours are not
minimized and PAR
not considered

Yes

[51]
C&CG and
SRDSM
algorithms

Cost minimization with
RESs and batteries

Minimize the cost of all
consumers

Only considers the
total load cost, peak
cost are ignored and
overall cost of
system is increased

Yes

[52,53] MPPT
algorithm

Energy storage with the
integration of RESs by
using HESS.

Increase the efficiency
of batteries from high
frequency of ripple
currents

Increased the overall
system cost Yes

[54,55] NLP and
OPF

Cost minimization with
PV inverters

Impressive cost
reduction

Increase system
complexity Yes
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Table 2. Cont.

References Techniques Objective(s) Achievement(s) Limitations RES

[56,57]

Optimal
multi
timescale
technique

Week-ahead DSM
scheduling

Accomplishing the
ideal DSM conspire
with the questionable
client power request

User priority is
ignored No

[58,59] C&CG

Coordination of
distributed generation
units within individual
MGs

Daily energy demand
cost is reduced

C&CG is an iterative
method so time
complexity is
increased

Yes

[16] Nash
theorem

Minimize the electricity
and electric vehicles
(EV) cost

Achieved the balance
load demand and
integration of EV with
RESs

User delay cost not
calculated Yes

ACO = Ant colony optimization.

3. Motivation

With the advancements in information and communication technology (ICT), energy sector has
been revolutionized to integrate new energy resources or to manage the available energy with the
objective of reduced carbon emission [14,21,31,45,46]. This is due to massive utilization of fossil fuels
to manage energy demand leading to high carbon dioxide emissions. To overcome this issue of global
concerns, the SG has come to includes advanced communication, optimization and control mechanisms
to ensure cleaner production of electricity. Moreover, SG also facilitates the energy retailers and end
users to incorporate distributed energy resources and DR programs to achieve the aforementioned
objective. In this regard, various optimization algorithms are being developed to manage load demand
within given limits and requirements [16,54–62]. In doing so, the common objectives are: reduced
carbon emission, electricity cost, and user discomfort, where user discomfort and cost reduction are
contradictory objectives, and users have to prioritize one from another. In this way, the required
objective could be more complex, as both objectives have to be achieved without compromising end
user requirements. The previous works [45–54] are being developed to achieve this objective; however,
there is still a need to optimise the given objective, i.e., cost, and rebound peaks, to further improve
the results. Hence, by considering consumer and utility requirements, we have proposed a weight
based load management mechanism, where users have been given the facility to set their priority level.
The proposed work is different from other works such that cost and user discomfort is significantly
reduced without creating rebound peaks in the systems. Further details of the proposed work are
given in Section 7.

4. System Model

An SG introduces a new vision of energy and information flow to create automated energy control
and management network with DSM programs [63,64]. The current research in SG majorly focuses
on the DSM, DR, and scheduling techniques to enhance the energy efficiency, stability, and power
system capacity [65,66]. In this research, we focus on price based DSM programs where the most
commonly used pricing schemes include: TOU, CPP, IBR and RTP. The hourly change in RTP may
additionally replicate the utilities value of generation or the bargain price level. Subsequently, RTP has
a substantially better versatility than TOU and CPP [67]. The focus of DSM program is not to overcome
electricity demand during on-peak hours; however, even the EP in low-peak hours which may also
prevent rebound peaks. Therefore, RTP may reduce electricity cost; however, it may create peaks
that bring high PAR in off-top availabilities. Therefore, an amalgamation of RTP with IBR would be
used. When energy demand exceeds from certain level or predefined threshold, then electrical price
(EP) would be adjusted which is in accordance with minimum and maximum limits. The IBR with
RTP model would proficiently reduce the PAR and hence improve the entire system stability. First,
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we adopt a model by taking into consideration four types of household appliances and an effective and
simple mode to model them based on LOT, electricity prices during off-peak time slots, user comfort,
and cost savings according to their electricity usage (Figure 1). Second, we will use GA that will be
utilized as a bench mark function in order to evaluate the performance of energy consumed in homes.
Third, an amalgamation of RTP with IBR will be used for electricity cost and PAR reductions. Fourth,
integration of RESs which protects the environment from carbon dioxide (CO2) emission and reduces
the electricity cost.

Washing 

Machine

Cloth Dryer

Dish Washer

Iron

AC

Lights

Refrigerator

EMC

Smart meter

Utility

A
M
I

Internet

Remote Control

Solar Energy

Integration 

of RES
In Home Display

Storage System

Figure 1. Architecture of energy management system.

4.1. Categorization of Household Appliances

In light of RTP+IBR pricing scheme, we consider the optimal scheduling approach for residential
load. In the following, four types of appliances are used in the proposed work:

• Non-interruptible (NI): Appliances such as washing machine and cloth dryer work in a cycle and
cannot be interrupted once started and must keep running until the end of their cycles.

