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Abstract: To solve the issues of frequent and inflexible contact charging system for inspection robots,
the dynamic wireless charging system for the moving robot is introduced in this paper. In dynamic
wireless charging systems with symmetric transceiver, including a single energized transmitting coil
and one receiving coil, the receiving power drops significantly when the receiving coil moves to
the boundary position of the energized transmitting coil. An asymmetric transceiver, including the
single energized transmitting coil and two identical receiving coils connected in series is proposed
for power stabilization during the moving process of the inspection robot. Circuit models of the
systems with symmetric and asymmetric transceivers are developed. Expressions for the receiving
power and the efficiency in these systems are derived. Then, the characteristics of the receiving
power and efficiency varying with the position of receiving devices during one cycle of the switching
control of the transmitting coils are investigated comparatively. The receiving power drop issue
when the receiving coil is at the switching control position of the transmitting coils in the system with
symmetric structure is solved by the proposed asymmetric structure with two receiving coils. Finally,
the theoretical analyses are verified by experimental results and conclusions are drawn.

Keywords: dynamic wireless charging system; inspection robot; asymmetric transceiver; power
stabilization

1. Introduction

An inspection robot is a special kind of industrial robots. It has been applied in smart factories and
substations to replace the manual inspection tasks. The movement and the operation of the inspection
robot depend on the carried batteries. At present, the batteries in inspection robots are charged with
contact-type charger. The contact charging method, which depends on the manual or mechanical
plug-in, is characterized by the issues of frequent inflexible charging and electric shock hazard.

Wireless power transmission technologies, especially the wireless power transmission technology
based on magnetic coupling, have been developed rapidly [1,2]. Research on wireless power
transmission technology based on magnetic coupling mainly include the high frequency inverters [3,4],
magnetic couplers [5,6], compensation circuits [7,8], power rate promotion [9,10], and the electromagnetic
safety issue [11,12]. This technology is applied in fields, such as medical implants [13], electronic
devices, smart home devices, electric vehicles [14,15], and drones [16]. The wireless power transfer
technology is also applied in wireless powered communication networks [17,18] and the wireless
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powered sensor networks [19], which are characterized by the low power rate but wide transfer range
(compared with the coil size).

The inflexible charging and the electrical shock hazard issues can be solved by the static wireless
power transmission technology. To decrease the dependence on batteries and extend the driving range,
researchers proposed the dynamic wireless charging technology. For electric vehicles, the energy is
transferred wirelessly through the magnetic coupling between the transmitting coils in road and the
receiving coil on a moving electric vehicle in the dynamic wireless charging system. According to
the transmitting coil structure, the dynamic wireless charging systems can be divided into systems
with long rail structure and systems with short-segmented coil structure [14]. When compared with
the system with long rail structure, the transmitting coils are controlled and energized according to
the position of receiving coil in the system with short segmented coil structure. The loss in primary
side and the area of the electromagnetic leakage are smaller because most of the short segmented
transmitting coils are not energized. However, the system with short segmented coils relies on the
positioning method and the switching control devices of the transmitting coils. The three coil detection
system, which is independent of the energy transfer system, was proposed to detect the moving
electric vehicle in [20]. The positioning method for obtaining the location of the moving objects is
the foundation of the dynamic wireless charging system with short-segmented coils. The external
positioning sensor (infrared sensor or magnetic sensor), measuring the current change in primary side,
measuring the voltage change in secondary side, or detecting the magnetic field change are usually
applied as the positioning methods. In this paper, the dynamic wireless charging system for inspection
robot is proposed to solve the charging problems, decrease the battery size, and promote the ability of
all-weather work.

In the dynamic wireless charging system with short segmented coils in [21], the receiving coil
and the single energized short segmented transmitting coil are designed symmetrically and identically.
In the system with symmetric transceiver, if the short segmented transmitting coils are energized one
by one, the receiving power drops significantly when the receiving coil moves to the position between
two transmitting coils. To solve this issue, the switching control of double energized transmitting coils
with the switching control of the compensation capacitors is proposed in [22]. The switching control
of double energized transmitting coils with the shift of the operation frequency is proposed in [23].
In [22,23], the power fluctuation issue is solved by the controls in primary side. The switching controls
of the primary coils with other auxiliary controls (switching control of the compensation capacitors or
shifting of the operation frequency) are applied for power stabilization. In this paper, the receiving
structure in the secondary side is designed to solve this issue. An asymmetric transceiver including
the single energized transmitting coil and two identical receiving coils that are connected in series
is proposed. Hence, when comparing with the existing research mentioned before, the switching
control of the compensation capacitors or shifting of the operation frequency is not needed. The control
complexity of the whole system is reduced by the design of asymmetric transceiver structure.

