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Abstract: The integration of renewables into power systems involves significant targets and new
scenarios with an important role for these alternative resources, mainly wind and PV power plants.
Among the different objectives, frequency control strategies and new reserve analysis are currently
considered as a major concern in power system stability and reliability studies. This paper aims to
provide an analysis of multi-area power systems submitted to power imbalances, considering a high
wind power penetration in line with certain European energy road-maps. Frequency control strategies
applied to wind power plants from different areas are studied and compared for simulation purposes,
including conventional generation units. Different parameters, such as nadir values, stabilization
time intervals and tie-line active power exchanges are also analyzed. Detailed generation unit models
are included in the paper. The results provide relevant information on the influence of multi-area
scenarios on the global frequency response, including participation of wind power plants in system
frequency control.

Keywords: frequency control; wind power integration; power system stability

1. Introduction

Traditionally, synchronous generators have provided frequency control reserves, which are
released under power imbalance conditions to recover grid frequency [1]. In fact, any generation-
demand imbalance leads the grid frequency to deviate from its nominal value, which can cause serious
scale stability problems [2]. With the significant penetration of renewables, mainly wind power plants,
a proportional capacity of the system reserves must be provided by these new resources [3]. In this
way, reference [4] considers that wind power plant participation in grid frequency control is imminent.
However, wind turbines usually include back-to-back converters, and they are electrically decoupled
from the grid through power electronic converters [5]. Consequently, with the significant integration of
wind power into power systems, grid frequency tends to degrade progressively due to the reduction
of the grid inertial responses [6]. Therefore, this new scenario presents a preliminary reduction of
reserves from conventional generation units, mainly in weak and/or isolated power systems with high
renewable resource penetration [7,8]. Moreover, these problems would be exacerbated in micro-grids,
with a high share of power-electronically interfaced and thus a low grid inertia [9,10]. Under this
framework, frequency control strategies must be included in wind power plants to provide additional
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active power under disturbances [11]. These new strategies would allow us to integrate Variable Speed
Wind Turbines (VSWTs) into these services, replacing conventional power plants by renewables [12]
and maintaining a reliable power system operation [13]. Most of the proposed strategies for VSWTs
are based on ‘hidden inertia emulation’, enhancing their inertia response [14–16]. According to the
specific literature, ‘Fast power reserve emulation’ has been proposed as a suitable solution. It is based on
supplying the kinetic energy stored in the rotating masses to the grid as an additional active power,
being subsequently recovered through an under-production period (recovery) [17–19]. Different
studies can be found to discuss the definition of overproduction period and the transition from
overproduction to recovery period [20–25]. These studies are mainly focused on analyzing the inertia
reduction problem on isolated power systems [20,21,23–27]. However, there is a lack of contributions
focused on large interconnected power systems with high wind power penetration [28]. These new
scenarios are in line with current wind generation units, covering more than 20% in different power
systems. Moreover, renewables have accounted for more than 50% at different times in some European
countries such as Spain, Portugal, Ireland, Germany or Denmark [29].

In general, synchronous generators inherently release or absorb kinetic energy as an inertial
response to imbalance situations [24]. However, to recover the grid frequency at the nominal value,
an additional control system is needed as well [30]. Automatic Generation Control (AGC) is thus
considered as one of the most important ancillary services in power systems. AGC is used to match
the total generation with the total demand, including power system losses [31]. Over the last decade,
different authors have proposed several control strategies and optimization techniques. A modified
AGC for an interconnected power system in a deregulated environment is described in [32]. A similar
contribution can be found in [33], where an energy storage system is added to a multi-area power
system, and the I controller gains are optimized by using the Opposition-based Harmony Search
algorithm. A teaching-learning process based on an optimization algorithm to tune both I and PID
controller parameters in single and multi-area power systems is described in [34]. In [35], a hybrid fuzzy
PI controller is proposed for AGC of multi-area systems, yielding significant improvements compared
to previous approaches. In [36], the gray wolf optimization method is proposed to tune the controller
gains of an interconnected power system. This solution presented a more suitable tuning capability
than other population-based optimization techniques. An optics inspired optimization algorithm is
proposed in [37] and compared to other optimization algorithms, reaching a better performance for
maximum overshoot and settling time values. However, in these contributions, only thermal, gas and
hydro-power plants are considered from the supply side [32–36]. Therefore, multi-area power system
modeling by including wind power plants are required to simulate frequency excursions under power
imbalance conditions. Consequently, and by considering previous contributions, this paper analyzes
different power imbalance situations and the corresponding frequency deviations in a multi-area
interconnected power system with high wind power penetration. The main contributions of the paper
are summarized as follows:

• Different multi-area power systems are analyzed with significant wind power integration, in line
with current shares of renewables accounting for between 25% and 40%. Most previous studies
on multi-area power systems only consider conventional generating units, such as thermal, gas
and hydro-power [38–41].

• Wind power plants include a fast power reserve emulation control strategy in order to provide
frequency response under power imbalances. Indeed, there is a lack of contributions describing
frequency control response in wind power plants without energy storage solutions under
multi-area power systems [42–45].

• The total power exchanged between areas is in line with the recent EU-wide targets, assuming a
power interconnection share of 10% [46].

• The impact of wind power plants located in different areas on the frequency evolution is included
in our model and dicussed in detail.
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The rest of the paper is organized as follows: Section 2 presents the frequency control strategy for
VSWTs. The implemented multi-area interconnected power system is described in Section 3. The results
are provided and widely discussed in Section 4. Finally, the conclusions are presented in Section 5.

2. Improving Frequency Control Strategy of Wind Turbines

According to the specific literature, different methods for VSWTs have been proposed to provide
frequency control. Figure 1 summarizes the corresponding solutions to be implemented in wind
power plants: (i) de-loading, (ii) droop control and (iii) inertial response [47]. With regard to
de-loading control methods, they are based on operating VSWTs below their optimal generation
point. A certain amount of active power reserve is thus available to supply additional generation under
a contingency [48]. It can be implemented by regulating the pitch angle from βmin to a maximum
value or by increasing the rotational speed above the Maximum Power Point Tracking (MPPT) speed
(over-speeding) [49]. An extension of de-loading strategy applied to Photovoltaic system (PV) taking
into account a percentage of the PV power production for back-up reserve can be found in [50].
Secondly, droop control solutions have a significant influence on the frequency minimum value (nadir)
and the frequency recovery [51]. The controller is based on considering the torque/power-set point
as a function of the frequency excursion (∆ f ) and the rate of change of frequency (ROCOF) [52–56].
Finally, ‘hidden inertia’ controllers introduce a supplementary loop into the active power control. This
additional loop control is only added under frequency deviations. Both blades and rotor inertia are
then used to provide primary frequency response. Different approaches can be found in the specific
literature. One solution is based on emulating similar inertia response to conventional generation
units, shifting the torque/power reference proportionally to the ROCOF [51,57–60]. Another study
uses the fast power reserve emulation. Constant overproduction power is released from the kinetic
energy stored in the rotating mass of the wind turbine, with the rotational speed being recovered later
through an underproduction period [17,20,21,25,47,61].

Frequency control strategies

De-loading

{
Over speed

Pitch angle

Droop control

Inertia response

{
Hidden inertia emulation

Fast power reserves





Figure 1. Wind power plant frequency control: general overview [28,47].

In line with previous contributions, the frequency control strategy for VSWTs implemented
in this work is based on the fast power reserve emulation technique developed by the authors
in [25]. This approach improves an initial proposal described in [61], by minimizing frequency
oscillations and smoothing the wind power plant frequency response. Three operation modes
are considered: normal operation mode, overproduction mode and recovery mode, see Figure 2.
Different active power (Pcmd) values are determined aiming to restore the grid frequency under power
imbalance conditions. Figure 2b depicts the VSWTs active power variations (∆PWF) submitted to an
under-frequency excursion, being ∆PWF = Pcmd − PMPPT(ΩMPPT).
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(a) (b)

Figure 2. Wind frequency control strategy and VSWTs’ active power variation (∆PWF) [25];
(a) frequency control strategy used for VSWTs; (b) ∆PWF with frequency control strategy.