• Scheduleable (S): Appliances, i.e., dish washer, iron and vacuum cleaner can be scheduled at any
time within given horizon.

• User dependent (UD): Appliances, i.e., lights and fans operate according to user presence; if the
user is present, the respective appliance would be turned ON and vice versa.

• Temperature dependent (TD): The working of these appliances, i.e., air-conditioner and
refrigerator depend on temperature level. If appliance temperature is low as compared to the
specific level, then they will be ON; otherwise, OFF.

To gauge the authorization of the prescribed appliances scheduling patterns, we imitated the day
by day energy utilization of family unit appliances. The attributes, i.e., distinctive appliance’s, LOT,
and the power ratings recorded are listed in Table 3.

Table 3. Appliance parameters detail used in the simulation process [68].

Category Appliances LOT (h.) Power Ratings (KWh)

NI Load1 5 2
Load2 11 1

S Load3 8 2.5
Load4 8 3.5

UD Load5 14 0.5

TD Load6 7 2.5

Let Ap = {NI, S, UD, TD} denote a set of appliances and for every appliance [a ∈ Ap] and Pa

describe the power consumption vector:
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Pa = [p1
a, p2

a, ..., p24
a ]. (1)

The total power consumption in each hour can be written as:

pTh
t =

Th

∑
h=1

x(h)a , (2)

where the total time horizon (Th) can be written as:

Th = [1, 2, 3, ..., 24]. (3)

Our objective is to optimize the power consumption scheduling vector Pa. Therefore, the total
energy consumed by Ap appliances for a single day is written as:

EnT =
|Th |

∑
t=1

|Ap |

∑
a
(xt,a ). (4)

4.2. Electricity Pricing Policies

As discussed in Section 4.1, an RTP is more effective as compared to TOU and CPP for different
appliances’ operation. Therefore, RTP gives much adaptability when combined with IBR. In any case,
it is highly desirable to focus on real-time constraints of appliances working at a relatively low peak
hour. Therefore, using the proposed model that is comprised of RTP and IBR would provide different
price variations depending on load consumed.

4.2.1. RTP with IBR

We assume that a consumer wants to reduce his/her electricity bill and plans to run a large
portion of appliances at 5:00 a.m. However, the electricity price at respective times is comparatively
high due to high load demand. As a result, turning ON the load may result in an extra bill, due to
variation in electricity price (RTP+IBR). The EP (RTP+IBR) can be expressed as:

p(tch) =


rh , i f 0 ≤ tpcm ≤ thlev1,

bh , i f thlev1 < tpcm ≤ thlev2,

ch , i f tpcm ≥ tlev2.

(5)

When tpcm is less than or equal to thlev1, then EP in first level is rh . Otherwise, the EP would
be in bh and ch levels/$/KWh. As revealed previously, it is necessary for inhabitants to set a few
cut-off points for every electric appliances. To reduce cost and PAR, we utilized the RESs with home
appliances, which is discussed in Section 5.

5. Integration of RES

Renewable generation advancements have been empowered by approach creators during the
time in an effort to expand the supportability of electric power framework [4,69]. In any case, extortion
experienced by confined frameworks as an outcome of the expanding distributed generation infiltration
are higher than those accomplished by interconnected frameworks, since they can not rely upon the
smoothing impact of an extensive adjusting region and interconnection systems [70,71]. Furthermore,
renewable technologies are becoming price-competitive, especially in isolated systems, where diesel
and heavy fuel oil generation units dominate the generation mix. Therefore, in this work, we consider
the solar Borowy’s energy model.
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5.1. Borowy’s Model of the PV System

Solar PV is the technology used to convert solar energy directly into the electricity. The process of
converting sunlight (photons) into electricity (voltage) by using semiconductor material is called PV
effect [72]. Borowy’s presents a basic model to decide the output energy of a PV module. The Borowy’s
model expect the utilization of an MPPT. The MPPT is a system in which the grid associated inverters
are used to acquire the maximum conceivable power produced by a PV board. In this model, the output
power of a PV module is calculated by voltage (V) and current (I) using Equation (14). In Borowy’s
model, the output power depends on the solar radiance and characteristics of PV module. Therefore,
our desired output depends on module capacity due to its characteristics. The total power produced
by Borowy’s module is (99, 460× 1016) [73]. Therefore, a graph of the total power generation and
current is shown in Figure 2. To determine the Vout and Iout, the Borowy’s model can be divided in
several parts that are mentioned below:

Time (hours)

0 5 10 15 20 25

×109

-3

-2

-1

0
Iout

Time (hours)

0 5 10 15 20 25

T
ot

al
 o

ut
pu

t c
ur

re
nt

 a
nd

 p
ow

er

×1011

-2

-1.5

-1

-0.5

0
Pout

Figure 2. Total output power and current produced by Borowy’s model.

