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Abstract: AC microgrid mainly comprise inverter-interfaced distributed generators (IIDGs),
which are nonlinear complex systems with multiple time scales, including frequency control,
time delay measurements, and electromagnetic transients. The droop control-based IIDG in an
AC microgrid is selected as the research object in this study, which comprises power droop controller,
voltage- and current-loop controllers, and filter and line. The multi-time scale characteristics of the
detailed IIDG model are divided based on singular perturbation theory. In addition, the IIDG model
order is reduced by neglecting the system fast dynamics. The static and transient stability consistency
of the IIDG model order reduction are demonstrated by extracting features of the IIDG small signal
model and using the quadratic approximation method of the stability region boundary, respectively.
The dynamic response consistencies of the IIDG model order reduction are evaluated using the
frequency, damping and amplitude features extracted by the Prony transformation. Results are
applicable to provide a simplified model for the dynamic characteristic analysis of IIDG systems in
AC microgrid. The accuracy of the proposed method is verified by using the eigenvalue comparison,
the transient stability index comparison and the dynamic time-domain simulation.

Keywords: inverter-interfaced distributed generator; nonlinear multi-time scale model; model order
reduction; singular perturbation theory; stability consistency

1. Introduction

Inverter-interfaced distributed generators (IIDGs) have been widely used in power grids as new
power generation equipment [1–3] due to their rapid and flexible control performance. IIDGs are
viewed as nonlinear systems with a long-span time constant, which contains several time scales.
An effective model of IIDGs is a fundamental of dynamic and stability analysis of power systems
with IIDGs. The impedance models of IIDG are usually used in the small-signal stability analysis
of the system [4,5], but those models cannot explain theoretically the physical dynamic process of
IIDG stability because they take the whole system as an equivalent impedance ratio. The state-space
small-signal and large-signal models are general tools to describe the dynamics characteristic of
IIDG in detail. However, a large-scale power system containing many IIDGs may involve several
thousand state variables, and a detailed modeling of the system can lead to dimensionality curse
and formidable computational burden [6], and even the extreme case of difficulty in obtaining the
convergence solution.
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Moreover, the IIDG model has a wide timescale ranging from milliseconds to seconds [7],
which means that a small time step is required in simulations, so the computational effort becomes large.
Due to the computing capability limit of processors, distributed computation is usually considered
for large-scale power system simulations. On the other hand, some advanced control methods need
dynamic model solving for real time control [8], which may not be guaranteed when a long computation
time is needed. The model reduction techniques simplify complex models by eliminating the less
significant states and reducing the number of equations. It is an effective approach for improving
calculation efficiency and meeting the requirements of the real-time control by reducing the IIDG
model to a lower-order simpler model. Therefore, research on order reduction methods for IIDG
detailed models is of considerable significance.

Researchers have conducted numerous comprehensive and detailed studies on the modeling
methods for IIDGs, and accurate and practical mathematical models, including three control loops of
power, voltage, and current, are presented [9–12]. However, consensus on the classification standard of
the multi-time scale IIDG model is not yet realized. The fast and slow dynamics are almost independent
provided that their timescales are sufficiently separated, so that the state variables of a multi-time
scale IIDG model can be grouped into those that participate in the fast dynamics and in the slow
dynamics. Order reduction methods for the multi-time scale characteristic in traditional power grids
with rotating power, such as synchronous machines, is common and mature. The multi-time scale
singular perturbation model for synchronous machines and brushless doubly-fed wind turbines are
presented in [13–15], and the models are simplified based on the multi-time scale theory. Different from
the slow dynamics of synchronous machines due to mechanical inertia, the fast dynamics of IIDG
models are bounded from the above due to the switching frequency and filters. This means that the fast
and slow dynamics of IIDG models are actually quite close in timescale and the interaction between
them can be significant.

The fast dynamics of IIDG models can be removed when evaluating slow dynamics, whereas
the slow dynamics of IIDG model can be considered stationary when evaluating fast dynamics.
Reference [16] ignores the IIDG voltage and double current-loop dynamics to obtain its first-order
simplified model via a small signal stability analysis. It tends to preserve the slow dynamics of the
IIDG power controller and omit the fast dynamics of the PLL and current controller. The static stability
is researched by comparing the system eigenvalues in [16], and there is no further verification for
transient stability. References [17–19] establish an order reduction model of IIDGs adapting to different
complexities and precisions, but the stability consistency is not studied for the reduction models of
IIDGs. For an IIDG-dominated microgrid, [20] investigates a six-order islanded microgrid model,
and differential-algebraic order reduction models for different precision requirements are presented.
The spatiotemporal model reduction of an IIDG-dominated microgrid is presented in [21] based on
singular perturbation and Kron reduction. Reference [22] proposes an order reduction principle of
neglecting fast dynamics and fixing slow dynamics for multi-time scale singular perturbation AC/DC
systems by using the singular perturbation theory and matrix eigenvalue perturbation theorem.
The key modes determining the stability of the system are identified in [23,24], by analyzing the
parameter sensitivity of the dominant poles using small signal stability analysis. However, these
reduction models of IIDGs only consider the static stability, and lack strict proof of stability consistency
for the order reduction. These models cannot satisfy the static stability consistency for suffering small
disturbances and the transient stability consistency for large disturbances at the same time.

The static and transient stability consistencies are essential to ensure the IIDG model reduction
to retain the controllability and observability of the detailed model. The paper is expected to
perform an accurate IIDG model reduction to stability the static and transient stability consistencies.
When the static and transient stability remain unchanged before and after the order reduction of
IIDG, the dynamic response errors of the reduction models of IIDG are bounded [6]. Then the
reduction models can represent the performance of the detailed model for the stability analysis and
the control design of the system with IIDG. Thus, the focus of this paper concentrates on the stability
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consistency verification for the IIDG order reduction. Stability analysis of nonlinear system usually
includes two main parts, namely, static and transient stability. The former is related to the stability of
equilibrium points, and the latter is related to the stability region. Based on the mentioned preceding
studies, this paper first presents a complete model of a droop control-based IIDG containing a power
droop controller, voltage and current dual loop controller, and LC filter and output line impedance.
Furthermore, through extracting the multi-time scale characteristics, neglecting the fast dynamics,
and adopting singular perturbation theory and the quadratic approximation method of this model,
the static and transient stability consistency of order reduction is proven. Finally, the effectiveness of
this study is verified by presenting the eigenvalue comparisons, transient stability index comparisons
and time-domain simulation results.

The remainder of this paper is organized as follows. Section 2 presents the modeling of an
inverter-based DG unit in an islanded microgrid. Section 3 describes the static and transient stability
consistency proof of the IIDG model order reduction, and evaluates the consistency of dynamic
response by comparing the frequency, damping and amplitude between the detailed and reduction
models. Section 4 provides the evaluation results to demonstrate the effectiveness of the proposed
order reduction method scheme. Section 5 concludes the paper.

2. IIDG Multi-Time Scale Model Based on Droop Control

IIDG in microgrid adopt the three-phase voltage source-type inverter interface that applies PQ
control during the grid-connected operation and the droop control when switching to the islanding
operation to regulate the grid voltage and frequency [25]. This process is equivalent to a voltage source.
Figure 1 shows the control and interface frame of the IIDG inverter.
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Figure 1. Control and interface block diagram of IIDG.  
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Figure 1. Control and interface block diagram of IIDG.