In this paper, the design of the receiving side is investigated to solve the power fluctuation during
the moving process of the receiving coil. The dynamic wireless charging system with short-segmented
transmitting coils based on the asymmetric transceiver is introduced. The proposed asymmetric
transceiver includes the single energized transmitting coil and two identical receiving coils that are
connected in series. The circuit models of the systems with symmetric and asymmetric transceivers are
developed according to the circuit theory. The expressions of the receiving power and the efficiency
in terms of the mutual inductance between the transmitting and receiving coils for different systems
are derived. The characteristics of the receiving power and the efficiency varying with the position
change of the receiving devices in one cycle of switching control of the transmitting coils are analyzed
based on the mutual inductance calculation. According to the comparative results, the power drop
issue when the receiving device moves to the switching control position of the transmitting coils in
dynamic wireless charging system with symmetric structure is solved by the proposed asymmetric
transceiver with double receiving coils. The theoretical analyses are verified experimentally.
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2. System Description

In the proposed short-segmented dynamic wireless charging system based on the asymmetric
transceiver, the transmitting coils are energized one by one according to the position of the inspection
robot. The proposed asymmetric transceiver includes the single energized transmitting coil and
two identical receiving coils connected in series. The schematic diagram of the proposed system with
asymmetric transceiver is shown in Figure 1.

Energies 2018, 11, x FOR PEER REVIEW  3 of 14 

 

symmetric structure is solved by the proposed asymmetric transceiver with double receiving coils. 
The theoretical analyses are verified experimentally. 

2. System Description 

In the proposed short-segmented dynamic wireless charging system based on the asymmetric 
transceiver, the transmitting coils are energized one by one according to the position of the 
inspection robot. The proposed asymmetric transceiver includes the single energized transmitting 
coil and two identical receiving coils connected in series. The schematic diagram of the proposed 
system with asymmetric transceiver is shown in Figure 1. 

 
Figure 1. The schematic diagram of the proposed system with asymmetric transceiver. 

The structure diagram of the proposed dynamic wireless charging system for inspection robot 
is shown in Figure 2. The transmitting coils are short segmented square coils that can be controlled 
by the switching devices and energized one by one. The single coils in both symmetric and 
asymmetric transceivers are designed identically in this paper. In the system with symmetric 
transceiver, the receiving device includes only one coil. In the system with asymmetric transceiver, 
the receiving device consists of two coils connected in series. The primary side of this system 
includes the high-frequency inverter, primary compensation circuit, switching control devices, and 
the transmitting coils. The secondary side consists of two receiving coils connected in series, 
secondary compensation circuit, rectifier circuit, filter circuit, (direct-current) DC converter circuit, 
and the battery. LCC compensation circuit is applied in the primary side to maintain the current 
through the transmitting coil. The capacitor is connected with the receiving coils in series. The 
energy is transferred from the road side to the inspection robot through the magnetic coupling 
between the transmitting coil and the receiving coils. The positioning method for obtaining the 
location of the moving objects is also needed as the foundation in the dynamic wireless charging 
systems with short-segmented coils. In this paper, we concentrate on the characteristics of the 
receiving power and efficiency varying with the position of receiving devices during one cycle of 
the switching control of the transmitting coils. Hence, the positioning method to obtain the exact 
location of the robot is assumed to be given in this paper. 

 
Figure 2. The structure diagram of the proposed dynamic wireless charging system for inspection 
robot. 

Figure 1. The schematic diagram of the proposed system with asymmetric transceiver.

The structure diagram of the proposed dynamic wireless charging system for inspection robot
is shown in Figure 2. The transmitting coils are short segmented square coils that can be controlled
by the switching devices and energized one by one. The single coils in both symmetric and
asymmetric transceivers are designed identically in this paper. In the system with symmetric
transceiver, the receiving device includes only one coil. In the system with asymmetric transceiver,
the receiving device consists of two coils connected in series. The primary side of this system
includes the high-frequency inverter, primary compensation circuit, switching control devices, and the
transmitting coils. The secondary side consists of two receiving coils connected in series, secondary
compensation circuit, rectifier circuit, filter circuit, (direct-current) DC converter circuit, and the
battery. LCC compensation circuit is applied in the primary side to maintain the current through the
transmitting coil. The capacitor is connected with the receiving coils in series. The energy is transferred
from the road side to the inspection robot through the magnetic coupling between the transmitting coil
and the receiving coils. The positioning method for obtaining the location of the moving objects is also
needed as the foundation in the dynamic wireless charging systems with short-segmented coils. In this
paper, we concentrate on the characteristics of the receiving power and efficiency varying with the
position of receiving devices during one cycle of the switching control of the transmitting coils. Hence,
the positioning method to obtain the exact location of the robot is assumed to be given in this paper.
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3. System Modeling