∆T is change or variation in the temperature which can be determine by the following equations:

∆T = Tcell − 25, (6)

Tcell = Tamb + (
NOCT − 20 ◦C

0.8
)G. (7)

∆I is changed or variation in current which depends on solar irradiance and temperature variation:

∆I = α(
G

1000
)∆T + (

G
1000

− 1)ISC, (8)

ISC = G
ISC(CEM)

1000
. (9)

∆V is variation in voltage which depends on ∆T, ∆I, and series resistance:

∆V = −β∆T − Rs∆I, (10)

C1 = (1−
Impp

ISC
)exp[

−Vmpp

C2Voc
], (11)

C2 =

Vmpp
Voc−1

ln(1− Impp
ISC

)
. (12)

The module current is the output current of PV module calculated by the following equation:

I(v) = ISC[1− C1[exp(
V + ∆V

C2Voc
)− 1]] + ∆I, (13)
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Pmax
out = VI. (14)

6. Problem Formulation

This section provides the mathematical description of proposed load scheduling problem using
RTP and IBR+RTP pricing models. Here, major emphasis is given to optimally find the scheduling
patterns of loads within given limits and preferences. It is also considered that residents have set the
operating intervals of their loads prior to scheduling, so that the optimization algorithm can find the
best optimal solution without violating constraints. Suppose that we have a number of loads to be
scheduled in Th hours such that Pa is needed in order to meet the energy demand. However, Pmin

a and
Pmax

a are low and upper bounds of power required. As Th corresponds to the scheduling time interval
that is an equally spaced interval of 24 h, so sta and eta demonstrate the starting and ending time
bounds. Meanwhile, ltha shows the LOT, i.e., the number of time slots for the operation of appliance
“a”. We also define a variable tosa as the working time of appliance “a”. Figure 3 shows a relationship
among various factors to express the delay factor.

etasta

ltha

tosa=sta

App1

App1

tosa=eta-ltha

lthaDelay

Figure 3. Two appliances’ example to show the connections among all factors.

Furthermore, we set the range of operation start time of appliance “a” as a variable, i.e., tosa can
be written as:

tosa ∈ [sta, eta ]. (15)

If t ≤ tos or t > et, the power consumption of appliance “a” will be zero, where tos is an appliance
start time and eta1 is a maximum time limit as shown in Figure 3. Otherwise, Pa can be written as:

Pmin
a ≤ Pa ≤ Pmax

a . (16)

Now, Psch vector would be determined as:

Psch = EnT ∀h ∈ Th. (17)

6.1. Delay Factor (DF)

A DF is used to separate the occurrence of two events. However, in this work, our aim is to reduce
the delay time for smart home users to increase their comfort. Now, DF of appliance “a” is taken into
consideration as explained in [61,68,74,75]:

DFa =
tosa − sta

eta − ltha − sta
. (18)

The maximum and minimum numeric values of DF are set to be 1 and 0. However, if start time of
any appliance is sta, then DF would be 0. If the start time is eta, the DF would be 1. The sum of DFs for
all appliances with the waiting time cost can be modelled as [61,68,74,75]:

qDFa =
(ζa)eta−h

pTh
t

. (19)
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The following model for the waiting parameter for each appliance a ∈ Ap. The higher the value
of ζa, the higher will be the cost of waiting:

Th

∑
t=1

∑
a∈Ap

(qDFa)(x(h)a ). (20)

Here, the delay parameter is q ≥ 0 for each appliance “a” in any hour h ∈ TH. Thus, q = 0 ∀
h < sta and h > eta as the waiting time can be defined within the valid scheduling interval. Therefore,
the waiting cost increases as more energy consumption is scheduled at later hours. The waiting cost
increases as the value of ζa increases. Therefore, in the final optimization problem, we minimize the
electricity consumption cost and “q”.

6.2. Impact of Control Parameter on Scheduling ζa

A user can adjust waiting cost and time by modifying parameter ζa for every appliance working
in a home. By choosing ζa = 1 for “a”, i.e., a ∈ Ap, the load control procedure just attempts to diminish
the power charges. Here, we characterize dt for every appliance “a”, as

dt =
$a − sta

eta − sta
, (21)

where $a > sta, considering “hth” hour with the objective of xh
a = 0. It is obvious that, if the holding

time approaches 100%, the energy demand is scheduled in the most recent satisfactory hour eta . As we
increase the value of ζ, the electricity cost (total payment) will also increase, while the delay time will
decrease as shown in Figure 4. In the proposed work, we choose minimum and maximum values of ζ

as 1 and 1.01, respectively. Then, the impact of ζ regarding delay time cost can be seen from Figure 4.
Thus, the users have been given priority in such a way that they can optimize the energy usage as per
their requirements i.e., either comfort for cost.
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Figure 4. The impact of changing ζ on electricity cost and delay time. The trade-off is evident. Total
cost and delay time versus parameter ζ.