In this figure, U1* and iL1* are the reference instruction values of the output voltage and current of
the inverter, respectively. U2* refers to the reference instruction value of the output voltage of the IIDG.
U1 and iL1 represent the output voltage and current of the inverter, respectively. U2 and iL2 denote the
output voltage and current of the IIDG, respectively. U is the point of common coupling (PCC) voltage.

2.1. IIDG Full Model Based on Droop Control

(1) Power Droop Controller

The medium and high voltage microgrid generally has a voltage level of 10 kV and above with
a large power supply capacity. The transmission line impedance is generally regarded as purely
inductive, that is, ωL2 >> R2. In the low-voltage microgrid where the online transmission line
impedance is resistive, realizing the conventional droop control of active power–frequency and
reactive power–voltage through indirect transformation is feasible by using the improved droop
control method based on virtual impedance and coordinate transformation. Thus, the output powers
P and Q of an IIDG can be expressed as:



Energies 2018, 11, 254 4 of 25

{
P = U2U sin δ

ωL2

Q =
U2

2−U2U cos δ
ωL2

(1)

where δ is the phase angle difference between the IIDG output voltage and the PCC voltage.
Generally, the value of δ is very small, and the IIDG cannot directly control the PCC voltage. Thus, P is
mainly determined by the output voltage phase angle, and Q is determined by the output voltage
amplitude. The phase difference between two terminal voltages can be controlled by restricting the
frequency of the output voltage, that is, controlling the active power P output by IIDG. Correspondingly,
the reactive power Q output by IIDG can be controlled by managing the output voltage amplitude.
Thus, the droop control of IIDG can be designed as follows:{

ω = ω0 −mP
U2 = U20 − nQ

(2)

where ω0 and U20 are the reference values of the IIDG frequency and voltage, respectively; and m and n
denote the active power and reactive power droop coefficients, respectively. Further, the instantaneous
power of the IIDG can be calculated by its output voltage and current:{

p = 3
2
(
u2diL2d + u2qiL2q

)
q = 3

2
(
u2diL2q − u2qiL2d

) . (3)

The average power expression can be obtained through the low-pass filter:{
P(s) = ωc

s+ωc
p

Q(s) = ωc
s+ωc

q
(4)

where ωc is the cut-off frequency of the low-pass filter.

(2) Voltage and Current Dual-Loop Controller

Figure 2 shows that the voltage outer loop of the controller is regulated by PI
(Proportional Integral). Meanwhile, the output current iL2 is introduced as the feedforward to suppress
the influence of load fluctuation on the output voltage and improve the dynamic response performance
of the system. The expression of the inner loop command current is as follows:{

i∗L1d = HiL2d + Kp2(u∗2d − u2d) + Ki2
∫
(u∗2d − u2d)dt−ωnCu2q

i∗L1q = HiL2q + Kp2(u∗2q − u2q) + Ki2
∫
(u∗2q − u2q)dt + ωnCu2d

. (5)

The current inner loop adopts the inductor current feedback and PI regulation mode. The reference
voltage of the current inner loop is:{

u∗1d = u2d + Kp1(i∗L1d − iL1d) + Ki1
∫
(i∗L1d − iL1d)dt−ωnL1iL1q

u∗1q = u2q + Kp1(i∗L1q − iL1q) + Ki1
∫
(i∗L1q − iL1q)dt + ωnL1iL1d

. (6)

The state variables of the voltage outer and inner loops are defined to facilitate the problem
analysis, as follows: { dϕd

dt = u∗2d − u2d
dϕq
dt = u∗2q − u2q

(7)

{ dλd
dt = i∗L1d − iL1d

dλq
dt = i∗L1q − iL1q

. (8)
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(3) Filter and Line

The dynamic influence of the switching part can be neglected at high switching frequency.
The switching tube can generate the required voltage in accordance with the instruction, that is,
u1* = u1. Therefore, the d and q components of the filter inductance current iL1 are:{ diL1d

dt = − R1
L1

iL1d + ωiL1q +
1
L1
(u1d − u2d)

diL1q
dt = −ωiL1d − R1

L1
iL1q +

1
L1
(u1q − u2q)

. (9)

The d and q axis components of its filter capacitance voltage U2 are:{ du2d
dt = 1

C1
(iL1d − iL2d) + ωu2q

du2q
dt = 1

C1
(iL1q − iL2q)−ωu2d

. (10)

The d and q components of the output current iL2 on the line are shown below, where u is the
voltage of PCC: { diL2d

dt = − R2
L2

iL2d + ωiL2q +
1
L2
(u2d − ud)

diL2q
dt = −ωiL2d − R2

L2
iL2q +

1
L2
(u2q − uq)

. (11)

The full system model of the IIDG is established by combining Equations (2)–(11), as shown in
Equation (12): 

.
xI IDG = AI IDGxI IDG + BI IDGu + F(xI IDG)

xI IDG = [ δ P Q ϕdq λdq iL1dq u2dq iL2dq ]
T

u = [ ud uq ]
T

. (12)

The expressions and parameters of the detailed model of the preceding equation are provided in
Appendix A.

2.2. Multi-Time Scale Decomposition of IIDG System

The linear model of the IIDG full system can be obtained after linearization at the steady-state
point, as shown in Equation (13):

∆
.
xI IDG = AS∆x + BS∆u

∆xI IDG = [ ∆δ ∆P ∆Q ∆ϕdq ∆λdq ∆iL1dq ∆u2dq ∆iL2dq ]
T

∆u = [ ∆ud ∆uq ]
T

. (13)
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A stable operating point xs of the IIDG is taken. By solving the state matrix As of the linear model
at the stable operating point, all characteristic roots of the IIDG model in the complex plane can be
obtained, as shown in Table A1 and attached Figure A1. Appendix B provides the detailed elements of
various matrixes in Equation (13).

According to Figure A1 and Table A1, the eigenvalues of the IIDG full model are distributed in
several frequency bands with evident multi-time scale characteristics. The multi-time scale model of
IIDG can be obtained through model simplification and perturbation factor extraction. According to the
classification criterion of the multi-time scale [26], if the original system is stable with the characteristic
spectrum, then the eigenvalues of the system state matrix As can be arranged from small to large. If the
magnitude ratio of two adjacent eigenvalues, that is, the separation ratio, is less than 1, then this ratio
can be used as the sign of time-scale division of the multi-time scale model.

The time scale is inversely proportional to the natural frequency or modulus of the characteristic
root. A low natural frequency leads to small characteristic root modulus and long corresponding time
scale. After referring to the calculation results of the eigenvalue modulus and separation ratio of the
IIDG system in Appendix B, IIDG can be considered a typical three-time scale model. The voltage and
current dual loop control should be integrated into one time scale. The characteristic time scale is 10−3

to 10−4 second level. The power outer loop control and the phase angle-frequency control should be
classified into different time scales, namely, 10−2 and 10−1 second level, respectively.