In a dynamic wireless charging system for the inspection robot with the transmitting coils
energized singly, the receiving side includes single coil in the symmetric structure while double coils in
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series in the asymmetric structure. The comparative system models of the symmetric and asymmetric
structures are shown in Figure 3. Us is the high-frequency power source. Lp and Rp are the inductance
and resistance of the single transmitting coil. Lf, Cf, and Cp are the inductance and capacitors in the
compensation circuit of the transmitting side. Ls and Rs are the inductance and resistance of the single
coil in receiving devices. In the system with symmetric structure, Cs1 is the compensation capacitor
in receiving side and M is the mutual inductance between the transmitting coil and the receiving
device. In the system with asymmetric structure, Cs2 is the compensation capacitor for the double
receiving coils. M1 and M2 are the mutual inductances between the single transmitting coil and the
two receiving coils separately. M12 is the mutual inductance between the two receiving coils. In order
to simplify the theoretical analysis in this paper, the rectifier circuit, filter circuit, DC converter circuit,
and the battery are equivalent to the alternating-current (AC) resistance RL. In the dynamic wireless
charging system for inspection robot, the battery is the same approximately during system operation.
Hence, the load is fixed in this paper.
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Figure 3. The circuit models of dynamic wireless charging system with the single energized transmitting
coil. (a) System with symmetric transceiver; (b) System with asymmetric transceiver.

As shown in Figure 3, the LCC compensation circuit is applied in the transmitting side. In order
to realize the stable current through the transmitting coil, the capacitors and inductances should satisfy
the condition that

C f L f =
1

ω2 (1)

Cp(Lp − L f ) =
1

ω2 (2)

where ω = 2πf and f is the operation frequency.
Then, the current through the transmitting coil is

Ip =
Us

jωL f
(3)

The capacitors in receiving side of the systems with symmetric and asymmetric transceivers
should satisfy {

Cs1Ls =
1

ω2 (Symmetric)
Cs2(Ls + Ls + 2M12) =

1
ω2 (Asymmetric)

(4)

According to Equation (4), the compensation capacitor Cs2 in receiving side of the system with
asymmetric transceiver is influenced by the mutual inductance M12.Because of the existence of mutual
inductance M12, the compensation capacitor Cs2 is not equal to a half of the compensation capacitor Cs1

simply. The compensation capacitor should be designed according to Equation (4). Otherwise, the total
impedance in the receiving circuit will enlarge, and the receiving power as well as the efficiency
will drop.
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When the receiving circuit is in resonance, according to the circuit theory of the mutual inductance,
the currents through the receiving coils of the different systems can be derived as Is1 = MUs

L f (Rs+RL)
(Symmetric)

Is2 = (M1+M2)Us
L f (2Rs+RL)

(Asymmetric)
(5)

The expressions of receiving power are derived comparatively as
P1 = M2Us

2RL
L f

2(Rs+RL)
2 (Symmetric)

P2 = (M1+M2)
2Us

2RL

L f
2(2Rs+RL)

2 (Asymmetric)
(6)

The expressions of efficiency are derived, respectively, as
η1 = ω2 M2RL

Rp(Rs+RL)
2+ω2 M2(Rs+RL)

(Symmetric)

η2 = ω2(M1+M2)
2RL

Rp(2Rs+RL)
2+ω2(M1+M2)

2(2Rs+RL)
(Asymmetric)

(7)

In the dynamic wireless charging system for inspection robot, the relevant position between
the transmitting coil and the receiving coil is changing during the moving process of the inspection
robot. In the conventional system with symmetric transceiver, the mutual inductance between the
transmitting and receiving sides fluctuates sharply because of the position changing. According to
the expressions that are derived in this section, the fluctuation of the mutual inductance will decrease
the stabilization of the receiving power in the system with the symmetric transceiver. To solve the
issue of power fluctuation, the asymmetric transceiver is proposed in this paper. The comparative
characteristics of the systems with the symmetric and asymmetric structures varying with the changing
position of the receiving devices in one cycle of switching control of the transmitting coils are
investigated in the following sections.