1. Normal operation mode. The VSWTs operate at a certain active power value (Pcmd), according to
the available mechanical power for a specific wind speed, Pmt(ΩWT). It matches the maximum
available active power for this current wind speed PMPPT(VW); see Figure 2a,

Pcmd = Pmt(ΩWT) = PMPPT(VW). (1)

Under power imbalance conditions, and assuming an under-frequency deviation, the
frequency controller strategy changes to the overproduction mode and, subsequently,
∆ f < −∆ flim → Overproduction.

2. Overproduction mode. The active power supplied by the VSWTs involves (i) mechanical power Pmt

available from the Pmt(ΩWT) curve and (ii) additional active power ∆POP provided by the kinetic
energy stored in the rotational masses,

Pcmd = Pmt(ΩWT) + ∆POP(∆ f ). (2)

∆POP is estimated proportionally to the evolution of frequency excursion in order to emulate
primary frequency control of conventional generation units [26,62]. Most previous approaches
assume ∆POP as a constant value independent of the frequency excursion [22,23,61]. Moreover,
the mechanical power Pmt is also considered as constant by most authors, even when rotational
speed decreased [20–24,61]. This overproduction strategy remains active until one of the following
conditions is met: the frequency excursion disappears, the rotational speed reaches a minimum
allowed value, or the commanded power is lower than the maximum available active power,

∆ f > −∆ flim
ΩWT < ΩWT,min
Pcmd < PMPPT(ΩMPPT)




→ Recovery. (3)

3. Recovery mode. With the aim of minimizing frequency oscillations, wind power plants have to
move from overproduction mode to recovery mode as smoothly as possible, avoiding abrupt
power changes and, subsequently, undesirable secondary frequency shifts [20,22,24,61]. With
this aim, the authors’ solution described in [25] follows the mechanical power curve Pmt(ΩWT)

according to the wind speed instead of the maximum power curve PMPPT(ΩWT) [22]. The power
provided by the VSWTs in this mode is based on two periods according to [25]: (i) a parabolic
trajectory and (ii) following the PMPPT curve proportional to the difference between Pmt(ΩWT)

and PMPPT(ΩWT). The normal operation mode then can be recovered when either ΩMPPT or
PMPPT(ΩMPPT) are respectively reached by the wind turbine.
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This strategy was evaluated in [25] and compared to [61] for single-are power system modeling,
providing an improved frequency response under power imbalance conditions. This approach is
considered in the present paper and extended to a multi-area power system with significant wind
power integration into different areas.

3. Power System Modeling

3.1. General Overview

Traditional power system modeling for frequency deviation analysis under imbalance conditions
is usually based on the following expression [63],

∆ f =
1

2 Heq s + Deq
· (∆Pg − ∆PL), (4)

where ∆ f is the frequency variation from nominal system frequency, Heq is the equivalent inertia
constant of the system, Deq is the equivalent damping factor of the loads, and ∆Pg − ∆PL is the power
imbalance. Heq is estimated from Equation (5), Hm is the inertia constant of m-power plant, SB,m is the
rated power of the m-generating unit, CG is the total number of conventional synchronous generators
and SB is the base power system:

Heq =

CG

∑
m=1

Hm · SB,m

SB
. (5)

Transmission level voltage is usually considered for multi-area interconnection purposes through
tie-lines. Frequency and tie-line power exchange can vary according to variations in power load
demand [64–68]. The total tie-line power exchange between two areas is determined by

∆Ptiei,j =
2 · π · Ti,j

s
· (∆ fi − ∆ f j), (6)

where Ti,j is the synchronizing moment coefficient of the tie-line between i and j areas.
When a frequency deviation is detected, the balance between an interconnected power system is

determined by generating the Area Control Error signal (ACE), expressed as a linear combination of
the tie-line power exchange and the frequency deviation [69]

ACEi = Bi · ∆ fi +
N

∑
j=1
j 6=i

∆Ptiei,j , (7)

where i, j refers to i and j areas, respectively, B is the bias-factor, ∆Ptie is the variation in the exchanged
tie-line power and N is the total number of interconnected areas. Figure 3 schematically shows these
power exchanges for a three-area power system example. Recent contributions focused on a new
control logic of the Balancing Authority Area Control Error Limit (BAAL) Standard adopted in the
North American power grid can be found in [70].
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Area 1 Area 2

Area 3

∆Ptie1,3 = 0

∆Ptie1,2 = 0

∆Ptie2,3 = 0

(a)

Area 1
(Imbalance) Area 2

Area 3

∆Ptie1,3 6= 0

B1 ·∆f1

∆Ptie1,2 6= 0

B2 ·∆f2

∆Ptie2,3 6= 0

B3 ·∆f3

(b)

Figure 3. Multi-area power system. (a) balanced situation; (b) imbalanced situation in Area 1.