In this section, we formulate an optimization problem that minimizes the total electricity
consumption bill while stabilizing the user ease with minimum waiting cost. The purpose of this
model is to shift the energy consumption schedules within the residential neighbourhood in order
to achieve optimum savings. The purpose is not only to reduce the amount of consumed energy
but also to find the optimal energy schedules for each appliance that would reduce the bill and
minimize DF. Using the Equations (1) and (2), we can determine the electricity bill in terms of the
energy consumption schedules as in Equation (4). A cost effective energy consumption scheduling can
be depicted in terms of minimizing the electricity consumption bill of all appliances in the system,
as the optimization problem below:
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Minimize
(
υcmp · (Psch) + µdelay · (DFa)

)
, (22)

Subject to:

tosa ∈ [sta, eta − ltha], (22a)

onta ∈ [stscha, etscha − lthscha], (22b)

Psch =
24

∑
h=1

p(tch)(ph
sch) · (ph

sch)− Pmax
out , (22c)

DFa =
(ζa)eta−h

pTh
t

· xh
a , (22d)

where, Equation (22) gives the objective function aiming at cost minimization, which is modelled as a
binary programming problem. In order to control the load and delay cost υcmp, a µdelay parameter is
used in objective function as given in Equation (22). A maximum value of µdelay = 1. Equations (22a)
and (22b) represent the scheduling horizon for RTP and RTP+IBR cases, in which the load can be
scheduled. Equation (22c) calculates the appliance’s energy consumption with the desired scheduling
approach according to its operation with the integration of RES for cost saving benefits and user
in-dependability. Therefore, an efficient comfort aware energy consumption scheduling optimization
problem can be expressed in Equation (22d), where DFa ∈ [0, 1].

7. Proposed Scheduling Algorithm

Section 6 demonstrates the minimum constrained optimization problem having linear and
nonlinear constraints. In literature, there have been different algorithms (i.e., mathematical, heuristic,
robust) used to solve such types of problems [39–42,76,77]. However, the selection of algorithm
depends on the nature of problem and user requirements such as highly optimal solution or fast
convergence time. As both objectives are contradictory and cannot be achieved at the same time, users
thus have to compromise one for the other (i.e., optimality vs. convergence rate). Recently, heuristic
algorithms have gained the attention of numerous researchers and industrialists due to their capability
of providing feasible solutions within optimal limits [26,30,33,45–48]. Among them, GA is widely
adopted due to its fast convergence and accuracy in providing optimal solutions. The complete steps
involved in GA optimization, i.e., initiation, fitness function, selection, crossover probability (Pc) and
mutation probability (Pm) have been described in Algorithm 1 [77]. Meanwhile, Table 4 provides
the control parameters of GA. In this research work, chromosomes represent the ON/OFF state of
appliances. The complete steps for load scheduling using GA has been demonstrated in Algorithm
1, in order to better elucidate the proposed approach. Steps 4–6 describe that RES is first utilized
if the energy demand does not exceed the limit, steps 8–14 demonstrate the scheduling patterns
being obtained by using GA if the RES does not fulfill the load demand, if the optimized results
are not obtained from the current population, step 17 is used, and steps 19–21 are used to describe
the formation of new population from parents chromosomes. In each iteration, a new population is
generated by using Pc and Pm because, along with other parameters (i.e., population size, constraints,
dataset), the convergence rate of the algorithm depends on the Pc and Pm. Table 4 provides the GA
parameters, which are used in this proposed work as given in [78].
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Table 4. Control parameters used in GA [78].