4. System Analysis

The transmitting coils are energized one by one according to the position of the receiving devices
in dynamic wireless charging system in this paper. So, the system characteristics, including the
receiving power and the efficiency, are studied comparatively during one cycle of the switching control
of the transmitting coils. The transmitting coils and receiving coils are square coils designed identically.
The mutual inductance between the coils can be calculated according to

Mmutual =
µ0N2

4π

∫
l1

∫
l2

dl1dl2

R
(8)

where µ0 is the vacuum permeability, N is the turns number of the coils, l1 and l2 are the single loops of
the transmitting and receiving coils. dl1 and dl2 are the infinitesimals in the transmitting and receiving
loops. R is the distance between the infinitesimals.

The total mutual inductances between the energized transmitting coil and the receiving device in
systems with symmetric and asymmetric transceivers can be expressed as

Mtotal =

{
M (Symmetric)
M1 + M2 (Asymmetric)

(9)

The positions of the receiving devices in systems with symmetric and asymmetric transceivers
change in the area corresponding to the single energized transmitting coil. O is the position of the
center point of the energized transmitting coil. Os1 and Os2 are the positions of the switching control
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points of the transmitting coil. The comparative position diagram of the systems with symmetric and
asymmetric transceivers is shown in Figure 4.
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To obtain the characteristics of the receiving power and efficiency varying with the position
of receiving devices in one cycle of the switching control of the transmitting coils, the numerical
calculation method is applied in this paper, according to the derived formulas before. The values
of the turns number of the coils, the length of the side, and the vertical height are set firstly. Then,
changing the horizon position of the receiving structure, the mutual inductances M, M1, and M2 are
calculated at different positions successively, according to Equation (8). The total mutual inductances
between the energized transmitting coil and the receiving device in systems with symmetric and
asymmetric transceivers can be calculated further based on Equation (9). In this paper, the comparative
characteristics of the total mutual inductances varying with the position changing of the receiving
devices in systems with symmetric and asymmetric transceivers are shown in Figure 5. The total
mutual inductances are normalized according to the maximum value in them.Energies 2018, 11, x FOR PEER REVIEW  7 of 14 
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As shown in Figure 5, as compared with the symmetric structure, the total mutual inductance
of the asymmetric structure varying with the position changing of the receiving devices is more
stable, especially at the positions (Os1 and Os2) of the switching control points of the transmitting coil.
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The voltage of the high-frequency power source, the resistances of the coils, the resistance of the load,
and the inductance Lf are set. The receiving power and the efficiency when the receiving devices are at
different positions in systems with symmetric and asymmetric transceivers can be calculated according
to Equations (6) and (7). The comparative characteristics of the receiving power and the efficiency
varying with the position changing of the receiving devices are calculated as shown in Figures 6 and 7.
The receiving power and the efficiency are normalized according to the maximum value, respectively.
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According to the system characteristics that are shown in Figures 6 and 7, the receiving power
and efficiency of the system with symmetric transceiver drops when the receiving structure is at
the positions of switching control. In the system with the proposed asymmetric transceiver in this
paper, the receiving power and the efficiency are more stable during the moving process of the
receiving device, especially when the receiving device is at the positions of switching control of the
short-segmented transmitting coils.

5. Experiments and Discussion

An experiment is carried out to verify the theoretical analysis. This paper concentrates on the
system characteristics during the moving process of the receiving devices in one cycle of the switching
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control of the transmitting coils. The prototype of the dynamic wireless power transfer systems with
single energized transmitting coil with symmetric and asymmetric transceivers are set up, as shown
in Figures 8 and 9. In the two system prototypes, the transmitting sides include the high-frequency
inverter, the LCC compensation circuit in transmitting side, and the single energized transmitting coil.
In the system prototype with symmetric transceiver, the receiving side includes only one receiving
coil. In the system prototype with asymmetric transceiver, the receiving side contains two receiving
coils that are connected in series. The compensation capacitor in receiving side and the load are also
included in receiving sides, respectively. The coils are designed identically in this paper. The side
length is 23 cm. The turns number is 8. The inductance of single coil is 37.9 µH. Lf in primary
compensation circuit is 5.0 µH. According to Equations (1) and (2), Cf is calculated and designed as
701.2 nF (the measured value is 700.5 nF) and Cp is calculated and designed as 106.6 nF (the measured
value is 106.9 nF). According to Equation (4), the secondary compensation capacitor in the system
with symmetric transceiver is designed as 92.5 nF (the measured value is 92.1 nF). In the system
with asymmetric transceiver, the inductance of two receiving coils connected in series is measured
as 66.2 µH. The secondary compensation capacitor is designed as 53.0 nF (the measured value is
52.8 nF). The output voltage of the high-frequency inverter is 20 V. The operation frequency is 85 kHz.
The resistance of the load is 4.2 Ω.Energies 2018, 11, x FOR PEER REVIEW  9 of 14 
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In the systems with symmetric and asymmetric transceivers, the positions of the receiving devices
change in the area corresponding to the single energized transmitting coil, respectively. The voltage
of the load is measured when the receiving devices are at different position. The experimental
characteristics of the receiving power varying with the position changing of the receiving devices in
one cycle of switching control of the transmitting coils are shown in Figure 10 comparatively.Energies 2018, 11, x FOR PEER REVIEW  10 of 14 
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Figure 10. The experimental characteristics of the receiving power varying with the position changing.