3.2. Supply-Side Modeling

From the supply-side, the power systems considered for simulation purposes involve conventional
generating units (such as non-reheat thermal and hydro-power) and renewable energy sources (wind
and PV power plants). One equivalent generator is used for each type of production to model the
supply-side. This assumption is in line with previous contributions focused on frequency strategy
control analysis.

The conventional generating unit models considered for simulations can be seen in Figure 4.
Taking into account the specific literature, they are modeled according to the simplified governor-based
models widely used and proposed in [62]. Parameters are provided in Tables 1 and 2, respectively. The
different transfer functions of governor and turbine are indicated in Figure 4.

(a) (b)

Figure 4. Conventional generation modeling. (a) thermal plant model; (b) hydro-power plant model.

Table 1. Thermal power plant parameters [62].

Parameter Name Value (puthermal)

TG Speed relay pilot valve 0.20
FHP Fraction of power generated by high pressure section 0.30
TRH Time constant of reheater 7.00
TCH Time constant of main inlet volumes and steam chest 0.30
RT Speed droop 0.05
I(s) Integral controller 1.00

Hthermal Inertia constant 5.00 s
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Table 2. Hydro-power plant parameters [62].

Parameter Name Value (puhydro)

TG Speed relay pilot valve 0.20
TR Reset time 5.00
RT Temporary droop 0.38
RP Permanent droop 0.05
TW Water starting time 1.00
RH Speed droop 0.05
I(s) Integral controller 1.00

Hhydro Inertia constant 3.00 s

Wind power plants are able to provide frequency response according to the strategy discussed
in Section 2. An aggregated model for wind power plants is considered for the simulation purposes.
They are represented by one equivalent generator, which is generally accepted in the specific literature
for frequency response simulations (Figure 5). The equivalent wind turbine has n-times the size of
each individual wind turbine, with n being the number of wind turbines [71,72]. The equivalent wind
turbine model is based on [73,74], which have been widely used in recent publications [22,23,25,75–77].
Parameters are shown in Table 3. The remaining renewable generation is modeled through an
equivalent PV power plant connected to the grid. It represents a renewable non-dispatchable energy
source, following recent contributions [78]. Due to the short period of simulated time (under 5 min),
a constant active power provided by this non-dispatchable resource is considered for our analysis.

Figure 5. Aggregated wind power plant model with frequency controller.

Table 3. Wind turbine parameters [74].

Parameter Name Value

Vw Wind speed 10 m/s
Sn Rated power 3.6 MW

HWT Inertia constant 5.19 s
Ω0 Base rotational speed 1.335 rad/s
Tf Time delay to measure electric power 5 s

Tcon Time delay to generate the injected current Iinj 0.020 s
VWT Wind turbine voltage 1 puWT
Kpt Proportional constant of speed controller 3 puWT
Kit Integral constant of speed controller 0.6 puWT
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3.3. Area Descriptions

Figure 6 summarizes the percentages for the different generating units of each area. Previous
studies address the problem of multi-area power systems considering only conventional power plants
(mainly thermal, hydro-power and gas) and assuming two or three areas [32–36,38–41]. In this work,
two different interconnected multi-source power systems are analyzed: (i) a two-area power system
(considering only Areas 1 and 2) and (ii) a three-area power system. Both systems allow us to study in
detail the relationships between the number of areas and the exchanged power between them when
a significant number of renewable energies are considered from the supply-side. A base power of
2000 MW per area is assumed that corresponds to the capacity of each area. In Europe, it is expected
that wind and PV will cover up to 30% and 18% of the demand respectively by 2030 [79,80]. Therefore,
the integration of these sources in the areas considered in this paper are in line with current European
road-maps, having a RES/non-dispatchable integration lying between 25% to 50%. In addition, ∆Ptiei,j

is limited to a maximum value of 10%. This limit agrees with recent EU-wide targets, which expect to
have an interconnection power of 10% in the year 2020 [46]. Most contributions found in the literature
review either do not limit the maximum tie-line power, or it is not indicated [81–84].

