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Abstract: In the inductive power transfer (IPT) system, it is recommended to drive the resonant
inverter in zero-voltage switching (ZVS) or zero-current switching (ZCS) operation to reduce
switching losses, especially in dynamic applications with variable couplings. This paper proposes
an improved autonomous current-fed push-pull parallel-resonant inverter, which not only realizes
the ZVS operation by tracking the zero phase angle (ZPA) frequency, but also improves the output
power and overall efficiency in a wide range by reducing gate losses and switching losses. The
ZPA frequencies characteristic of the parallel-parallel resonant circuit in both bifurcation and
bifurcation-free regions is derived and verified by theory and experiments, and the comparative
experimental results demonstrate that the improved inverter can significantly increase the output
power from 7.68 W to 8.74 W and has an overall efficiency ranging from 63.5% to 72.5% compared with
the traditional inverter at a 2 cm coil distance. Furthermore, with a 2-fold input voltage (24 V), the
improved inverter can achieve an approximate 4-fold output power of 38.9 W and overall efficiency
of 83.6% at a 2 cm coil distance.

Keywords: inductive power transfer (IPT); frequency bifurcation; current-fed push-pull; resonant
inverter; wireless power transfer

1. Introduction

Inductive power transfer (IPT) technology [1], characterized by convenience and safety, has
many potential applications in portable devices [2], wireless sensor networks (WSNs) [3], implant
medical devices (IMDs) [4–7], and electrical vehicles [8–10]. In general, it is recommended to
drive the primary-side inverter of IPT systems at zero phase angle (ZPA) operation in order to
minimize the volt-amp (VA) rating of the source supply. Moreover, the resonant inverter can achieve
zero-voltage switching (ZVS) or zero-current switching (ZCS) operation with less switching losses
and electromagnetic interference (EMI) at ZPA or a similar condition [11–13]. However, it is often a
great challenge to maintain ZVS or ZCS operation with variable couplings, caused by nonconstant coil
distances, misalignment, shape deformation, or metal object proximity. Especially when it occurs to
the frequency bifurcation region, the power transfer capability and efficiency can deteriorate rapidly at
the original resonant frequency [2,13].

Various solutions have been proposed in the previous literature. One is dynamic tuning of
reactive elements in either the primary or the secondary compensation network through variable
inductors [14–16], switchable capacitor bank [9], or transistor-controlled variable capacitor [17],
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respectively. This method aims to keep the ZVS frequency fixed under coupling variation, although it
needs more switching devices, passive components, and even a complicated control unit. Moreover,
another common method is directly adjusting the inverter frequency to the new ZVS frequency as
the magnetic coupling changes. For instance, in [18], the authors present a closed-loop automatic
frequency tuning system by an optimum frequency tracking method in an overcoupled regime with
the aid of an extra control unit. Similarly, in [19], an automatic adaptive frequency tracking system was
implemented on the basis of feedback power efficiency via 2.45 GHz data transmission. The drawbacks
of these systems are the cost and time delay due to the existence of communication and control units.
To achieve a cost-effective small-for-size IPT system, an autonomous current-fed push-pull inverter
used in a parallel-resonant circuit structure was proposed in [20,21], and this system has the ability to
naturally track the ZPA frequency of a parallel-parallel resonant network without any extra control
or communication units. What is more, the two active power switches in the inverter are common
ground, and consequently, the gate drive structure is rather simple with no need for a high-side gate
drive. With these advantages, this inverter structure is a potential choice for dynamic applications, but
the gate drive problem is often neglected in practice, especially in low-power applications. The authors
in [22] proposed and analyzed this issue, then they modified the inverter by adding speedup capacitors
in the gate drive circuit, which reduced the gate losses and extended the switching frequency range
into the MHz region. However, the value of speedup capacitors should be calculated and selected
carefully in advance based on the predefined drive resistances and operating frequency, which means
it is not suitable in dynamic applications.

