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Abstract: Bridgeless power factor correction (PFC) converters have a reduced number of semiconductors
in the current flowing path, contributing to low conduction losses. In this paper, a new bridgeless
high step-up voltage gain PFC converter is proposed, analyzed and validated for high voltage
applications. Compared to its conventional counterpart, the input rectifier bridge in the proposed
bridgeless PFC converter is completely eliminated. As a result, its conduction losses are reduced.
Also, the current flowing through the power switches in the proposed bridgeless PFC converter is
only half of the current flowing through the rectifier diodes in its conventional counterpart, therefore,
the conduction losses can be further improved. Moreover, in the proposed bridgeless PFC converter,
not only the voltage stress of power switches is lower than the output voltage, but the voltage
stress of the output diodes is lower than the conventional counterpart. In addition, this proposed
bridgeless PFC converter features a simple circuit structure and high PFC performance. Finally,
the proposed bridgeless PFC converter is analyzed and designed in the discontinuous conduction
mode (DCM). The simulation results are presented to verify the effectiveness of the proposed
bridgeless PFC converter.

Keywords: bridgeless converter; discontinuous conduction mode (DCM); high step-up voltage gain;
power factor correction (PFC)

1. Introduction

In the past decades, AC-DC converters have been widely used in numerous power electronic
equipment supplied by the power grid in order to obtain the DC voltage. For the passive AC-DC
rectifier, the input current harmonics are large, which is very harmful for the power grid and other
power electronic equipment. In order to alleviate the input current harmonics and satisfy the rigorous
input current harmonic standards, for instance, the IEC 61000-3-2 criterion, the active power factor
correction (PFC) converter has become a popular and effective method to shape the input current
waveform and achieve the near unity power factor (PF) in the power supplies. For single-phase power
supplies, the boost topology is the most popular option as the PFC pre-regulator, by reason of its simple
circuit structure and high PFC performance [1–3]. Unfortunately, the boost topology cannot achieve a
very high voltage gain in practical applications, because the extremely high duty cycle is unpractical.
Therefore, in some high voltage applications, for example, X-ray medical/industry equipment, HVDC
system insulator testing, electrostatic precipitators and high voltage battery charger, the boost PFC
converter is a poor candidate, especially for the universal line [4,5].
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For outputting high voltage, many conventional high step-up voltage gain PFC converters
have been studied in the past decade [6–16]. Based on the Cockcroft–Walton (CW) structure,
some high step-up voltage gain PFC converters were proposed in [6–10]. In [6], a three-stage CW
PFC converter was proposed. This converter can achieve a high output voltage and a high PFC
performance. In [7], a transformerless hybrid boost and CW PFC converter was presented. By adding
the CW voltage multiplier (VM) stages, high output voltage and high power factor are obtained.
A single-phase single-stage high step-up matrix PFC converter using CW-VM was proposed in [8].
By combining a four bidirectional-switch matrix converter and the CW-VM, a high step-up voltage
gain is achieved. Based on [6], a more comprehensive analysis and validation were presented in [9].
Based on [9], an improved high step-up voltage gain PFC converter with soft-switching characteristic
was introduced in [10]. Besides the CW structure, some efforts focused on the switched-capacitor PFC
topology to produce the high output voltage [11–13]. In [11], a family of high-voltage gain hybrid
switched-capacitor PFC converters were proposed and validated, which can achieve a high output
voltage and good PFC performance. A high voltage gain PFC converter based on a hybrid boost
DC-DC converter was presented in [12]. By integrating boost topology and the switched-capacitor
voltage doubler, a high output voltage and nearly unity PF are produced. In [13], a hybrid single
ended primary inductor converter (SEPIC) PFC converter using switched-capacitor voltage doubler
was proposed, which also owns a high voltage gain and a good PFC performance. Other new PFC
converters can also achieve a high voltage gain [14–16]. In [14], a single-stage boost PFC converter
with zero current switching (ZCS) characteristic was proposed and studied, which has a high voltage
gain. In [15], a modified SEPIC PFC converter with a high voltage gain was proposed. A family of ZCS
isolated high voltage gain PFC converters were proposed in [16]. Also, many high step-up voltage
gain DC-DC converters have been studied in [17–24]. These DC-DC topologies can also be applied as
the PFC converters for the high voltage applications. However, all the PFC converters, as mentioned
above [6–24], are the conventional PFC type. The rectifier bridge is necessary for them, and their
topology structures are more complex.

Compared to the conventional PFC converters, the bridgeless PFC converters possess the merits of
low conduction losses and higher efficiency. That is because the input rectifier diodes of the bridgeless
PFC converters are reduced, leading to a less number of semiconductors in the current-flowing
path [2]. In order to improve efficiency, some bridgeless PFC converters with high output voltage are
proposed in [25–27]. In [25], a bridgeless Cuk PFC converter was proposed for high voltage battery
charger. In [26], a bridgeless modified SEPIC PFC converter was proposed with extended voltage gain.
Two bridgeless hybrid boost PFC converters using the switched-capacitor structure were presented
in [27]. All these bridgeless PFC converters can be applied for the high voltage applications, and their
efficiency are improved compared to their conventional counterparts.