Thermal generation

60%

Wind generation

35%

PV generation

5%

(a)

Thermal generation

50%

Hydro-power generation

25%

Wind generation

25%

(b)

Thermal generation

35%

Hydro-power generation

15%

Wind generation

40%

PV generation

10%

(c)

Figure 6. Generation contribution per area. (a) Area 1; (b) Area 2; (c) Area 3.

Ti,j and B values are provided in Table 4 for the two-interconnected areas [30,35] and in Table 5
for three-interconnected areas [30]. The equivalent inertia Heq of each area is calculated according to
Equation (5), and taking into account the inertia constants of thermal and hydro-power plants indicated
in Section 3.2. With regard to the damping factor, the impact of an inaccurate value is relatively small if
the power system is stable [85]. Moreover, it is expected to decrease accordingly to the use of variable
frequency drives [86]. Table 6 summarizes different values proposed for the damping factor in the
literature over recent decades. A value of Deq = 1 is considered for simulation purposes, which is in
line with recent contributions and is lower than values corresponding to previous works. A general
overview of a two-area power system can be seen in Figure 7.

Table 4. Interconnected two-area power system parameters [30,35].

Parameter Name Value

B1 Bias factor of Area 1 0.425
B2 Bias factor of Area 2 0.425

T1,2 Synchronizing moment coefficient between Areas 1 and 2 0.545
Heq,1 Equivalent inertia constant of Area 1 2.997 s
Heq,2 Equivalent inertia constant of Area 2 3.324 s
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Table 5. Interconnected three-area power system parameters [30].

Parameter Name Value

B1 Bias factor of Area 1 0.3483
B2 Bias factor of Area 2 0.3827
B3 Bias factor of Area 3 0.3629

T1,2 Synchronizing moment coefficient between Areas 1 and 2 0.2
T2,3 Synchronizing moment coefficient between Areas 2 and 3 0.12
T3,1 Synchronizing moment coefficient between Areas 3 and 1 0.25

Heq,1 Equivalent inertia constant of Area 1 2.997 s
Heq,2 Equivalent inertia constant of Area 2 3.324 s
Heq,3 Equivalent inertia constant of Area 3 2.246 s

Table 6. Damping factor values.

Ref. Value (pu/Hz) Analysis Year

[62] 1–2 Power system stability 1994
[87] 0.83 Two areas with non-reheat thermal units 2011
[88] 1.66 Two areas with thermal units 2011
[89] 1–1.8 Three areas with non-reheat thermal units 2012
[90] 2 One area with nuclear, thermal, wind and PV 2012
[91] 0.5–0.9 Three areas with nonlinear thermal units 2013
[92] 0.83 Two areas non-reheat thermal units 2013
[93] 0.83 Two areas with thermal units 2013
[67] 0.83 Two areas with reheat units 2015
[94] 0.8 IEEE 9 bus system with hydro-power, gas and wind turbines 2016
[95] 1–1.8 One and three areas with non-reheat thermal units 2017
[96] 1–1.8 Three areas with non-reheat thermal units 2018
[97] 1 Two areas with non-reheat thermal units 2018
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Figure 7. Two-area power system modeling for frequency control.

4. Results

As was discussed in Section 3, and with the aim of evaluating frequency oscillations and power
system performances under imbalance conditions with different number of areas, two different
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multi-area power systems were simulated: (i) a two-area power system and (ii) a three-area power
system. Both power systems were implemented in Matlab/Simulink c© (2016, MathWorks, Natick, MA,
USA). Source codes are available under request.

4.1. Two-Area Interconnected Power System

Firstly, and in order to evaluate the sensitivity of frequency excursions in a multi-area power
system, two different imbalance conditions were simulated. In both cases, one area is submitted to
imbalances while the other area maintains a balanced condition. A 5% increase in demand of the
base power is assumed in all simulations as imbalance power (∆PL,1 = ∆PL,2 = 100 MW). Under
these scenarios, with an active-power deficit, different frequency control strategies are addressed
by the simulations depending on the generation units involved in the frequency response: case (1)
whole conventional generation units of the multi-area power system; case (2) whole conventional
generation units and only wind power plants within the area submitted to imbalances; and case (3)
whole conventional generation units and wind power plants.