Parameters Values

Number of appliances 6

Max. generation 500

Population size 400

Pc 0.8

Pm 0.2

Algorithm 1: The proposed load scheduling optimization algorithm

1 begin
Input : Randomly initialize all patterns of appliances (popsize)

2 Initialize j = 0
3 for hour = 1 to 24 do
4 check RES f or case− 3
5 if Pa ≤ RES then
6 Turn on “a”
7 end
8 else if Pa ≥ RES then
9 for i = 1 to popsize do

10 evaluate the Ft, according to Equation (22)
11 if Fti ≤ Ft(i− 1) then
12 satis f y all constraints Equation (22a)–(22d)
13 check appliances status in chromosomes
14 Turn on “a”
15 end
16 else
17 move to step 10
18 end
19 select randomly two pairs o f chromosomes
20 per f orm crossover and mutation
21 generate new population
22 Go to step no 4
23 Return optimum solution and save results
24 end
25 end
26 end
27 end

7.1. Convergence Rate of Algorithm

In this section, we evaluate the convergence of the proposed algorithm in accordance with the
parameters and constraints. The concept of rate of convergence is of practical importance when
working with a sequence of successive approximations for an iterative method [78]. Generally, the GA
works with an initial population which is taken, randomly. Then, the objective function is evaluated
as per given criteria (i.e., cost, delay). For reproduction of new population, we have used: roulette
wheel selection criteria, single point Pc and Pm. If we increase the value of Pc, the convergence rate
would be increased, and the high value of Pm would probably reduce the quality of optimal solution
and can cause premature convergence [18,79]. Therefore, in this work, we use test different values of
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Pc and Pm and select the best values ensuring fast convergence and optimality. Figure 5 shows the
convergence plots of GA at different values. Furthermore, in order to avoid premature convergence,
we have used a sigma scaling factor. Sigma scaling factor attempts to moderate the selection pressure
over time and based on population fitness scores [78]. In our work, we conduct simulations, where we
have considered: residence = 1 and Ap = 6. We can see from Figure 5 that, within 200 iterations, the
objective value p(tch) of algorithm has converged for RTP+IBR scheduled load. Within 300 iterations,
the value of Pmax

out has converged for the scheduled load with RES. Meanwhile, in [68], the algorithm
convergence is missing which seems comparatively high due to small time intervals and incorporation
of manually operated appliances.
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Figure 5. Convergence rate of GA against various parameters, i.e., Pc, Pm and popsize for the scheduled
load with RTP+IBR and RTP+RES cases.

7.2. Feasible Region

A zone which can be characterized by a particular arrangement of all possible points in which
the target fulfils the outcome is called a feasible region. This is the initial set of candidate solutions to
the problem [71]. We have obtained the feasible regions of all considered test cases given Section 8.6,
in order to validate simulation results.

7.2.1. Scheduled Load with RTP

First, we consider the scheduled load with RTP for a single day in which our target is to limit the
cost by controlling energy utilization. Therefore, the hourly cost per can be defined as:

CstT
total = ∑

ai∈Ap,Sch−load
Lodai,Sch × EP. (23)

We have to minimize the cost of each hour. Thus, objective function is defined as:
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Min(CstT
total). (24)

Subsequently, the respective constraints are:
C1 : 0.2 ≤ CstSch

T ≤ 337.7,
C2 : σtotal ≤ 1.8592× 103,
C3 : 1 ≤ LoadSch

T ≤ 11.

We consider RTP EP signal whose range is (10.20 to 30.70) $/KWh. Therefore, Table 5 shows four
conceivable events. Furthermore, the maximum unscheduled cost in every hour is CstUnsch

Max = $337.7.
In Figure 6a, the infeasible region is represented by the points (P1, P2, P3, P6 and P4), while the shaded
block which is represented by (P1, P2, P5, P6 and P4) is a feasible area. Therefore, the cost in the
feasible region is called the feasible/optimum cost of electricity consumption.

Table 5. Cost results against various load and price profiles considering RTP.

Event Load (KWh) EP ($/KWh) Cost ($)

Min- load, Min-EP 1 10.2 10.2

Min- load, Max-EP 1 30.7 30.7

Max- load, Min-EP 11 10.2 112.2

Max- load, Max-EP 11 30.7 337.7
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Figure 6. Feasible region for scheduled load with: (a) feasible region for scheduled load with RTP, and
(b) feasible region for scheduled load with RTP+IBR.

7.3. Scheduled Load with RTP+IBR

In this case, the objective remains same; however, the limits have been changed in order to
improve the reliability of a power system because the pricing tariff has be changed in accordance with
the consumption limits. Thus, the cost per hour can be defined as follows:

CstT
total = ∑

ai∈Ap ,Sch−load
Lodai,Sch × EP. (25)

As we have to minimize the energy consumption cost of each hour, the new objective function is
defined as:

Min(CsttotalT). (26)

The associated constraints for the calculation of feasible regions are given as:
C1 : 0.2 ≤ CstSchRTP

T ≤ 290,
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C2 : σtota ≤ 1.4747× 103,
C3 : 1.5 ≤ LoadSch

T ≤ 9.45.