Based on the conventional high step-up voltage gain PFC converter shown in Figure 1, which was
first proposed in [18] as the DC-DC converter, a new bridgeless high step-up voltage gain PFC
converter with improved efficiency shown in Figure 2 is proposed for high voltage applications.
By reducing the number of semiconductors in the current-flowing path and reducing the current
stress of semiconductors, the proposed bridgeless PFC converter can achieve a reduced conduction
losses and a higher efficiency compared to its conventional counterpart. Besides, the proposed
bridgeless PFC converter owns a lower voltage stress of output diodes than the conventional one.
The high PF and low total harmonic distortion (THD) are also obtained in the proposed bridgeless PFC
converter. In addition, the proposed bridgeless PFC converter features a very simple circuit structure,
contributing to cost and power density. The discontinuous conduction mode (DCM) is utilized with
the merits of zero current turned on in the power switches, zero current turned off in the diodes,
nature current-sharping ability and a simple control method. As a result, the proposed bridgeless PFC
converter is more suitable for the high voltage applications than its conventional counterpart.



Energies 2018, 11, 2640 3 of 13

The operation principle of the proposed bridgeless PFC converter is discussed in Section 2.
A detailed theoretical analysis and design guideline is presented in Section 3. The validation by the
simulated results is shown in Section 4, followed by the conclusions in Section 5.
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2. Operation Principle

This proposed bridgeless high step-up voltage gain PFC converter uses two bidirectional switches
in series with two same level inductors. Each bidirectional switch is constructed by two anti-series
power switches. It should be noted that the two power switches in one bidirectional switch have
the common source terminal, which can simplify the drive circuit. Simultaneously, an output bridge
including D1, D2, D3 and D4 which are fast-recovery diodes is used to obtain a high DC output voltage
in the proposed bridgeless PFC converter, while only D5 is the fast-recovery diode in its conventional
counterpart. The proposed bridgeless PFC converter is designed to operate in DCM. Thereby, it has
three operation modes during one switching period. The detailed operation modes of one switching
period in the positive line cycle are presented in Figure 3. Since the proposed bridgeless PFC converter
is symmetrical, the operation modes in negative line cycle are similar to the modes in positive line
cycle. Its key time-domain waveforms are exhibited in Figure 4.

Mode I shown in Figure 3a: when the power switches S1 and S3 are turned on, the input sinusoidal
source vin charges the two inductors L1 and L2, simultaneously, through the power switches S2 and S4.
The output bulk capacitor maintains the output voltage vo. In each branch of the proposed bridgeless
PFC converter, only two semiconductors consisting by two power switches are active, while three
semiconductors are active in one branch of the conventional counterpart. In this mode, the inductor
currents satisfy:

vin = L1
diL1

dt
= L2

diL2

dt
(1)

Mode II shown in Figure 3b: when all the power switches are turned off, the input source and
the two inductors releases energies to the load. Only two output fast-recovery diodes conduct in this
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mode, while three semiconductors including two slow-recovery diodes and one fast-recovery diode
conduct in the corresponding conventional counterpart. In this mode, the inductor currents satisfy:

vin − vo

2
= L1

diL1

dt
= L2

diL2

dt
(2)

Mode III shown in Figure 3c: all the semiconductors are in the off state. The inductor currents are
zero. The output bulk capacitor C maintains the output voltage.

Figure 4 presents the key waveforms of duty cycle D, inductor current iL1, iL2, input current
iin, and the voltage vS1, vS3, vD1, vD4 across the semiconductors in the positive line cycle. From this
figure, the inductor current iL1, iL2 are equal to each other. When the power switches are turned
on, the inductor current are half of the input current iin. When the power switches are turned off,
the inductor current are same with the input current. The maximum voltage across the power switches
and the output diodes are (vin + vo)/2 in the positive line cycle. It should be noted that the duty cycle
D equals to (t2 − t1)/TS, where TS is the switching period.
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3. Theoretical Analysis

The detailed theoretical analysis and designed consideration in DCM are presented in this
subsection. First of all, some ideal assumptions are provided to simplify the analysis. Notably,
the theoretical analysis is made in one positive line cycle. These assumptions are shown as follows:

• The switching frequency fs is much higher than the line frequency. Thus, the input voltage is
constant during one switching period.

• The capacitance of the bulk capacitor is large enough. Thereby, the output voltage is ideal constant.
• All the components are ideal without losses.
• The input voltage is ideally sinusoidal.