Figure 8a,b shows the frequency oscillations in both areas when a power imbalance is applied
to Area 1 (∆PL,1). As can be seen, the maximum nadir is achieved in both areas when case (1) is
conducted. The nadir values are improved when wind power plants are considered for frequency
control: cases (2) and (3). Indeed, case (2) offers a smoother and less oscillatory response than
case (3), yielding a stabilization time interval very similar to case (1). Moreover, case (3) causes three
different well-identified frequency shifts: the first one is due to the power imbalance; the second one
occurs due to the lack of coordination between power plants as well as the different time response
of the supply-side operation units (see Figure 9); and the last one depends on the transition from
overproduction mode to recovery mode of the wind power plant located in Area 2 (see Figure 2b and
the active power decrease in WPP2 Figure 9).
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Figure 8. Area 1 under power imbalance (∆PL,1); (a) frequency oscillations in Area 1; (b) frequency
oscillations in Area 2.
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Figure 9. Area 1 under power imbalance (∆PL,1): generation deviations in Area 2.

A similar study can be carried out by considering power imbalance conditions in Area 2 (∆PL,2).
Figure 10 compares the results in terms of nadir for both scenarios (∆PL,1 and ∆PL,2) and considering
the different frequency control strategies. As can be seen, minor differences are found in both analyses.
In addition, Figure 11 compares the tie-line power evolution under both imbalance conditions, ∆PL,1

and ∆PL,2 accordingly, and peak-to-peak tie-line power exchange. Subsequently, and according to the
generation mix considered in each area, frequency oscillations and active tie-line power results present
similar values regardless of the area submitted to imbalances. Based on these results, and taking
into account the different frequency control strategies implemented and simulated, lower frequency
oscillations are obtained when only wind power plants within the area submitted to imbalance
conditions are considered. Therefore, the contribution of wind power plants from other areas under
frequency excursions would provide additional oscillation responses.

Case 1 Case 2 Case 3
0

200

400

na
di

r
(m

H
z)

∆ f1
∆ f2

(a)
Case 1 Case 2 Case 3

0

200

400

na
di

r
(m

H
z)

∆ f1
∆ f2

(b)

Figure 10. Nadir: Comparison of ∆PL,1 and ∆PL,2 scenarios. (a) Area 1 submitted to imbalance (∆PL,1);
(b) Area 2 submitted to imbalance (∆PL,2).
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Figure 11. Active tie-line power evolution: comparison of ∆PL,1 and ∆PL,2 scenarios. (a) Area 1
submitted to power imbalance (∆PL,1); (b) Area 2 submitted to power imbalance (∆PL,2); (c) Area 1
submitted to imbalance (∆PL,1); (d) Area 2 submitted to imbalance (∆PL,2).

4.2. Three-Area Interconnected Power System

Considering the preliminary conclusion given in Section 4.1, where similar results are obtained
independently of the area submitted to imbalances, the authors reduce the number of simulations in
this three-area interconnected power system, assuming only that one area is submitted to imbalance
conditions. Different frequency control strategies are then simulated by including an active-power
deficit applied to Area 1, ∆PL,1. It is also defined as a step of 5% with respect to the base power
(∆PL,1 = 100 MW).

Figure 12 depicts the frequency deviation of each area and the nadir comparison according to
the different frequency control strategies. As can be seen, the results are in line with those obtained
previously, when a two-area power system was considered. Therefore, the maximum nadir values are
obtained in all areas when wind power plants are not included for frequency control. When wind power
plants provide frequency response, the nadir values of all areas are considerably improved. Regarding
case (2) and case (3), nadir values give similar results. However, larger frequency oscillations are
identified when case (3) is conducted, especially in Area 2 and area 3. This behavior is a consequence
of the wind power variations due to the different operation modes of each frequency controller,
increasing the tie-line power exchanged between these two areas. Stabilization time presents similar
values (tstab ' 100 s) in all cases and areas.
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Figure 12. Frequency oscillations: Area 1 under power imbalance (∆PL,1); (a) frequency oscillations
in Area 1 (∆ f1); (b) frequency oscillations in Area 2 (∆ f2); (c) frequency oscillations in Area 3 (∆ f3);
(d) nadir values: case comparison.