This paper presents an improved current-fed push-pull parallel-resonant inverter with a powerful
gate drive circuit and flexible input source configuration for dynamic applications. Compared with
the traditional inverter, it enhances the gate drive capability and thus reduces the gate losses as well
as the switching losses in a wide range. Furthermore, the maximum power transfer limitation is
removed, and the system’s overall efficiency increases due to the input voltage adjustment. First,
the impedance characteristic of a parallel-parallel resonant circuit was analyzed theoretically and the
exact and approximate solutions of ZPA frequencies in both bifurcation and bifurcation-free regions
were derived. Then, the gate drive losses and switching losses were analyzed and simulated, and the
corresponding improvements are presented. Last, an improved inverter prototype is proposed, and
the results are compared and analyzed with those of a traditional inverter.

2. Operating Principle of Autonomous Current-Fed Push-Pull Circuit

A traditional autonomous current-fed push-pull IPT system, including transmitter and receiver, is
presented in Figure 1 [20,21]. Compared with the resonant inductors (L1 and L2), two relatively large
inductive chokes (Lchoke1 and Lchoke2) are connected serially with the DC input voltage source and form
a quasi-current source. Under a steady-state condition, the two inductive chokes divide the DC current
into two halves and feed the current into the primary LC tank (L1 and C1) alternately. Therefore, the
current injected into the primary LC tank is an approximate square waveform with half the magnitude
of the DC current. Then, AC power is transferred from the primary resonant LC tank to the secondary
side (L2 and C2) by magnetically coupling, and then provided to the terminal DC load Rload after the
rectifier bridge (Ds1–Ds4) and LC filter L3 and C3. According to [23], the rectifier, LC filter, and DC
load can be replaced by an AC equivalent resistance Req = π2Rload/8, and the equivalent circuit of
current-fed push-pull parallel-resonant circuit can be simplified, as shown in Figure 2.
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Figure 2. Equivalent circuit of current-fed push-pull parallel-resonant circuit. 

One assumption of the equivalent circuit in Figure 2 is that the two MOSFETs (metal oxide 

silicon field effect transistors) are always driven at the resonant frequency of the magnetically 

coupled primary LC tank, and this is achieved by the gate drive circuit of the two MOSFETs going 

into the blue dashed line in Figure 1. The gates of the two MOSFETs (
1M  and 

2M ) are connected 

with two large pull-down resistors (
3R  and 

4R ) to ground and two current limiting resistors (
1R  

and 
2R ) to the DC voltage source. In addition, two cross-connected diodes (

1D  and 
2D ) take the 

resonant voltage signal at the drain of one MOSFET to the gate of the other MOSFET like a bistable 

multivibrator. When the inverter is powered on, one of the two power MOSFETs will turn on first 

due to their parameter differences, noise, and disturbances, which makes the current inject into the 

LC tank and the TX tank begin to oscillate. At steady state, when one power MOSFET, such as 
1M , 

turns on, the drain voltage 
Av  is almost zero to ground, which clamps the gate voltage of 

2M  at 

just a forward diode drop above zero by 
2D  and thus keeps 

2M  in the off state. Meanwhile, the 

voltage at terminal-A of 
1D  is fixed at the gate voltage of 

1M , which is approximately the DC voltage 

(
3 1R R ), and the voltage at terminal-K of 

1D  is equal to the resonant sinusoidal voltage at the drain 

of
2M . So, the diode 

1D  is reverse biased until the resonant voltage falls below the DC voltage. A 

similar procedure occurs for the other side of the LC tank, but in the opposite direction, in the second 

half-cycle. The waveforms of corresponding voltages and currents in one switching cycle are shown 

in Figure 3. 

Figure 1. The schematic of a traditional autonomous current-fed push-pull inductive power transfer
(IPT) system.
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Figure 2. Equivalent circuit of current-fed push-pull parallel-resonant circuit.