The IIDG model comprises Equations (2) to (11) and is a 13-order differential equation set.
Considering the preceding time-scale division principle, assuming:

x = δ

y1 = [P Q]T

y2 = [ ϕdq λdq iL1dq u2dq iL2dq ]
T

ε1 = 1/ωc, ε2 = 1/ω

(14)

where x is the state variable of IIDG phase angle, y1 denotes the state variable of the outer loop output
power of IIDG, y2 represents the state variable of IIDG circuit equation and dual-loop control equation,
and ε1 and ε2 refer to the corresponding perturbation parameters. Thus, the three-time scale system
model of IIDG can be described as: { .

x = f(x, y)
εi

.
yi = g(x, y, u)

(15)

where i = 1, 2; f and g are the corresponding functional relations; and u represents the PCC voltage.
Equation (15) is the expression form of Equation (12) after extracting the multi-time scale features.

2.3. Order Reduction Form of Neglecting Fast Dynamics for IIDG System

According to singular perturbation theory, when the singular perturbation parameter εi is
sufficiently small and ε2 < ε1 << 1, the following two reduction forms can be obtained:

(1) Order Reduction Form 1 (ε2 = 0)

If the electromagnetic transient characteristics of the inductor current and capacitor voltage in
the LCL filter circuit are neglected, then the corresponding voltage and current values are considered
capable of following the instruction values at a rapid rate. Thus, the fast dynamics of the voltage and
current dual-loop control and LCL filter circuit variables can be neglected, and the original model can
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be reduced to a third-order model with 12 algebraic constraint equations. The constraint equations are
as follows:

−Kp1+R1
L1

[
iL1d
iL1q

]
+

Kp1 H
L1

[
iL2d
iL2q

]
− Kp1Kp2

L1

[
u2d
u2q

]
+

Kp1C
L1

[
−u2q
u2d

]
+

Kp1Ki2
L1

[
ϕd
ϕq

]
+ Ki1

L1

[
λd
λq

]
+

Kp1Ki2
L1

[
u∗2d
u∗2q

]
= 0

− R2
ωL2

[
iL2d
iL2q

]
+

[
iL2q
−iL2d

]
+ 1

ωL2

[
u2d
u2q

]
− 1

ωL2

[
ud
uq

]
= 0

1
ωC1

[
iL1d
iL1q

]
− 1

ωC1

[
iL2d
iL2q

]
+

[
u2q
−u2d

]
= 0[

u∗2d
u∗2q

]
=

[
u2d
u2q

]
=

[
(U20 − nQ) cos δ

(U20 − nQ) sin δ

]

− 1
ω

[
iL1d
iL1q

]
+ H

ω

[
iL2d
iL2q

]
− Kp2

ω

[
u2d
u2q

]
+ C

[
−u2q
u2d

]
+

Ki2
ω

[
ϕd
ϕq

]
+

Kp2
ω

[
u∗2d
u∗2q

]
= 0

. (16)

The power outer loop dynamic equation is as follows:

1
ωc

d
dt

[
P
Q

]
= −

[
1 0
0 1

][
P
Q

]
+

3
2

[
u2d u2q
−u2q u2d

][
iL2d
iL2q

]
. (17)

The phase angle equation is:
dδ

dt
= ω0 −mP. (18)

(2) Order Reduction Form 2 (ε1 = 0, ε2 = 0)

If the measurement delay dynamics of the low-pass filter in the power outer loop control equation
is neglected, that is, the fast dynamics of the active and reactive power variables in the power outer
loop control are further neglected, then the original model can be reduced to a first-order model.
Therefore, only the phase angle differential equation related to the frequency control and a set of
algebraic equations are preserved. The new algebraic constraint equation is as follows:

−
[

1 0
0 1

][
P
Q

]
+

3
2

[
u2d u2q
−u2q u2d

][
iL2d
iL2q

]
= 0. (19)

Thus, the two order-reduction forms of the original system model are obtained. However,
the stability consistency of the system after order reduction must be further verified.

3. Stability Consistency Proof of IIDG Model Order Reduction

The detailed mathematical model of the full IIDG system is a 13-order nonlinear model. The static
and transient stability of the model after order reduction implementation are discussed. Static and
transient stability are interrelated, but not equivalent; hence, providing the corresponding general
proofs is necessary. The static and transient stability consistency proofs can verify the effectiveness of
order reduction in theory. Besides, the stability consistency can be indirectly reflected by the dynamic
response comparison between the detailed and reduction models.

Equation (20) is the general expression of a class of nonlinear multi-time scale mode corresponding
to IIDG model. Considering the order reduction of neglecting fast dynamics on a rapid dynamic
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variable ŷ, the remaining slow state variables can be combined into the normal speed variable x̂. εi can
select any sufficiently small positive value ε:{

d
dt x̂ = f(x̂, ŷ)
εi

d
dt ŷi = g(x̂, ŷ, û)

. (20)

3.1. Consistency Proof of Static Stability before and after Order Reduction

The general form of the small signal model of the nonlinear multi-time scale system shown in
Equation (20) at the equilibrium point can be expressed as [22]:

d
dt

[
∆x̂
∆ŷ

]
=

[
A11 A12
1
ε A21

1
ε A22

][
∆x̂
∆ŷ

]
+

[
B1

1
ε B2

]
∆û

= A(ε)

[
∆x̂
∆ŷ

]
+ B(ε)∆û

. (21)

The preceding equation is expressed in the complex frequency-domain form, as follows:

εsI2∆ŷ = A21∆x̂ + A22∆ŷ + B2∆û
⇒ ∆ŷ = (εsI2 −A22)

−1A21∆x̂ + (εsI2 −A22)
−1B2∆û

(22)

sI1∆x̂ = A11∆x̂ + A12∆ŷ + B1∆û

=
[
A11 + A12(εsI2 −A22)

−1A21

]
∆x̂+[

B1 + A12(εsI2 −A22)
−1B2

]
∆û

(23)

where I1 and I2 are the same order unit matrix of ∆x̂ and ∆ŷ, respectively. Thus, the new state
equation is:

sI1∆x̂ = An∆x̂ + Bn∆û. (24)

By solving the characteristic root of Equation (24), the following equation can be obtained:

|sI1 −An| =
∣∣∣sI1 −A11 −A12(εsI2 −A22)

−1A21

∣∣∣ = 0. (25)

According to the properties of the matrix Schur complement, the characteristic root of the system
after order reduction satisfies Equation (25). When |sI2 − A22/ε| 6= 0, ε 6= 0, the corresponding
characteristic roots of |sI1 − An| = 0 and |sI − A| = 0 are the same:

|sI1 −An| =
∣∣∣sI1 −A11 −A12(εsI2 −A22)

−1A21

∣∣∣
=

∣∣∣∣∣∣ sI1 −A11 A12
A21

ε sI2 − A22
ε

∣∣∣∣∣∣∣∣∣sI2−
A22

ε

∣∣∣
⇓∣∣∣sI2 − A22

ε

∣∣∣ |sI1 −An| =
∣∣∣∣∣ sI1 −A11 A12

A21 εsI2 −A22

∣∣∣∣∣
=

∣∣∣∣∣ sI1 −A11 A12
A21

ε sI2 − A22
ε

∣∣∣∣∣ = |sI−A|

. (26)

Owing to the small ε value, the following can be set when reducing the full model of the
original system:

εsI2∆ŷ = 0. (27)