Table 6 shows the four events of price for RTP+IBR whose range is (10.20 to 30.70) $/KWh.
In addition, the maximum energy cost in each hour using RTP+IBR mechanism is $(CstSchRTP

Max = 290).
In view of these values, we constraints have been characterized in such a way that hourly scheduled
load is always less than or equivalent to $(CstSchRTP

Max = 290). C1 demonstrates that maximum cost
in every hour is $290. For this objective, we have scheduled the load such that the cost cannot be
more than $290. Therefore, the aggregated cost in every day cannot exceed the unscheduled cost as
demonstrated in C2. Maximum schedule load using RTP+IBR in a given time slot is 9.45 KWh, which
is shown in C3. Therefore, the scheduled is always equal or less than this load. In Figure 6b, the area
represented by the points (P1, P2, P3, P6 and P4) gives the cost, while the shaded portion by (P1, P2,
P5, P6 and P4) is a feasible region. Therefore, the cost in this region will be feasible in any time slot and
it is always less than overall electricity cost.

Table 6. Cost results against various load and price profiles considering RTP+IBR.

Event Load (KWh) EP ($/KWh) Cost ($)

Min-load, Min-EP 1.5 10.2 15.3

Min-load, Max-EP 1.5 30.7 46.50

Max-load, Min-EP 9.45 10.2 112.2

Max-load, Max-EP 9.45 30.7 290.11

8. Simulation Results

Simulation results are depicted in this section based on DR programs that manage the residential
load. Before going towards simulation results and analysis, a description of conventional and smart
home users is provided.

8.1. Conventional Users

This class of users have no smart technologies like (smart phones, tabs and laptops) and no
information about their load management strategy. The unscheduled class users are considered
because they have no home energy management planning/solution, no price awareness along with
improper load scheduling scheme.

8.2. Smart Users

In this class, users have smart home appliances which respond to digital technology i.e., smart
phones, tabs and laptops. Therefore, this type of users have home energy management (HEM) structure
and RTP signal information in their homes via in home display.

8.3. Proposed Cases

Simulation results are achieved for four main cases that are discussed below.

8.3.1. Unscheduled Case

This class of users has no information about their load management according to hourly changing
electricity price, and that is why they pay more bills.

8.3.2. Scheduled Case with RTP

In this class, the home has smart appliances and the HEM system is amended. Therefore, for this
class of users, we will use the GA based scheduling plan with RTP information to manage their loads.
RTP is a price signal which is obtained from the energy retailers.
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8.3.3. Scheduled Case with RTP+IBR

This class of smart users is also based on GA scheduling, which used the combined pricing model
i.e., RTP+IBR for effective load management. Complete discussion about these proposed cases are
added in the next section.

8.3.4. Scheduled Case with RES

For this class of users, the users achieve benefits of the differential pricing plan and use the RES
framework ideally to limit the cost. The home that is engaged with RES generation limits the power
cost by an extremely remarkable amount by moving the peak load from the grid to RES system.

8.3.5. Scheduling Pattern of Appliances

To validate the efficiency of the considered load scheduling scheme, pricing signals that are
considered in work and simulation results of all four situations are examined and conferred.

8.4. Pricing Patterns

For bill calculation, the RTP pricing signal has been used in the proposed work because the RTP
provides more flexibility as compared to other pricing schemes i.e., TOU, CPP and DAP. This is due
to the fact that its value changes in each hour as per load consumption. This is why scheduling with
RTP for variable loads is easier and effective in cost reduction scenarios, although RTP is an effective
pricing schemes where cost reduction is a primary objective. However, RTP can create rebound peaks
as all users try to shift their load in low-peak hours. Therefore, to reduce the PAR and bill according to
energy consumption, the combined model of RTP+IBR is used. The main purpose of this combined
model is to reduce the user consumption cost as well as PAR. These costs are normally perceived well
ahead of time by the utility. The combined RTP+IBR model provides flexibility to the potential users
aiming at participation in load management programs using DR. Figure 7 demonstrates the typical
RTP and IBR signals which can later on be used for the load scheduling mechanism.
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Figure 7. RTP and IBR pricing signal [72,80].

8.5. Unscheduled Case

Without using load management programs, these users can be charged more bills due to
unscheduled load consumption, without considering market clearing prices. The sample unscheduled
and scheduled load patterns without load control parameter have been shown in Figure 8a. Meanwhile,
the unscheduled and scheduled load patterns with control parameter are given in Figure 8b.
Figures 8a,b and 9a,b show the unscheduled peak load and the maximum peak cost reflecting improper
scheduling plan because such types of users are willing to pay more bills, without compromising
on their comfort level. Figure 10a,b show the total unscheduled cost and the PAR results. It is clear
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from the figures that energy consumption cost with ζ is comparatively low in all scheduled cases.
Furthermore, the cost using RES and IBR+RTP is very much reduced.
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Figure 8. Unscheduled and scheduled load profiles against various cases; RTP, RTP+IBR and RES.
(a) without control parameter; (b) with control parameter.
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Figure 9. Unscheduled and scheduled cost profiles against various cases; RTP, RTP+IBR and RES.
(a) without control parameter; (b) with control parameter.