Figure 13 shows and compares the tie-line power variation and its peak-to-peak value. As can
be seen, tie-line power exchange does not overcome the maximum restriction of 10% under any
circumstances. Power exchanged between areas 2–3 is practically negligible regardless of the
frequency control strategy, as the frequency deviations in these areas are a consequence of imbalances
subsequently induced by Area 1 (see Section 3.1). As was previously mentioned, with the use of the
wind power plants in all the areas ∆Ptie2,3 increases due to the wind power plants variations. Actually,
∆Ptie2,3 case (3) doubles the value of case (2), subsequently producing more oscillations in frequency
deviations in those areas, as depicted in Figure 12. Therefore, case (2) is suggested by the authors
under imbalance conditions to reduce frequency oscillations and power flow between areas.
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Figure 13. Area 1 under power imbalance (∆PL,1): tie-line power comparison; (a) tie-line power
variation between Areas 1 and 2; (b) tie-line power variation between Areas 2 and 3; (c) tie-line power
variation between Areas 3 and 1; (d) comparison among peak-to-peak tie-line power variation exchange.

5. Conclusions

Multi-areas interconnected power systems are analyzed under power imbalance conditions and
with high wind energy integration. From the supply-side, conventional and renewable resources are
considered, including thermal, hydro-power, wind and PV power plants. Wind power integration
accounts for between 25% and 40%, corresponding to current percentages in some European countries.
Tie-line power is limited to a maximum value of 10%, in line with recent EU directives. Different
cases are compared and analyzed, depending on frequency control strategies applied by wind power
plants. According to the results, frequency responses are improved by including wind power plants in
frequency control, in comparison with simulations where this task is only performed by conventional
generation units. Of the different cases, the nadir reductions are maximized when only wind power
plants within the area submitted to imbalances are considered. In this case, the nadir is reduced
between 40% and 50% in the area submitted to imbalanced areas in comparison to conventional
generational unit scenarios. Moreover, these nadir values are also reduced in the other areas between
20% and 30%. When wind power responses of all areas are considered, higher frequency oscillations
and lower nadir reductions can be reached in comparison with only conventional generation unit
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scenarios. Stabilization time remains almost constant under different situations, and very similar to
simulations where only conventional units respond under frequency excursions. Subsequently, the
authors suggest including only wind power plant frequency response within the area submitted to
imbalances, avoiding additional frequency oscillations coming from wind power plants located in the
other areas.
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Abbreviations

The following abbreviations are used in this manuscript:

ACE Area Control Error
AGC Automatic Generation Control
CG Total number of conventional synchronous generators
ROCOF Rate of Change of Frequency
VSWTs Variable Speed Wind Turbines
WPP Wind Power Plant
nadir Minimum value of the frequency excursion
n Number of VSWT in the wind power plant
tstab Stabilization time
B Bias factor
Deq Equivalent damping factor of the power system
Heq Equivalent inertia constant of the power system
Hm Inertia constant of generating unit m
N Number of interconnected areas
Pcmd Commanded power of the VSWT
PMPPT Maximum power point tracking of the VSWT
Pmt Mechanical power of the VSWT
SB Rated power of the power system
SB,m Rated power of generating unit m
Sn Rated power of a VSWT
Ti,j synchronizing moment coefficient of a tie-line between areas i and j
VW Wind speed
β Pitch angle
∆ f Frequency excursion
∆ flim Value at which frequency controller of the VSWT activates
∆Pg Variation of active power of the power system
∆PL Variation of power demand
∆POP Additional active power in overproduction operation mode
∆Ptiei,j Tie-line power changed between areas i and j
∆PP−P

tiei,j
Peak-to-peak tie-line power changed between areas i and j

∆PWF Variation of active power of the wind power plant
ΩWT Rotational speed of the VSWT
ΩWT,min Minimum rotational speed of the VSWT
ΩMPPT Rotational speed at maximum power point tracking
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