Energies 2018, 11, 254 9 of 25

Thus, Equation (22) is further simplified as shown below after order reduction:

sI1∆x̂ =
[
A11 −A12A−1

22 A21

]
∆x̂ +

[
B1 −A12A−1

22 B2

]
∆û

⇓
sI1∆x̂ = A′n∆x̂ + B′n∆û

. (28)

Subsequently, the characteristic equation of IIDG order reduction model satisfies the following
equation (from the properties of the matrix Schur complement):

|A22||sI1 −A′n| = |A22|
∣∣∣sI1 −A11 + A12A−1

22 A21

∣∣∣
=

∣∣∣∣∣ sI1 −A11 A12

A21 −A22

∣∣∣∣∣ = 0
. (29)

The following can be deduced by Equation (26):

|sI−A| =
∣∣∣∣∣ sI1 −A11 A12

A21
ε sI2 − A22

ε

∣∣∣∣∣. (30)

When ε is close to 0:

|sI−A| ≈ 1
ε

∣∣∣∣∣ sI1 −A11 A12

A21 −A22

∣∣∣∣∣ = |A22|
ε

∣∣sI1 −A′n
∣∣. (31)

Therefore, the eigenvalues of the system order reduction model calculated by Equation (13) are all
eigenvalues corresponding to the slow dynamic state variables in the full model of the original system,
which is not related to ε.

By combining Equations (26) and (31), when ε is sufficiently small, the static stability of the
original system is entirely determined by the stability of the order reduction system An and the
boundary layer system A22 simultaneously. Hence, if and only if the order reduction and boundary
layer systems are both stable, the original system can be stabilized; otherwise, the static stability may
be inconsistent.

3.2. Consistency Proof of Transient Stability before and after Order Reduction

According to singular perturbation theory, when the singular perturbation parameter εi of a state
variable is sufficiently small, the system of Equation (20) can be approximately decomposed into the
following order reduction system: {

d
dt x̂s = f(x̂s, ŷs)

0 = g(x̂s, ŷs, û)
(32)

and boundary layer system:
d
dt x̂s = f(x̂s, ŷs)

εi
d
dt ŷf = g(x̂s(t0), ŷs(t0) + ŷf, û)

. (33)

In Equation (31), x̂s is a state variable with the initial value of x̂s(t0) = x̂0, and ŷs denotes an
algebraic variable with the initial value satisfying g(x̂s(t0), ŷs(t0)) = 0. In Equation (33), ŷf represents
a state variable. When εi is sufficiently small, the action time of the boundary layer system can be
approximately viewed as short, and x̂s will remain in its original value, thereby neglecting the rapid
dynamic variable of the system.

Equations (20) and (32) correspond to the system before and after order reduction, respectively.
These equations have completely consistent equilibrium points. If the dominant unstable equilibrium
points (UEP) of the system before and after order reduction are both (x̂u , ŷu), when εi selects any
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sufficiently small positive value ε, then the Jacobian matrix of the original system Equation (20) at the
UEP is as follows:

J(ε) =

[
fx fy
gx
ε

gy
ε

]
=

[
J11 J12
J21
ε

J22
ε

]
(34)

where J11 = fx = (∂f/∂x̂)
∣∣∣(x̂u ,ŷu)

; J12 = fy = (∂f/∂ŷ)
∣∣∣(x̂u ,ŷu)

; J21 = gx = (∂g/∂x̂)
∣∣∣(x̂u ,ŷu)

;

and J22 = gy = (∂g/∂ŷ)
∣∣∣(x̂u ,ŷu)

.
If the left eigenvector of the unstable eigenvalue J(ε) of µ(ε) is expressed as η(ε) =[

ηT
1 (ε) ηT

2 (ε)
]T

, in which η1(ε) is (n− n0)× 1 column vector and η2(ε) is n0 × 1 column vector, then:

JT(ε)η(ε) =

 JT
11

JT
21
ε

JT
12

JT
22
ε

[ η1(ε)

η2(ε)

]
= µ(ε)

[
η1(ε)

η2(ε)

]
. (35)

If J22 is reversible, then the following can be obtained by Equation (35):

lim
ε→0

η2(ε) ≈
(
−εJ−T

22 JT
12η1(ε)

)
= 0 (36)

(
JT

11 − JT
21J−T

22 JT
12

)
lim
ε→0

η1(ε) ≈ lim
ε→0

µ(ε)lim
ε→0

η1(ε). (37)

Similarly, the Jacobian matrix of the order reduction system Equation (32) at the UEP (x̂u , ŷu) can
be further deduced to the following:

J′ = J11 − J12J−1
22 J21. (38)

Assuming µ′, the unstable eigenvalues of J′, which has the left eigenvector of η′1, then:

J′Tη′1 =
(

JT
11 − JT

21J−T
22 JT

12

)
η′1 = µ′η′1. (39)

If J′ and J(ε) have the same unstable eigenvalue when ε is sufficiently small, that is., µ′ = lim
ε→0

µ(ε),

then η′1 ≈ C1lim
ε→0

η1(ε) can be obtained after comparing Equations (37) and (39). C1 is a constant.

The stability region boundary function of the original system (20) is constructed in this study
according to the quadratic approximation method of the stability region boundary of the nonlinear
system [27]. The function can be expressed as follows:

hQ(x̂, ŷ, ε) = ηT(ε)

[
x̂− x̂u

ŷ− ŷu

]
+

1
2

[
x̂− x̂u

ŷ− ŷu

]T

Ψ(ε)

[
x̂− x̂u

ŷ− ŷu

]
. (40)

Among the preceding equations, the coefficient matrix of the quadratic term Ψ(ε) satisfies the
following Lyapunov matrix equation:

C(ε)Ψ(ε) + Ψ(ε)CT(ε) = H (41)

where Ψ(ε) =

[
Ψ11(ε) Ψ12(ε)

ΨT
12(ε) Ψ22(ε)

]
, in which Ψ11(ε) is (n − n0)×(n − n0) matrix; Ψ12(ε) denotes

(n − n0) × n0 matrix; Ψ22(ε) refers to n0 × n0 matrix; C(ε) =
(
µ(ε)In/2− JT(ε)

)
; In represents n order

unit matrix; and H, which is expressed below, denotes the Hessian matrix of the function at the
equilibrium point (x̂u , ŷu):
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H =
n−n0

∑
i=1

(η1(ε))iHs(fi) +
1
ε

n0

∑
j=1

(η2(ε))jHs(gj) (42)

where (η1(ε))i is the ith element of η1(ε); (η2(ε))j denotes the jth element of η2(ε); and Hs(fi) Hs(gj),
which are expressed below, represent the Hessian matrixes of f i and gj at the UEP, respectively (x̂u , ŷu);
i = 1, 2, . . . , n − n0, j = 1, 2 . . . , n0:

Hs(fi) =

 H fi
xx H fi

xy(
H fi

xy

)T
H fi

yy

 =

 ∂2fi
∂x̂2

∂2fi
∂x̂∂ŷ(

∂2fi
∂x̂∂ŷ

)T
∂2fi
∂ŷ2

 (43)

Hs(gj) =

 H
gj
xx H

gj
xy(

H
gj
xy

)T
H

gj
yy

 =
1
ε


∂2gj

∂x̂2

∂2gj
∂x̂∂ŷ(

∂2gj
∂x̂∂ŷ

)T
∂2gj

∂ŷ2

. (44)