One assumption of the equivalent circuit in Figure 2 is that the two MOSFETs (metal oxide silicon
field effect transistors) are always driven at the resonant frequency of the magnetically coupled primary
LC tank, and this is achieved by the gate drive circuit of the two MOSFETs going into the blue dashed
line in Figure 1. The gates of the two MOSFETs (M1 and M2) are connected with two large pull-down
resistors (R3 and R4) to ground and two current limiting resistors (R1 and R2) to the DC voltage source.
In addition, two cross-connected diodes (D1 and D2) take the resonant voltage signal at the drain
of one MOSFET to the gate of the other MOSFET like a bistable multivibrator. When the inverter is
powered on, one of the two power MOSFETs will turn on first due to their parameter differences,
noise, and disturbances, which makes the current inject into the LC tank and the TX tank begin to
oscillate. At steady state, when one power MOSFET, such as M1, turns on, the drain voltage vA is
almost zero to ground, which clamps the gate voltage of M2 at just a forward diode drop above zero
by D2 and thus keeps M2 in the off state. Meanwhile, the voltage at terminal-A of D1 is fixed at the
gate voltage of M1, which is approximately the DC voltage (R3 � R1), and the voltage at terminal-K
of D1 is equal to the resonant sinusoidal voltage at the drain of M2. So, the diode D1 is reverse biased
until the resonant voltage falls below the DC voltage. A similar procedure occurs for the other side of
the LC tank, but in the opposite direction, in the second half-cycle. The waveforms of corresponding
voltages and currents in one switching cycle are shown in Figure 3.
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Figure 3. Operation principle of an ideal autonomous inverter at steady state.

According to the volt-second balance of an inductor at steady state, the average voltages across
the inductive chokes are zero and the following relationship can be obtained as [23]:

VA = VB = πVDC, (1)

where VA and VB are the magnitude of resonant sinusoidal voltage.

3. ZPA Frequency Analysis of Parallel-Resonant Circuit

In order to keep the inverter at ZVS operation with varying coupling coefficients, it is necessary
to analyze the impedance characteristic of the parallel-parallel resonant circuit.

Due to the bandpass filter characteristic of a parallel-resonant circuit, all the other harmonics
are filtered out except for the fundamental component, so the rectangular wave current source iDC in
Figure 2 can be replaced by its fundamental component-sinusoidal current source Is after ignoring the
higher harmonics, and the relationship is

IS =
2
π

iDC. (2)

With the sinusoidal current source and the mutual inductance coupling transformer model, the
equivalent circuit can be simplified, as in Figure 4a. It can be seen that the load impedance of the
secondary side Zs is expressed as

Zs = jωL2 +
1

jωC2 + 1/Req
. (3)

Additionally, the reflected impedance from the secondary to primary side Zr, which is in series
with primary inductor L1, can be obtained as

Zr = Rr + jXr =
(ωM)2

Zs
, (4)
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where Rr and Xr represent the reflected resistance and reactance, respectively. M is the mutual
inductance. Thus, the circuit can be further simplified, as in Figure 4b.
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The input impedance Zp of the resonant LC tank in Figure 4b can be written as

Zp =
1

jωC1 +
1

Zr+jωL1

. (5)

Substituting Equations (3) and (4) into (5) and the mutual inductance M = k
√

L1L2, where k is
the coupling coefficient, the input impedance Zp can be expressed as

Zp =
1

jωC1 +
1

jωL1+
k2ω2 L1 L2

jωL2+
1

jωC2+
1

Req

. (6)

Here, we get the ZPA frequency points of the input impedance Zp by equating its imaginary
component to zero,

ImZp = 0, (7)

and with Mathmatica software, it can be expanded as

−L1ω
L2

2ω2(k2−1)[1+(k2−1)L1C1ω2]+R2
eq [1+(k2−1)L2C2ω2][(k2−1)L1C1L2C2ω4+(L1C1+L2C2)ω

2−1]

[L2ω+(k2−1)C1L1L2ω3]
2
+R2

eq [(k2−1)L1C1L2C2ω4+(L1C1+L2C2)ω2−1]2
= 0. (8)

On the assumption that both sides of the network have the same free resonant angular frequency
ω0 = 1/

√
L1C1 = 1/

√
L2C2, the complex form of Equation (8) can be simplified as

− L1ω
A(B + k2−1

Q2 u2)

u2

Q2 A2 + B2
= 0, (9)

where u is defined as the normalized frequency u = ω/ω0 and Q is the quality factor Q = Req/ω0L2.
Furthermore, the symbols A and B are denoted as

A = u2(k2 − 1) + 1
B = u4(k2 − 1) + 2u2 − 1.