8.6. Scheduled Case with RTP

In this case, users are considered to have an HEM architecture that is based on scheduling and
DSM programs. These types of users are more sensitive to electricity cost as compared to other users.
They have proper connectivity with DSM programs and scheduling scheme being offered by utilities
and market retailers. In Figure 8a,b, the load and cost curves have shown their maximum values
as there is no limit of consuming energy. Figure 8a shows that unscheduled peak load is shifted to
off-peak hours. As a result, the cost is reduced, which is shown in Figure 9a. However, the PAR
value is comparatively more than other cases. From Figure 9a, it can be seen that the maximum cost
is reduced from 217 $/KWh to 175 $/KWh. With the effect of control parameter, the cost is further
reduced with maximum user comfort which is shown in Figure 9b. Thus, the scheduling scheme is
more effective for those types of energy users who intend to take part in scheduling programs. In this
case, the consumers can reduce their bill; however, the systems’ stability can be disturbed due to
rebound peaks created due to load shifting. Consequently, the load management programs relying
only on RTP seem less feasible where grid reliability is also required along with user satisfaction.
For this purpose, a mechanism is needed that can jointly reduce cost and and user discomfort along
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with high system stability. The following section gives a brief discussion about the model using a
combined pricing scheme.
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Figure 10. Total cost and PAR profiles for unscheduled and scheduled cases using; RTP, RTP+IBR and
RES options. (a) total cost results for unscheduled, scheduled with RTP, RTP+IBR and RES, without
and with control parameter; (b) PAR results for unscheduled, scheduled with RTP, RTP+IBR and RES,
without control and with parameter control parameter.

8.7. Scheduled Case with RTP+IBR

In this case, we focus on cost and user discomfort minimizations along with reduced PAR. From
Figure 9a, it can be visualized that, without utilizing RTP+IBR, the total electricity cost is $165, while
the cost is further reduced and becomes $88 by using a combined pricing plan. Furthermore, the cost
and user comfort are achieved with minimum delay time as shown in Figure 9b. It is clearly shown
that, by utilizing RTP+IBR, the cost can be saved up-to 77 $/day. Furthermore, Figure 10 shows the
total cost reduction results. Figure 10b demonstrates that PAR has been reduced from 2.68 to 1.5 by
using the proposed approach and effect of ζ. Figure 11 gives the user comfort in regards to appliance
waiting time. It can be clearly seen that average user comfort in RTP case is comparatively high. This is
due to the fact that there is no limit on energy consumption and user comfort. Alternatively, there is a
limit on electricity cost using IBR+RTP, as customers will receive more bills if their demand exceeds
from given limits. Similarly, Figure 12 shows appliance waiting time in all cases. It is also clearly
visible from the figure that the waiting time in RTP cases is comparatively less.
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Figure 11. Results of user comfort for scheduled with RTP, RTP+IBR and RES.
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Figure 12. Appliances delay time behavior for scheduled with RTP, RTP+IBR and RES.

8.8. Scheduled Case with RES

In this case, we integrate the solar energy in our model to further reduce the cost and user
discomfort, while improving the stability of the system. As there is another source of energy, the users
do not fully rely on grid energy and can use both sources with the objective of cost minimization.
In Figure 9a,b, we can see that with RTP+IBR the total cost is $88. However, this value is further
reduced and becomes $51 with the effect of control parameter ζ and integration of RES. Figure 10b
demonstrates that PAR is also reduced from 1.23 to 1.12, with the integration of RES and maximum
user comfort being achieved at the same time. Figure 10b also reflects that, by utilizing RES, we can
overcome the dependability of users on grid for cost effective benefits as well as decrease PAR with
the accomplishment of the most extreme user comfort and minimum delay time.

8.9. Carbon Footprint

The emission of harmful gases (i.e., CO2, methane, nitrous oxide and ozone) created direct or
indirect impact on human life. Generation of electrical power emits a certain amount of CO2 when
a house is heated with electricity. CO2 is also emitted by the production of food and other goods.
Therefore, the sum of all emissions is called a carbon footprint, which is induced by activities in a
given time frame. Usually, a carbon footprint is calculated for the time period of a year. We discuss
three cases: unscheduled, schedule with RTP and schedule with RTP+IBR and compare their mean
and variance values. The variance values are 9.3254, 8.8644 and 5.1571 in unscheduled, schedule
load with RTP and schedule load with RTP+IBR combined model, respectively. Variance values show
reduction in scheduled load with RTP+IBR from 9.3254 to 5.1571 KWh. However, RES is introduced
to finish CO2 emission effect for reliable environment and system stability. Therefore, all simulation
results are listed in Table 7, which show that carbon emissions are produced with conventional energy
generation resources.