Based on the assumption that ε is sufficiently small and the eigenvalue of J22 has strictly negative
realness, Equation (40) is expanded and further expressed as follows:

Ψ11(ε)
(

µ(ε)In−n0
2 − J′

)
+
(

µ(ε)In−n0
2 − J′T

)
Ψ11(ε) ≈

n−n0
∑

i=1
(η1(ε))iH

f
i −

n0
∑

j=1

(
J−T

22 JT
12η1(ε)

)
j
Hg

j

. (45)

The specific deduction proof is shown in Appendix C. In the previous equation:

H f
i = H fi

xx −H fi
xyJ−1

22 J21 − JT
21J−T

22

(
H fi

xy

)T
+ JT

21J−T
22 H fi

xxJ−1
22 J21

Hg
j = H

gj
xx −H

gj
xyJ−1

22 J21 − JT
21J−T

22

(
H

gj
xy

)T
+ JT

21J−T
22 H

gj
yyJ−1

22 J21.

Similarly, the stability region boundary function of the order reduction system Equation (32) is:

h′Q(x̂) = η′
T
(x̂− x̂u) +

1
2
(x̂− x̂u)

TΨ′(x̂− x̂u) (46)

where Ψ′ is the (n − n0) × (n − n0) coefficient matrix of the quadratic coefficient. The Lyapunov matrix
equation is also satisfied, which can be expressed as follows:

Ψ′
(

µ(ε)In−n0

2
− J′

)
+

(
µ(ε)In−n0

2
− J′T

)
Ψ′ ≈

n−n0

∑
i=1

(
η′1
)

iH
f
i −

n0

∑
j=1

(
J−T

22 JT
12η′1

)
j
Hg

j . (47)

The following can be obtained after comparing the preceding equation and Equation (44):

Ψ′ ≈ C2lim
ε→0

Ψ11(ε). (48)

Therefore, the stability region boundary functions of the original and order reduction systems
have the following relations:

h′Q(x̂) ≈ C2lim
ε→0

hQ(x̂, ŷ, ε). (49)

According to the definition of the transient stability index in stability region boundary theory of
the nonlinear system [28], the transient stability index of the original system is defined as follows:

IQ(x̂0, ŷ0, ε) =
hQ(x̂0, ŷ0, ε)

hQ(x̂s, ŷs, ε)
. (50)
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The transient stability index of the order reduction system is defined as:

I′Q(x̂0) =
h′Q(x̂0)

h′Q(x̂s)
. (51)

(x̂s, ŷs) is the stable equilibrium point (SEP) of the original and order reduction systems.
The transient stability indexes before and after order reduction should satisfy the following relations:

I′Q(x̂0) ≈ lim
ε→0

IQ(x̂0, ŷ0, ε). (52)

The sufficient condition for Equation (52) is that the eigenvalue of J22 has the strictly negative
realness. Moreover, the transient stability of the original system and the order reduction system is
consistent, and the transient stability indexes are approximately equal. According to the introduction
of stability region boundary theory in [28], the transient stability index reflects whether the operating
point of the system is within the stability region boundary. When the system is stable, the transient
stability index is positive; when the system is unstable, the transient stability index is negative;
when the system is zero, the system is in the critical stable state. Table 1 shows the transient stability law.

Table 1. Transient state stability laws of order reduction before and after reduction.

Boundary Layer
System

Original
System

Order Reduction
System

Transient Stability
Index

Transient Stability
Consistency

Stable Stable Stable Both positive numbers Conformity
Stable Unstable Unstable Both negative numbers Conformity

Unstable Unstable Stable Opposite sign Inconformity
Unstable Unstable Unstable Both negative numbers Conformity

3.3. Consistency Evaluation of Dynamic Response before and after Order Reduction

In order to evaluate the dynamic response consistency of the system state variables before and
after the order reduction, the Prony transformation is used to extract the three crucial characteristics
of dynamic response: frequency, damping and amplitude [29]. The Prony transformation describes
the time-series sampling data of dynamic response by a set of linear combinations of exponential
function. Through the appropriate expansion [30], the frequency, damping coefficient, amplitude
and initial phase angle of a given sampling data can be estimated. Three consistency indexes of
frequency, damping and amplitude are applied to represent the error of dynamic response. By the
Prony transformation on the dynamic response of the original detailed system, the frequency and
energy can be written as: {

Fd = ( fd1, fd2, . . . , fdn)

Ed = (λd1, λd2, . . . , λdn)
(53)

where fdi and λdi (i = 1, 2 . . . n) are the frequency and energy of the ith element for the dynamic
response of detailed system. The frequency and energy of order reduction models can also be obtained
by same transformation as: {

Fs = ( fs1, fs2, . . . fsn)

Es = (λs1, λs2, . . . , λsn)
(54)

where fsi and λsi (i = 1, 2 . . . n) are the frequency and energy of the ith element of the reduction model.

(1) Consistency index of frequency

The frequency consistency index of the reduction model can be obtained by comparing the
frequency vectors of Fd and Fs. The non-periodic signals are useless for analyzing frequency
information, so the non-periodic signals are removed in the calculation of frequency consistency.
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The energy signal of each element is chosen as the weight in calculating the consistency of the
frequency. The frequency consistency is defined as:

wi =
λdi

n
∑

i=1
λdi

(55)

σi = 1−
∣∣∣∣ fdi − fsi
max( fdi, fsi)

∣∣∣∣ (56)

ϕ f =
n

∑
i=1

wiσi (57)

where σi and wi are the frequency consistency and weight of ith element; φf is the frequency consistency
index of dynamic response for the order reduction model.

(2) Consistency index of damping

Same with the frequency consistency, the damping consistency index can be obtained as:

ηi =

{
1−

∣∣∣ ξdi−ξsi
max(ξdi ,ξsi)

∣∣∣, ξdiξsi > 0

0, ξdiξsi < 0
(58)

ϕξ =
n

∑
i=1

wiηi, (59)

where ηi is the damping consistency of the ith element; ξdi and ξsi are the damping of the ith element
for the detailed model and the reduction model calculated by the Prony transformation [30]; φξ is the
damping consistency index of the dynamic response for the order reduction model. It is noted that the
ηi could be zero when ξdi and ξsi having different sign, which means the dynamic response of these
two models have the opposite stability trend, and the damping characteristic of these two elements
are independent.

(3) Consistency index of amplitude

Similarly, the amplitude consistency index can be given as:

εi = 1−
∣∣∣∣ Adi − Asi
max(Adi, Asi)

∣∣∣∣ (60)

ϕA =
n

∑
i=1

wiεi, (61)

where εi is the amplitude consistency of the ith element; Adi and Asi are the amplitudes of ith element
for the detailed model and the reduction model respectively; φA is the amplitude consistency index of
dynamic response for order reduction models. These three consistency indexes are between 0 and 1.
The more closely they approach 1, the more the higher similarity they have.