(10)
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It is obvious that the solutions of Equation (9) depend on two equations (ignoring the solution
ω = 0): the trough equation A = 0 and ridge equation B + k2−1

Q2 u2 = 0 [24].

1. The Trough Equation

The discriminant ∆ of the trough equation is nonnegative, so there are two roots of the equation
with opposite signs. After excluding the impractical negative root, we take the positive root as the
trough point, which is the middle bifurcation frequency

ωm =
1√

1− k2
ω0. (11)

2. The Ridge Equation

The ridge equation is a biquadratic equation, which can be treated as a quadratic equation with
x = u2, and it can be simplified as

(k2 − 1)x2 + (
k2 − 1

Q2 + 2)x− 1 = 0. (12)

In the bifurcation region, (12) has two positive roots. According to the Descartes’ sign rule and
the nonnegative discriminant principle, we get the following preconditions:

Q >

√
1− k2

2
, (13)

k > kb =

√
1− 2Q2

(
1 + Q2 −Q

√
2 + Q2

)
, (14)

where kb is denoted as the critical bifurcation coupling coefficient, representing the key point between
the bifurcation region and the bifurcation-free region. In the meantime, the bifurcation frequency at

the critical bifurcation coupling point is ωbur = ω0/
√

Q(−Q +
√

2 + Q2). Because 0 ≤ k ≤ 1 holds,

Q > 1/
√

2 can always satisfy Equation (13). Under the preconditions of (13) and (14), the roots of
Equation (12) are

ω± =

√
1− k2 − 2Q2 ∓

√
1 + k4 − 4Q2 + k2(−2 + 4Q2 + 4Q4)

2(k2 − 1)Q2 ω0, (15)

and when Q� 1 holds, (15) can also be simplified as

ω±app ∼=
ω0√
1∓ k

. (16)

The two ZPA frequencies derived from the ridge equation (the small bifurcation frequency ω−
and the great bifurcation frequency ω+) sit on both sides of the free resonant angular frequency ω0 or
the middle bifurcation frequency ωm, and their relationship is ω− ≤ ω0 ≤ ωm ≤ ω+. For intuitive
understanding, three numerical simulations were performed with different coupling coefficients
(k = 0.1, 0.2, and 0.3), and the parameters are: L1 = L2 = 1.6 uH, C1 = C2 = 36.4 nF, Req = 50 Ω. The
results of the phase angle and real part of Zp are plotted in Figure 5.
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According to Equation (14), the bifurcation coupling coefficient kb is about 0.1312 and the free
resonant frequency f 0 is 660 kHz for this system. As illustrated in Figure 5a, there exist three ZPA
frequencies in the bifurcation region (i.e., k = 0.3 or k = 0.2). The middle bifurcation frequency is near
the free resonant frequency f 0, while the other two ZPA frequencies are distributed at both sides of the
middle bifurcation frequency fm. Furthermore, the deviation between the middle bifurcation frequency
fm and the free resonant frequency f 0 become larger as the coupling coefficient increases, as does the
distance between the other two ZPA frequencies. In the bifurcation-free region (i.e., k = 0.1), there is
only one ZPA frequency fm near the free resonant frequency f 0.