3.1. The Voltage Conversion Ratio M

Appling the voltage-second balance principle to the inductor L1, the voltage conversion ratio M is
derived as follows:

M =
vo

vm
=

2D + Dx

Dx
× sin θ (3)

where vm is the amplitude of the sinusoidal input voltage vin, θ is the angle of the input voltage vin,
and Dx is equal to (t3 − t2)/TS.

Based on (3), the relationship between the duty cycle D and Dx can be expressed as:

Dx = 2D × sin θ

M − sin θ
(4)
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In addition, the peak inductor current iL1-peak in one switching period is:

iL1−peak =
DTS
L1

× vm sin θ (5)

Due to the power balance between input power and output power, we can get:

1
π

∫ π

0

1
2
× iL1−peak × (2D + Dx)× vindθ =

v2
o

R
(6)

Substituting (4) and (5) into (6), the relationship of the voltage conversion ratio M and duty cycle
D is derived as follows:

M = D ×
√

β

πK
(7)

where the dimensionless conduction parameter K is:

K =
2L1

RTS
(8)

and the parameter β is

β =
∫ π

0
(

2M
M − sin θ

)× sin2 θdθ (9)

The relationship of the voltage conversion ratio M and duty cycle D is presented in Figure 5.
From this figure, one can see that the voltage conversion ratio M increases with the lower parameter K.
Compared to the conventional boost PFC converter, the voltage conversion ratio M of the proposed
bridgeless PFC converter is much higher. Therefore, the proposed bridgeless PFC converter is more
suitable for the high voltage applications.
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3.2. The Operation Conditon for DCM

In order to operate in DCM, the operation condition must satisfy as follows:

D + Dx < 1 (10)

Substituting (3) and (7) into (10), the operation condition for DCM is derived as:

K <
β

π
× 1

M2 ×
(

M − sin θ

M + sin θ

)2
(11)
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The proposed bridgeless PFC converter is designed to operate in DCM totally. Therefore, the
inductor currents should be discontinuous at the peak point in the line cycle. Thus, the simplified
operation condition for DCM is:

K <
β

π
× 1

M2 ×
(

M − 1
M + 1

)2
(12)

Figure 6 draws the operation boundary between the DCM and the continuous conduction mode
(CCM). From this figure, the operation boundary is higher at the low voltage conversion ratio. However,
for the universal line, the voltage conversion ratio is different under different input voltage. Hence,
the key parameter K must be designed at the lowest input voltage.
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3.3. The Voltage Stress and Current Stress

The voltage stress of semiconductors in the proposed bridgeless PFC converter and in its
conventional bridge counterpart are shown in Table 1. From this table, the voltage stress of power
switch in the proposed bridgeless PFC converter is same with its conventional bridge converter, and it
is lower than the output voltage. The voltage stress of fast-recovery diode in the proposed bridgeless
PFC converter is lower than that in the conventional bridge converter. Therefore, the lower rated
diode can be used in the proposed bridgeless PFC converter. It is beneficial to improve cost and losses.
In addition, no slow-recovery diode is used in the proposed bridgeless PFC converter, while four
slow-recovery diodes as the input bridge are used in its conventional bridge counterpart, and their
voltage stress is vm.

Table 1. The voltage stress of semiconductors.

Proposed Bridgeless PFC Converter Conventional Bridge PFC Converter

Power switch (vm + vo)/2 (vm + vo)/2
Fast-recovery diode vo vm + vo
Slow-recovery diode - vm

The root-mean-square (RMS) current iS1-rms of power switch in one switching period is shown
as follows:

iS1−rms =
vinDTS

L1

√
D
3

(13)
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The averaged current iD1-avg of output diode in one switching period is derived as follows:

iD1−avg =
vinDDxTS

2L1
(14)

3.4. The Conduction Losses

In this subsection, the conduction losses of semiconductors are calculated. The detail derivations
in one positive line cycle are exhibited as follows:

PS1 =
1
π

∫ π

0

(
vinDTS

L1

)2
× D

3
× Rondθ (15)

PD1 =
1
π

∫ π

0

vinDDxTS
2L1

× VFdθ (16)

where Ron is the conduction resistance of the power switch and VF is the forward voltage of diodes.
Under the operation condition vin = 220 Vrms/50 Hz, vo = 800 V, fs = 30 kHz and Po = 500 W,

the conduction losses of semiconductors are calculated. It should be noted that the parameters Ron and
VF are chosen from the datasheet of the selected components. The conduction losses of semiconductors
of the proposed bridgeless PFC converter and its conventional counterpart are presented in Figure 7.
From this figure, it can be found that the total conduction losses of semiconductors in the proposed
bridgeless PFC converter is much lower than its conventional bridge counterpart. The conduction
losses of power switches in the proposed bridgeless PFC converter are higher, while it has no
conduction losses of input rectifier diodes.
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3.5. The Control Principle