4. Simulation Studies

The effectiveness of IIDG order reduction is verified by the static and transient stability consistency
proofs in Section 3. In Section 4, the simulation results are used as well to verify the effectiveness
of order reduction through a stand-alone case and a practical microgrid cases. Verifications mainly
include the comparisons of eigenvalue, transient stability index and time-domain waveform between
original model and different order-reduction models.
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4.1. Stand-Alone System (System 1)

The example system in Figure 3 is selected to verify the effectiveness of the preceding order
reduction system presented. An IIDG is connected to the PCC via the LCL circuit, in which the IIDG
full model has 13 orders, including three orders of outer loop power droop controller, four orders
of voltage and current dual-loop controller, and six orders of filter and line. The detailed simulation
parameters of System 1 are consistent with the IIDG system provided in Appendix A.
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Table 2 shows the initial values and operating equilibrium points of various state variables of
IIDG. Under the operating condition of the SEP, the small signal stability of System 1 is analyzed.
The eigenvalues of the system before and after order reduction can be obtained by solving the state
matrix, as shown in Table 3.

Table 2. Initial values and equilibrium points of test system 1.

State Variables Initial Value 1/pu Initial Value 2/pu SEP/pu UEP/pu

δ 0.1189 0.1237 0.1319 0.1626
P 0.5000 0.5590 0.5817 0.6844
Q 0.0500 0.1118 0.0500 0.1118
φd 0.0000 0.0000 0.0000 0.0000
φq 0.0000 0.0000 0.0000 0.0000
λd 0.0000 0.0000 0.0000 0.0000
λq 0.0000 0.0000 0.0000 0.0000

iL1d 0.5256 0.4393 0.6770 0.5286
iL1q 0.3426 0.5531 0.3105 0.5067
u2d 0.7164 0.6229 0.7572 0.6413
u2q 0.3604 0.5160 0.2815 0.4710
iL2d 0.5290 0.4441 0.6797 0.5330
iL2q 0.3359 0.5474 0.3036 0.5009

Table 3. Eigenvalues of IIDG models at SEP.

System Eigenvalues Order Reduction Form

3rd Order (ε2 = 0) 1st Order (ε1 = 0, ε2 = 0)

Fast subsystem σ(A22)

−12,277 ± 331i
−687± 2952i
−849 ± 2813i
−1889 ± 73i
−101 ± 294i

−12,277 ± 332i
−689 ± 2954i
−850 ± 2811i
−1888 ± 74i
−109 ± 298i
−29
−10

Slow subsystem σ(An) −18.41 ± 25.96i
−2.568 −8.367

Original system σ(A)

−12,277 ± 332i
−689 ± 2954i
−850 ± 2811i
−1888 ± 74i
−111 ± 297i
−16 ± 25i
−3

Order Reduction Form 1 is a third-order model that reserves the power outer loop control equation
and the phase angle equation, whereas Order Reduction Form 2 is a first-order model that reserves
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only the phase angle equation. According to the calculation results in Table 3, the order reduction
precision of the third-order model is higher than that of the first-order model. However, if the rapid
dynamic reduction form is neglected, then the static stability consistency of both models before and
after order reduction can be guaranteed.

Table 4 shows that the transient stability index of the original system IQ(x0, y0, ε) is 0.7989
under the effect of Initial Value 1, which indicates the stability of the original system. At this point,
the transient stability indexes of the third- and first-order systems are 0.8240 and 0.6241, respectively.
They are of the same sign as the transient stability index of the original system, and the order reduction
systems are in the stable state. In addition, J22 is found to guarantee the strictly negative realness of
the eigenvalues under two order reduction forms through calculation, which means that the transient
stability of the system before and after order reduction is consistent.

Table 4. Transient stability analysis result of test system 1.

Order Reduction Form

Transient Stability Analysis Result
under Initial Value 3

Transient Stability Analysis Result
under Initial Value 4

Original
Model

3rd Order
Model

1st Order
Model

Original
Model

3rd Order
Model

1st Order
Model

Transient Stability Index IQ 0.7989 0.8240 0.6241 −0.0033 0.0054 0.2080
Stability Consistency /

√ √
/ × ×

Calculation Time 24 s 18 s 5 s 27 s 15 s 3 s

Under the effect of Initial Value 2, the transient stability index of the original system IQ(x0, y0, ε)
is −0.0033. During this time, the transient stability indexes of the third- and first-order systems are
0.0054 and 0.2080, respectively. The transient stability indexes before and after order reduction are
of different signs. The original system is unstable, and the order reduction systems are in the stable
system. In addition, J22 cannot guarantee the strictly negative realness of the eigenvalues through
calculation. In other words, under the precise original system instability, the transient stability of the
system before and after order reduction is inconsistent, which corresponds to the third analysis case
in Table 1. The calculation time of different models are also shown in Table 4. Due to the reduced
complexity of the model, 1st order model takes less calculation time than 3rd order model.

The δ-U2 solution curves of the original and order reduction systems are obtained under the effect
of two initial values through time-domain simulation, as shown in Figure 4. Under the effect of Initial
Value 1, the solution curves of the original system model and the order reduction system model in
Figure 4a can converge to a SEP. However, under the effect of Initial Value 2, the solution curve of the
original system in Figure 4b cannot converge to the SEP. The time-domain simulation of the curve in
Figure 4 indirectly verifies the transient stability index analysis results.
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Figure 5a,b are the time-domain simulation results of the system under the small
disturbance, where iL2, IL2, and ∆ω are the instantaneous current, frequency deviation, and RMS
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(Root-Mean-Square) current of IIDG output respectively. The small disturbance form is that PCC
voltage U steps from 1.0 to 1.05. The dynamic response results in Figure 5a further verify the stability
analysis results of the preceding table. At the SEP, the stability of the system remains unchanged
before and after order reduction. Figure 5b corresponds to the instability of the original system.
During this time, the order reduction system remains stable. Hence, the stability consistency of the
system cannot be guaranteed under the condition of original system instability. Table 5 shows the
calculation results of three consistency indexes of dynamic response for the IIDG output current in
Figure 5a. When operating at stable point, high values of these three consistency indexes are presented
which clearly means that the difference of dynamic responses between the order reduction models and
original model are relatively small.Energies 2018, 11, 254 17 of 27 
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Table 5. Consistency indexes of dynamic response for reduction models in stand-alone system.

IIDG Output Current at
Stable Point

Frequency
Consistency Index

Damping Consistency
Index

Amplitude
Consistency Index

3rd Order
Model

1st Order
Model

3rd Order
Model

1st Order
Model

3rd Order
Model

1st Order
Model

98.26% 95.34% 96.14% 93.58% 95.31% 91.71%

4.2. Three-IIDG Microgrid Pilot Project System (System 2)

The distributed photovoltaic power generation and microgrid operation control pilot project
at the Henan College of Finance and Taxation under practical operation is selected as a simulation
example. In the pilot project, the system capacity is 380 kW PV and two × 100 kW/kWh energy
storage. The network structure can be equivalent to the microgrid with three IIDGs connected in
parallel (two energy storage power sources and a PV power source), as shown in Figure 6. Appendix D
presents the detailed parameters of System 2. Table 6 shows the initial values and operating equilibrium
points of the state variables.
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The eigenvalues of the system before and after order reduction can be obtained through the small
signal stability analysis of the microgrid system under the SEP condition. Each IIDG uses two order
reduction models deducted in the paper, namely, the third- and first-order models. The complete
39-order microgrid model selects only the dominant eigenvalues to analyze the problem, and all order
reduction models are processed by neglecting fast dynamics to only analyze the eigenvalues of the
slow subsystem, as shown in Table 7.