Figure 5b illustrates the real part of input impedance Zp for different coupling conditions. It is
obvious that two impedance peaks appear at the two-side ZPA frequencies f+, f− and one impedance
trough at the middle bifurcation frequency fm in the bifurcation region (i.e., k = 0.3 or k = 0.2). According
to [6], the output power of the inverter is proportional to the input DC voltage, and the relationship is

PPAOUT =
π2V2

DC
2RP

, (17)

where RP is the real part of Zp. The two impedance peaks at both sides are close to each other and can
get the approximate output power at the two ZPA frequencies, while more power can be obtained at
the middle bifurcation frequency under the same coupling condition due to the low input impedance.
However, the ZVS operation to the middle bifurcation frequency is unstable without an external
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complex controller [25]. When in the bifurcation-free region (i.e., k = 0.1), there exists only one ZPA
frequency near the input impedance peak. The simulation results imply that the inverter should track
the small or great bifurcation frequency in the bifurcation region and the middle bifurcation frequency
in bifurcation-free region to maintain ZVS operation against coupling variation.

4. Analysis of Gate Drive Circuit and Proposed Inverter

4.1. Gate Circuit Analysis

According to the analysis in Section 2, the traditional autonomous current-fed push-pull inverter
in Figure 1 can track the ZPA frequency of a parallel-resonant circuit automatically by the feedback
zero-crossing resonant voltage signals from the LC tank. In practice, the selection of the current limiting
resistance R1 and R2 is a dilemma between gate drive losses and switching losses. To explain this, a
SPICE simulation using the circuit parameters and components listed in Tables 1 and 2 at 12 V DC
input was carried out in LTspice XVII under the coupling coefficient k = 0.18, and the waveforms of
the gate voltage and current are shown in Figure 6.

Table 1. Parameters and components of a traditional circuit.

L3 100 µH Lchoke1, Lchoke2 100 µH
C1, C2 36.4 nF D1, D2 MBRS3100
R1, R2 100 Ω R3, R4 10 kΩ

Ds1–Ds4 MBRS3100 C3 22 µF
M1, M2 IRFP250N Rload 50 Ω

Table 2. Parameters of the primary and secondary side coils L1 and L2.

Parameters Symbol TX Coil RX Coil

Inductance L 1.6 µH 1.6 µH
Number of turns N 2 2

Diameter of the coil dc 176 mm 176 mm
Diameter of the wire dw 3 mm 3 mm
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For one thing, when one of the MOSFETs turns on—say M1 is on and M2 is off—the clamp diode
D2 connected with the drain of M1 forms a current leakage path with resistance R2, and so does the
diode D1 with resistance R1 in the next half-cycle. The lower part of Figure 6 shows that the current
flowing through R1 is about 116 mA when M1 turns off and the power loss on the two current-limiting
resistances is about 1.3 W. In order to reduce this gate loss, a high value of R1 and R2 is preferred.
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For another thing, the current limiting resistance R1 or R2 with the input parasitic capacitor Ciss
of M1 or M2 constitutes a first-order RC circuit, which turns on the MOSFET by charging the input
capacitor. The time constant τ = R1 × Ciss determines the charging speed and seriously affects the
switching losses of the MOSFETs. As shown in the upper part of Figure 6, the gate voltage Vgs1 rises
slowly to approximately 8 V on account of the limited charging current. The turn-on switching delay
ton and turn-off switching delay to f f of the MOSFETs at a 603 kHz switching frequency are 279 ns and
297 ns, respectively, which may cause severe switching losses. In order to improve the signal quality
and reduce switching losses, lower resistances R1 and R2 are needed. Therefore, in the traditional
inverter structure, the contradiction between gate drive losses and switching losses cannot be solved
at the same time.