This proposed bridgeless PFC converter is designed in DCM. The DCM possesses the merit of a
naturally current-sharping ability, which contributes to a simple control method. Thereby, the voltage
control loop is applied in order to obtain the constant DC output voltage. The control principle is
displayed in Figure 8. From this figure, the controller mainly contains one compensator, one PWM
generator and four drivers. It should be noted that the four power switches in the proposed bridgeless
PFC converter can be driven by one same control signal, which simplifies the controller, significantly.
Notably, the signal Vg1, Vg2, Vg3 and Vg4 drive the power switches S1, S2, S3 and S4, respectively.
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4. Simulation Results

The effectiveness of the proposed bridgeless PFC converter is validated in the SIMetrix/SIMPLIS
(version 8.00, company SIMetrix Technologies Ltd., Thatcham, UK) environment. The simulation
program with integrated circuit emphasis (SPICE) models of practical components are employed in this
simulation. The key operation parameters of the proposed bridgeless PFC converter is vin = universal
line 95–265 Vrms, vo = 800 V, fs = 30 kHz and Po = 500 W. The selected components are shown in Table 2.
Considering the voltage stress, current stress and safety margin, the SPP17N80C3 (company Infineon,
GER) with Ron = 0.29 Ω and VDS = 800 V is chosen as the power switches. The MUR490 (company On
Semiconductor, Phoenix, AZ, USA) with VF = 1.85 V and VD = 900 V is chosen as the fast-recovery
diodes in the proposed bridgeless PFC converter. Since the voltage stress of the fast-recovery diode in
the conventional bridge counterpart is up to around 1200 V, which is much larger than the voltage
stress 800 V of the fast-recovery diode in the proposed bridgeless PFC converter, we have to choose two
series MUR490 as the fast-recovery diode in the conventional bridge counterpart. In the conventional
bridge converter, 8EWS08 (company International Rectifier, El Segundo, CA, USA) with VF = 1 V is
used as the input rectifier diodes.

Table 2. The selected components.

Proposed Bridgeless PFC Converter Conventional Bridge PFC Converter

Power switches SPP17N80C3 SPP17N80C3
Fast-recovery diodes MUR490 MUR490
Slow-recovery diodes — 8EWS08

Output capacitor 200µF 200µF
Inductors 200µH 200µH

The input current after the input LC filter at the typical input line is displayed in Figure 9.
From this figure, the input current is shaped to be almost sinusoidal at the typical low line 110 Vrms and
the typical high line 220 Vrms. Thereby, it is validated that the proposed bridgeless PFC converter owns
a good current-shaping ability. Figure 10 presents the key time-domain waveforms of the proposed
bridgeless PFC converter. It can be figure out that the simulated waveforms are in agreement with
the theoretical analysis. The key waveforms also validate that the proposed bridgeless PFC converter
operates in DCM.

Figure 11 presents the simulated PF and THD under the universal line. From this figure, one can
see that nearly unity PF is achieved and the THD is low under the universal line. The high PF and low
THD validate that the proposed bridgeless PFC converter owns a good PFC performance.

The simulated efficiency of the proposed bridgeless PFC converter and its conventional bridge
counterpart under the universal line is shown in Figure 12. From this figure, it is clear that the
efficiency of the proposed bridgeless PFC converter is higher than its conventional bridge counterpart,
due to the reduced semiconductors and the reduced current. Also, the efficiency of other state
of the art high step-up voltage gain converter in [12] is simulated. Under the same operation
parameters and components, the efficiency of the converter in [12] is 97.42% at the typical line
Vin = 220 Vrms, while the efficiency of the proposed bridgeless PFC converter can reach up to 98.78%
at the typical line Vin = 220 Vrms. Therefore, the proposed bridgeless PFC converter is more suitable
for the practical application.
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Figure 13 displays the simulated input current harmonics compared with the IEC 61000-3-2 class
D limits. From this figure, the input current harmonics of the proposed bridgeless PFC converter
are much lower than the IEC 61000-3-2 class D limits under both the typical low line and high line.
Namely, the proposed bridgeless PFC converter can easily satisfy the international harmonic standards,
which is very beneficial to practical application.
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Figure 13. The simulated input current harmonics of the proposed bridgeless high step-up voltage gain
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5. Conclusions

A new bridgeless high step-up voltage gain PFC converter with low conduction losses and
low voltage stresses for high voltage applications is proposed, analyzed and verified in this paper.
The theoretical analysis and design consideration in DCM are presented. The simulated results
validate that the proposed bridgeless PFC converter has a higher efficiency than its conventional
bridge counterpart. Moreover, the proposed bridgeless PFC converter can achieve a very high PF and
low THD, and it can easily satisfy the IEC 61000-3-2 class D limits, thereby, the proposed bridgeless
PFC converter is a competitive option for the high voltage applications.
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