When the receiving structures are at the position of the center point of the single energized
transmitting coil, the waveforms of voltages of the inverter output and the load in the systems with
symmetric and asymmetric transceivers are shown in Figures 11 and 12, respectively. At the position of
the center point of the single energized transmitting coil, the receiving power is 98.1 W and efficiency
is 88.6% in the system with symmetric transceiver. The receiving power is 96.2 W and efficiency is
87.8% in the system with an asymmetric transceiver.
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Figure 11. The waveforms of voltages of the inverter output and the load at the position of the center
point of the single energized transmitting coil in the system with symmetric transceiver.



Energies 2018, 11, 3005 10 of 12
Energies 2018, 11, x FOR PEER REVIEW  11 of 14 

 

 
Figure 12. The waveforms of voltages of the inverter output and the load at the position of the 
center point of the single energized transmitting coil in the system with asymmetric transceiver. 

When the receiving structures are at the position of the switching control of the transmitting 
coil, the waveforms of voltages of the inverter output and the load in the systems with symmetric 
and asymmetric transceivers are shown in Figures 13 and 14, respectively. At the position of the 
switching control of the transmitting coil, the receiving power is 39.0 W and the efficiency is 78.4% 
in the system with symmetric transceiver. The receiving power is 89.6 W and efficiency is 87.3% in 
the system with asymmetric transceiver. 

 
Figure 13. The waveforms of voltages of the inverter output and the load at the position of the 
switching control of the transmitting coil in the system with symmetric transceiver. 

Figure 12. The waveforms of voltages of the inverter output and the load at the position of the center
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When the receiving structures are at the position of the switching control of the transmitting coil,
the waveforms of voltages of the inverter output and the load in the systems with symmetric and
asymmetric transceivers are shown in Figures 13 and 14, respectively. At the position of the switching
control of the transmitting coil, the receiving power is 39.0 W and the efficiency is 78.4% in the system
with symmetric transceiver. The receiving power is 89.6 W and efficiency is 87.3% in the system with
asymmetric transceiver.
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Figure 13. The waveforms of voltages of the inverter output and the load at the position of the
switching control of the transmitting coil in the system with symmetric transceiver.

According to the comparative experimental results that are shown above, the issue of power
fluctuation in the system with the symmetric transceiver is solved by the proposed asymmetric
transceiver. At the position of the center point of the single energized transmitting coil, values of
the receiving power and the efficiency of the systems with symmetric and asymmetric transceivers
are approximately equal. When compared with the system with symmetric transceiver, the values
of the system with asymmetric transceiver are slightly lower caused by the larger resistance in
receiving side and the approximate total mutual inductance. When compared with the system with
symmetric transceiver at the position of the switching control of the transmitting coil, the values of the
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receiving power and the efficiency of the system with asymmetric transceiver are significantly higher.
The receiving power is improved from 39.0 W to 89.6 W and the efficiency is promoted from 78.4%
to 87.3%.Energies 2018, 11, x FOR PEER REVIEW  12 of 14 
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6. Conclusions

To solve the problem in a conventional contact charging system for inspection robot, the dynamic
wireless charging system is introduced in this paper. The asymmetric transceiver, including
two receiving coils that are connected in series is proposed to deal with the issue of power drop
when the receiving device is at the position of switching control in the system with single energized
transmitting coil. The comparative circuit models of the systems with the symmetric and asymmetric
structure are developed. The characteristics of the receiving power and the efficiency varying with the
position changing of the receiving devices in these two different systems are investigated in one cycle
of the switching control, respectively. According to the comparative experiment results, the power
drop issue is solved by the proposed asymmetric transmitting-receiving structure, especially at the
positions of the switching control of the transmitting coils.
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