4.2. Improved Inverter

An improved autonomous current-fed push-pull inverter is proposed in Figure 7. Two BJT
(bipolar junction transistor) switches Q1 and Q2 with base resistances R1 and R2 supply the charging
current to the gates of MOSFETs M1 and M2 alternatively, and they replace the current limiting
resistances in the traditional design with zero voltage detection control by two cross-connected diodes
D1 and D3. Additionally, the other two cross-connected diodes D2 and D4 perform the same function
for the MOSFETs as in the traditional design. One advantage of the improvements is that with the
characteristic of high current transfer ratio hFE, low saturation voltage VCE(sat), and low saturation
resistance RCE(sat), the transistors Q1 and Q2 pull a high charging current to the gates of the MOSFETs,
which speeds up the turn-on procedure of the MOSFET and maintains the gate voltage close to the
drive source voltage. Meanwhile, it is possible to apply a high value of R1 and R2 to decrease the
leakage current due to the low base current IB of transistors. A relevant simulation was carried out
using the parameters and components listed in Tables 2 and 3 at VDC = 12 V and Vdrive = 12 V under
the same coupling condition. Corresponding waveforms are presented in Figure 8, and it is obvious
that the waveform of gate voltage Vgs1 is improved and the voltage is maintained at a 12 V drive
source voltage when M1 turns on. The turn-on switching delay ton and turn-off switching delay to f f
of MOSFETs at a 608 kHz switching frequency are 67 ns and 72 ns, respectively, which are obviously
shorter than those in Figure 6. In addition, the leakage current of R1 is down to 12 mA and the gate
loss is close to 1/10 of that in traditional circuit simulation.
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Table 3. Parameters and components of the improved circuit.

L3 100 µH Lchoke1, Lchoke2 100 µH
C1, C2 36.4 nF D2, D4 MBRS3100
R1, R4 1 kΩ R2, R3 10 kΩ

Ds1–Ds4 MBRS3100 C3 22 µF
D1, D3 SS310 Rload 50 Ω
M1, M2 IRFP250N Q1, Q2 ZXTN25040
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Another advantage of the proposed inverter is the separation between the DC voltage source VDC
and drive voltage source Vdrive. In the traditional inverter, the value of the DC voltage source is often
restricted to a certain range below the maximum gate voltage of the MOSFET, avoiding device damage.
However, this hinders the possibility of increasing the transmission power regarding Equation (17).
The separation of voltage sources removes this transmission power restriction by increasing the DC
voltage source and maintaining the gate voltage constant simultaneously, which makes the design
more flexible in practice. A simulation with the same parameters as those in Tables 2 and 3 was carried
out at VDC = 24 V and Vdrive = 12 V under the same coupling condition. In Figure 9, the magnitude of
VA is increased to about 76 V, while the gate voltage Vgs1 and the leakage current iR1 remain the same
as in Figure 8. The turn-on switching delay ton and turn-off switching delay to f f of MOSFETs at a 611
kHz switching frequency are 44 ns and 56 ns, respectively, which are shorter than those in Figure 8
due to the decrease of input capacitor Ciss caused by higher Vds (i.e., VA).
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5. Experimental Verification

5.1. Experimental Setup

To verify the simulation results and the performance of the proposed inverter, a prototype system
with two different inverters was implemented and is shown in Figure 10.
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In the experimental setup, the TX and RX coils were separated along their common axis with a
distance from 2 cm to 20 cm in steps of 2 cm, and their parameters were the same as those in Table 2.
For the sake of performance comparison, two inverters (traditional version and improved version)
were manufactured according to the parameters listed in Tables 1 and 3. An oscilloscope (Tektronix:
DPO3054) was used to record the voltage waveforms of the two MOSFETs and measure the load
voltage magnitude Vout simultaneously. A 12 V switching power was adopted as the drive source,
whose current was measured by an ammeter (Fluke: 15B+), and the DC source was implemented using
an adjustable voltage source with a current recording function. Three experiments were performed at
different conditions: Experiment 1 (Exp 1) with a traditional inverter at VDC = 12 V, Experiment 2 (Exp
2) with the improved inverter at VDC = Vdrive = 12 V, and Experiment 3 (Exp 3) with the improved
inverter at VDC = 24 V and Vdrive = 12 V. To avoid failure at start-up, the voltage of the DC source
should be increased slowly during the experiment after turning on the drive source [26].