Table 7. Overview of all simulation results.

Category Energy (KWh) Cost ($) Cost (%) Carbon Footprint (metric tons)

Unsch. case 111.5 1860 38 104.81

Sch. with RTP case 111.5 1130 34 104.81

Sch. with RTP+IBR case 111.5 619.34 17 104.81

Sch. with RES case 690.56 604.39 11 98.2

Unsch. = Unscheduled, Sch. = Scheduled.



Energies 2018, 11, 3494 21 of 26

8.10. Trade-Offs

In this section, we provide the algorithm execution based on scheduling with RTP and RTP+IBR,
and the possible trade-off among various cases depending on constraints and limits. We have
investigated three cases: unscheduled, scheduled with RTP and RTP+IBR. An unscheduled case
can not provide financial benefits, due to not considering HEM programs. A user can operate their load
whenever needed, irrespective of the electricity price. Because the utility sets the prior pricing plan,
different electricity costs are obtained for various times. These types of users do not participate in DR
programs. They accomplish the most extreme comfort level while compromising on electricity bills.

In the second case, users have intentions to reduce their electricity bill by participating in
energy management programs. As these users have first priority to limit the electricity bill, while
compromising on their comfort level, the users ideally schedule their appliances and move the load
from on peak hours to off peak hours by using HEM. The HEM impels the scheduling plan of users for
reduction in electricity consumption cost. A trade-off exists between user cost and comfort because of
moving load to low pricing hours.

On the other hand, the third class of users utilized the joint model of RTP+IBR, and shifted their
load with minimum delay. The users can get the minimum electricity bill over a little sacrifice on
comfort by utilizing an RTP+IBR model. The unscheduled users pay the maximum bill for equal
electricity utilized by the smart customers (scheduled RTP+IBR). The smart customers get the most
advantages from the RTP+IBR pricing version with an effective HEM model. In a 2nd case, a user
compromises on their comfort; however, they pay much less.

In the last case, smart prosumers have both HEM and RES. This magnificence of users has an
insightful HEM framework and, along with these strains, it enables the customers to use the grid
source for energy as a second source and reduce their bill. Other than RES framework, this case
empowers the users to ideally utilize the grid energy.

9. Conclusions

This paper presents residential load management approach with integration of RESs and control
parameter ζ. Furthermore, in order to balance the overall electricity consumption and waiting cost
while enhancing the consumers’ savings and preserving their comfort, users have been provided the
facility to prioritize comfort over cost by controlling the ζ parameter. To analyze the performance of
the proposed mechanism, we have considered various loads and categorized them on the basis of user
requirements. The mathematical models of respective loads have been formulated with respective
constraints and limitations. In the first scenario, RTP is used to minimize the energy consumption cost
of end users. However, it has also reduced PAR insignificantly, as the major focus was towards cost
reduction. In the second scenario, a combined pricing model RTP+IBR has been used to minimize
both cost and PAR simultaneously. Eventually, the user comfort is neglected. In the third scenario,
we have integrated the RES along with other energy resources to schedule load in accordance with
user preferences and electricity price limitations being considered as key constraints. Then, to assess
the performance of the proposed mechanism, all test cases are implemented using GA. Furthermore,
alongside simulation results, analytical results are also conducted to cross-validate the implemented
algorithm, whether the results are optimal or not. It is clear from simulation results that the proposed
algorithm has the capability to manage residential load while preserving user comfort. Electricity cost
has been reduced from $228 to $51 and, similarly, PAR has been reduced from 2.68 to 1.12. It is worth
noting here that, as we have obtained optimal results, the algorithm has also converged within optimal
time. The convergence plots in both RTP and RTP+IBR cases are also given in the paper. Finally,
the simulation results are summarized in Table 8.
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Table 8. Comparison of results without and with effect of control parameter.

Parameters Unsch. Sch. RTP Savings Sch. RTP+IBR Savings Sch. RES Savings Unsch. with ζ Sch. RTP with ζ Savings Sch. RTP+IBR with ζ Savings Sch. RES with ζ Savings

Per hour cost 228 165 72 % 88 38.6% 57 25% 206.5 121.8 59% 82 39.6% 51 24.6%

Total cost 1864 1547 83% 980 52.6% 526 28% 1498 1334 89% 862 57% 456 30%

PAR 2.68 2.2 82% 1.93 72% 1.23 45.9% 2.5 2.1 84% 1.5 55.9% 1.12 44.8%
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