Energies 2018, 11, 254 18 of 25

Table 7. Dominant eigenvalues of test system 2 order reduction at stable point.

Order Reduction Form Eigenvalues

Original model (dominant poles) −14.70 ± 25.01i
−2.93

−14.38 ± 16.91i
−9.43

−14.34 ± 16.98i
−9.41

Adopting 3rd-order model −18.41 ± 25.96i
−2.57

−14.84 ± 16.56i
−9.57

−14.85 ± 16.52i
−9.54

Adopting 1st-order model −8.36 −16.89 −16.86

From the analysis results in Table 7, the static stability consistency of the three-IIDG microgrid
system before and after order reduction can be guaranteed under the premise of neglecting the variable
dynamics of the system. When IIDG uses the third-order model for order reduction, the eigenvalue
of the slow subsystem and the static stability are relatively close to the dominant eigenvalue of the
original system. The eigenvalue of the system with the first-order model is significantly different from
that of the original system but can still guarantee the static stability of the system.

Table 8 further analyzes the eigenvalues of System 2 at the UEP before and after order reduction
and finds that the original and order reduction systems of IIDG using the third-order model are
unstable. However, the IIDG using the first-order model for order reduction remains stable. In other
words, considering system instability, the order reduction of IIDG by the third-order model is suitable
for the simulation results of the original system. Therefore, based on the analysis results in Table 6,
the static stability of IIDG using the third-order reduction model is better than that of IIDG using the
first-order model.

Table 8. Dominant eigenvalues of test system 2 order reduction at unstable point.

Order Reduction Form Eigenvalues

Original model (dominant poles) −3.23 ± 48.34i
3.01

−10.14 ± 39.02i
−0.55

−9.43 ± 38.68i
−0.56

Adopting 3rd-order model −17.63 ± 53.64i
2.53

−17.82 ± 40.98i
−0.48

−17.94 ± 40.94i
−0.49

Adopting 1st-order model −0.65 −3.89 −3.86

Table 9 further analyzes the transient stability of System 2 at Initial Values 3 and 4 before and after
the order reduction. Under the effect of Initial Value 3, the transient stability indexes of the original and
order reduction systems are consistent. Under the effect of Initial Value 4, the transient stability indexes
of the original and third-order systems are negative and those of the first-order system are positive.
For the first-order system, under the premise that the original system is unstable, the transient stability
consistency cannot be guaranteed. Thus, the transient stability of the system using the third-order
reduction model is better than that of the system using the first-order reduction model. The calculation
time comparison of different cases in Table 9 shows that the time saving is still impressive for the
reduction models of IIDG. The finding implies that the larger the test system is, the more significant
the improved computational efficiency will be. Especially for the 1st model, the calculation time
is nearly unchanged comparing with the standalone case. However, comprehensively considering
transient stability and calculation time, the 3rd order model has a better performance than adopting
1st order model.
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Table 9. Transient stability analysis of test system 2.

Order Reduction Form

Transient Stability Analysis Result
under Initial Value 3

Transient Stability Analysis Result
under Initial Value 4

Original
Model

3rd Order
Model

1st Order
Model

Original
Model

3rd Order
Model

1st Order
Model

Transient Stability Index IQ 0.7309 0.7211 0.5387 −0.1028 −0.0532 0.0122
Stability Consistency /

√ √
/

√
×

Calculation Time 124 s 48 s 10 s 128 s 52 s 5 s

Figure 7 further presents the projections of the stability region boundary of System 2 on the δ1–δ2

phase plane before and after order reduction, in which A and B are the projections of Initial Values 3
and 4, respectively. The stability region boundary curve shows that the system stability region is
closer to that of the original system compared with that of the first-order model after IIDG adopts
the third-order model for order reduction. As Initial Value 3 (Point A) is within three stability region
boundaries, the transient stability consistency of this value before and after order reduction must
be guaranteed. If Initial Value 4 (Point B) is outside the stability region boundaries of the original
and third-order systems and located in that of the first-order system, then the transient stability
consistency of IIDG before and after order reduction can be guaranteed by taking the third-order
model. However, transient stability consistency cannot be guaranteed if the first-order model is used.
This result is consistent with the transient stability index analysis results in Table 8.
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Figure 8a,b are the time-domain simulation results of the microgrid system under the small
disturbance happened in load, where u, U, and ∆ω are the instantaneous voltage, RMS voltage, and
frequency deviation at PCC respectively. The small disturbance form is the load demand steps from 1.0
to 1.1. When operating at SEP, the stability of the system remains unchanged with IIDG adopting two
different order reduction models (1st and 3rd). However, at UEP in Figure 6b, the stability consistency
of the system cannot be guaranteed under the condition of original system instability. Table 10 show
the calculation results of three consistency indexes for the microgrid PCC voltage dynamic response in
Figure 8a. For operating at stable point, high values demonstrate the good match between the order
reduction system and original system.

Table 10. Consistency indexes of dynamic response for reduction models in microgrid system.

Microgrid PCC Voltage
at Stable Point

Frequency Consistency
Index

Damping Consistency
Index

Amplitude Consistency
Index

3rd Order
Model

1st Order
Model

3rd Order
Model

1st Order
Model

3rd Order
Model

1st Order
Model

98.51% 94.87% 97.94% 96.21% 96.38% 92.14%
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5. Conclusions

This study establishes the full detailed model for IIDG based on the droop control in microgrid,
extracts the multi-time scale singular perturbation parameters of the model according to singular
perturbation theory, implements the order reduction processing of neglecting fast dynamics,
and proposes the simplified first and third-order reduction models. Then, this study verifies the
static and transient stability consistency of the system before and after order reduction by theoretical
derivation and introduction of the quadratic approximation method of the stability region boundary.
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The results show that the static and transient stability consistency of the IIDG system before and after
order reduction can be guaranteed when the original system operating at stable state. Through the
eigenvalue comparisons, the transient stability index comparisons and time-domain waveform results
of the stand-alone system and the microgrid system, the effectiveness of the time-scale division and
order reduction processing of the IIDG full model are finally proved.
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Appendix A

Appendix A.1. IIDG Parameters

Pn = 120 kVA, Un = 208 V, fn = 50 Hz, L1 = 1.5 mH, R1 = 0.15 Ω, C = 45 µF, L2 = 0.53 mH, R2 = 0.05 Ω,
m = 1 × 10−4 rad/s/W, n = 1 × 10−3 V/Var, ωc = 30 rad/s, ωn = 101 πrad/s, Kp1 = 10, Ki1 = 15,000,
Kp2 = 0.048, Ki2 = 400, H = 0.65, P = 50 kW, Q = 5 kVar.