5.2. ZPA Frequency Bifurcation and Tracking

Before comparing the measured frequency points with the calculated ZPA frequency curves, it
is necessary to calculate the relationship between coil distance and coupling coefficient. The mutual
inductance between TX and RX coils can be computed by the Neumann formula for multiple turn
coils [10,27] as

M =
µ0

4π
N1N2

∮
m

∮
n

d
→
l m · d

→
l n

R
, (18)

where R is the distance between the incremental lines d
→
l m and d

→
l n, µ0 is the permittivity of free space,

and N1, N2 are the turn numbers of the two coils, respectively. Equation (18) can also be expressed
as [28]

M =
µ0

4π
N1N2

2π∫
0

2π∫
0

r1r2 cos(θ1 − θ2)√
r1

2 + r22 + d2 − 2r1r2 cos(θ1 − θ2)
dθ1dθ2, (19)
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where r1 and r2 are the radii of the coils, and d is the distance between the two coils. By substituting
Equation (19) into Equations (15) and (16), the theoretical results, as well as the measured data, are
plotted in Figure 11.
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Figure 11. Calculated and measured zero phase angle (ZPA) frequencies of a parallel-resonant circuit
versus distance.

In Figure 11, the measured frequency data are marked as data points (red circle for Exp 1 data
fExp1 and blue triangle for Exp 2 data fExp2), the theoretical exact solutions in Equations (11) and (15)
are plotted as solid lines (green for the great bifurcation frequency f+, red for the small bifurcation
frequency f−, and purple for the middle bifurcation frequency fm) and the approximate solutions
of Equation (16) are presented as dashed lines (blue for the great bifurcation approximate frequency
f+app and yellow for the small bifurcation approximate frequency f−app).

The frequency bifurcation phenomenon is obvious in Figure 11, and the great bifurcation frequency
f+ and the small bifurcation frequency f− will merge together at the bifurcation coupling point
kb = 0.1067, i.e., d = 0.0891 m between the two coils, which is marked in the partial enlarged
image. In the left bifurcation region, there always exists more than one ZPA frequency point and the
middle bifurcation frequency becomes larger as the separation distance decreases, which is different
from the series-series resonant circuit in [24]. The measured frequency data of Exp 1 and Exp 2 are
in good agreement with the small bifurcation curve, as well as the small bifurcation approximate
frequency curve in the bifurcation region. While in the right bifurcation-free region, the great and
small bifurcation frequency disappear and only the middle bifurcation frequency point exists, which
approaches the free resonant frequency f0 = 660 kHz infinitely, like the two approximate solutions, as
separation distance increases. The measured frequency data of Exp 1 and Exp 2 also approach the free
resonant frequency f0 with the coils apart in the bifurcation-free region. The slight difference between
the measured and calculated results may be from the ignoring of the coils’ parasitic resistances and
higher harmonics in the theoretical model. These results demonstrate that the improved inverter can
track the ZPA frequency automatically, just as the traditional inverter does, which means the inverter
can achieve ZVS operation as the coupling varies.

5.3. Power and Efficiency Comparison

Figure 12a–c show that the practical voltage waveforms are similar to the simulation results in
Figure 6, Figure 8, and Figure 9. The gate drive signal of one MOSFET always rises with the resonant
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voltage at the drain of another MOSFET simultaneously in the three experiments, and the gate drive
signal quality has been improved effectively due to the improved gate drive circuit in Exp 2 and Exp 3.
The turn-on switching delay ton and turn-off switching delay to f f of the MOSFETs are 223 ns, 246 ns in
Exp 1; 61 ns, 69 ns in Exp 2; and 42 ns, 48 ns in Exp 3. Moreover, the magnitude of the resonant voltage
at the TX LC tank in Exp 3 is about 75.2 V, which is consistent with the voltage Equation (1) indicated.
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Figure 12. Gate and drain voltage waveforms of two MOSFETs (metal oxide silicon field effect
transistors) at 6 cm: (a) traditional inverter at VDC = 12 V (Exp 1); (b) improved inverter at VDC = Vdrive

= 12 V (Exp 2); (c) improved inverter at VDC = 24 V and Vdrive = 12 V (Exp 3).

To better illustrate the difference between the three sets of measured data, we divided them into
two comparison groups and depicted the output power and efficiency curves in Figures 13 and 14,
respectively. Specifically, the efficiency η was computed as the ratio of the output power (V2

out/Rload)
to the input power (VDC ∗ iDC), which implies that it is the system efficiency, including the gate drive
circuit, in Exp 1. Additionally, one thing to note is that the drive source power (Vdrive ∗ idrive) was also
accounted for in the input power when the two power sources were used in Exp 2 and Exp 3.

Figure 13a,b show the comparison of output power and efficiency between Exp 1 and Exp 2,
respectively, and it is noted that the maximum output power and efficiency are 8.74 W and 72.5%
with the improved inverter at a 2 cm separation distance, while the output power and efficiency are
only 7.68 W and 63.5% with the traditional inverter at the same gap. The increase of output power in
Figure 13a is obvious over a short distance due to the larger switching losses in the traditional inverter
under heavy load. As the distance increase, the reflected impedance from the secondary side is too
small to be neglected and the output power is almost the same due to Equation (17). The increase
of system efficiency in Figure 13b is obvious in the bifurcation region for the lower gate losses and
switching losses of the improved gate drive circuit. As the coil distance increases, the deviation of
switching losses between Exp 1 and Exp 2 becomes less, while the gate losses remain constant, so the
gap between the two efficiency curves decreases but does not merge together.
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Figure 14a,b show the comparison of output power and efficiency between Exp 2 and Exp 3,
respectively. It is clear that the output power of Exp 3 at a 2 cm separation distance is 38.9 W, which is
about 4 times that in Exp 2, and the other data in Figure 14a have a similar rule, which is consistent
with Equation (17). Meanwhile, Figure 14b shows that a higher efficiency of 83.6% can be acquired in
Exp 3 compared with Exp 2 at the same gap, and the main reason is that the constant gate drive loss is
nearly same as in Exp 2, and the switching loss makes up a far smaller percentage of the total losses in
Exp 3.

For a better understanding, the losses of each block in Exp 1, Exp 2, and Exp 3 at 2 cm are
summarized in Table 4.

Table 4. Power losses and the corresponding percentage of each block in Exp 1, Exp 2, and Exp 3.

Experiments Gate Drive Switches TX Tank RX Tank Others

Exp 1 1.77 W (40%) 1.33 W (30%) 0.53 W (12%) 0.40 W (9%) 0.40 W (9%)
Exp 2 1.35 W (41%) 0.40 W (12%) 0.66 W (20%) 0.50 W (15%) 0.39 W (12%)
Exp 3 1.45 W (19%) 0.69 W (9%) 2.60 W (34%) 1.99 W (26%) 0.91 W (12%)

Table 4 shows that the gate losses and switching losses make up a high percentage of the total
losses in Exp 1, while the improved inverter reduces them significantly in Exp 2. Although the gate
losses and switching losses make up a far smaller percentage in Exp 3, the losses caused by the parasitic
resistances in the TX and RX tank increase rapidly and make up a relatively large percentage due to
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the large resonant current. Therefore, to further increase the efficiency of the improved system, more
attention should be paid to low-loss inductors and capacitors.

6. Conclusions

This paper presents an improved autonomous current-fed push-pull parallel-resonant inverter in
an IPT application. The inverter achieved a ZVS operation automatically as the coupling coefficient
varied by tracking the ZPA frequencies of a parallel-parallel resonant circuit, which was analyzed
mathematically and verified by experiments. Moreover, the improved inverter increases the output
power level and the system efficiency by reducing the gate losses and switching losses. Accordingly,
two groups of comparative experiments were performed and verified that the improved inverter can
increase the output power from 7.68 W to 8.74 W and overall efficiency from 63.5% to 72.5% compared
with the traditional inverter at a 2 cm coil distance. In addition, a higher power of 38.9 W and a higher
efficiency of 83.6% can also be obtained by increasing the input voltage to 24 V at 2 cm, which implies
that the improved inverter can be used in a variety of IPT applications, such as IMDs or high-voltage
quick charge.
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