Appendix A.2. IIDG Detailed Model

AI IDG =

[
APQ 0

0 ACV

]
; B =

[
0

BCV

]
; F(x) =

 F1

F2

F3

 (A1)

APQ =

 0 −m 0
0 −ωc 0
0 0 −ωc

 (A2)

ACV =



0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0

Ki2 0 0 0 −1 0 −Kp2 −ωnC H 0
0 Ki2 0 0 0 −1 ωnC −Kp2 0 H

Kp1Ki2
L1

0 Ki1
L1

0 −Kp1+R1
L1

ω−ωn −Kp1Kp2
L1

−Kp1ωnC
L1

Kp1 H
L1

0

0
Kp1Ki2

L1
0 Ki1

L1
ωn −ω −Kp1+R1

L1

Kp1ωnC
L1

−Kp1Kp2
L1

0
Kp1 H

L1

0 0 0 0 1
C 0 0 ω − 1

C 0
0 0 0 0 0 1

C −ω 0 0 − 1
C

0 0 0 0 0 0 1
L2

0 − R2
L2

ω
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BI IDG =

[
0 . . . 0 − 1

L2
0

0 . . . 0 0 − 1
L2

]T
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(A4)

F1 =

 ωn
3
2 ωc

(
u2diL2d + u2qiL2q

)
3
2 ωc

(
u2diL2q − u2qiL2d

)
; F2 =


(U20 − nQ) cos δ

(U20 − nQ) sin δ

Kp2(U20 − nQ) cos δ

Kp2(U20 − nQ) sin δ

; F3 =



Kp1Kp2
L1

(U20 − nQ) cos δ
Kp1Kp2
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0
0
0
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Appendix B

Figure A1 and Table A1 show that the eigenvalues of the IIDG complete model are distributed
in multiple frequency bands, with significant multi-time scale characteristics. The IIDG multi-time
scale model can be obtained by using strict model simplification and extracting perturbation factors.
According to the principle of the multi-time scale division, if the system remains stable and has a
characteristic spectrum, then the eigenvalues of system state matrix As can be arranged from small to
large based on their absolute values, which can be shown as follows:

0 < 3 < 29.68 < 300 < 0.19 × 104 < 0.29 × 104 < 0.30 × 104 < 1.23 × 104

Table A1. Eigenvalues of IIDG detailed model.

Eigenvalues Values

λ1,2 −1.2277 × 104 ± 0.0332 × 104i
λ3,4 −0.0689 × 104 ± 0.2954 × 104i
λ5,6 −0.085 × 104 ± 0.281 × 104i
λ7,8 −0.189 × 104 ± 0.007 × 104i
λ9,10 −0.011 × 104 ± 0.030 × 104i
λ11,12 −16 ± 25i
λ13 −3
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Among the preceding values, the separation ratios can be presented as µ1 = 29.68/300 = 0.099
<< 1, µ2 = 3/29.68 = 0.101 << 1, which can be viewed as the marks of the multi-time scale division.
Therefore, the model of IIDG is a standard three-time scale model.

State Matrix of the IIDG Complete Model
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Appendix C

Ψ11(ε)

(
µ(ε)In−n0

2
− J11

)
+

(
µ(ε)In−n0

2
− JT

11

)
Ψ11(ε)−

Ψ12(ε)J21
ε

−
JT

21ΨT
12(ε)

ε
= Sxx (A8)

Ψ12(ε)

(
µ(ε)In0

2
− J22

ε

)
+

(
µ(ε)In−n0

2
− JT

11

)
Ψ12(ε)−Ψ11(ε)J12 −

JT
21Ψ22(ε)

ε
= Sxy (A9)

ΨT
12(ε)

(
µ(ε)In−n0

2
− J22

ε

)
+

(
µ(ε)In0

2
− JT

22
ε

)
ΨT

12(ε)− JT
12Ψ11(ε)−

Ψ22(ε)J21
ε

= ST
xy (A10)

Ψ22(ε)

(
µ(ε)In0

2
− J22

ε

)
+

(
µ(ε)In0

2
− JT

22
ε

)
Ψ22(ε)−ΨT

12(ε)J12 − JT
12Ψ12(ε) = Syy. (A11)

In the preceding equations:

Sxx =
n−n0

∑
i=1

(η1(ε))iH
fi
xx +

1
ε

n0

∑
j=1

(η2(ε))jH
gj
xx; Sxy =

n−n0

∑
i=1

(η1(ε))iH
fi
xy +

1
ε

n0

∑
j=1

(η2(ε))jH
gj
xy;

Syy =
n−n0

∑
i=1

(η1(ε))iH
fi
yy +

1
ε

n0

∑
j=1

(η2(ε))jH
gj
yy.

Matrix T1 is defined as JT
22⊗ In0 + In0 ⊗ JT

22, where⊗ can be viewed as the tensor product mapping
mark of semi-tensor product algorithm. If T1 is invertible, then Equation (A11) can be derived as:

Ψ22(ε) = −εV−1
c

(
In2

0
− εµ(ε)T−1

1

)
T−1

1 Vc

(
Syy + ΨT

12(ε)J12 + JT
12Ψ12(ε)

)
(A12)

where Vc is the column vector accumulation mapping in the semi-tensor algorithm. Ψ22(ε) is
infinitesimal of the same order with ε, which means lim

ε→0
Ψ22(ε) = 0. Assuming that T2 = JT

22 ⊗ In−n0 ,

T3 = µ(ε)In0×(n−n0)
− In0 ⊗ JT

11, and T2 is reversible, then Equation (A13) can be obtained from
Equation (A9).

Ψ12(ε) = −εV−1
c

(
In0×(n−n0)

− εT3T−1
2

)
T−1

2 Vc

(
Sxy + Ψ11(ε)J12 +

JT
21Ψ22(ε)

ε

)
. (A13)

Plugging Equation (A9) into (A13) to find that Ψ12(ε) is also infinitesimal of the same order with
ε, that is, lim

ε→0
Ψ12(ε) = 0.

Combining Equations (A8) to (A13), (A14) can be derived as follows:

Ψ11(ε)

(
µ(ε)In−n0

2
− J′

)
+

(
µ(ε)In−n0

2
− J′T

)
Ψ11(ε) =

n−n0

∑
i=1

(η1(ε))iH
f
i +

1
ε

n0

∑
j=1

(η2(ε))jH
g
j . (A14)

Considering the relationship with Equation (35), (A14) can be further represented as:

Ψ11(ε)
(

µ(ε)In−n0
2 − J′

)
+
(

µ(ε)In−n0
2 − J′T

)
Ψ11(ε) ≈

n−n0
∑

i=1
(η1(ε))iH

f
i −

n0
∑

j=1

(
J−T

22 JT
12η1(ε)

)
j
Hg

j . (A15)
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Appendix D

Parameters of Three-IIDG Microgrid Pilot Project System

IIDG1: Pn1 = 380 kVA, Un1 = 208 V, fn1 = 50 Hz, L11 = 1.5 mH, R11 = 0.15 Ω, C1 = 45 µF, L21 = 0.53 mH,
R21 = 0.05 Ω, m1 = 1× 10−4 rad/s/W, n1 = 1× 10−3 V/Var, ωc1 = 30 rad/s, ωn1 = 101 πrad/s, Kp11 = 10,
Ki11 = 15,000, Kp21 = 0.048, Ki21 = 400, H1 = 0.65, P1 = 200 kW, Q1 = 10 kVar.

IIDG2: Pn2 = 100 kVA, Un2 = 208 V, fn2 = 50 Hz, L12 = 1.5 mH, R12 = 0.15 Ω, C2 = 45 µF, L22 = 0.53 mH,
R22 = 0.05 Ω, m2 = 2.63 × 10−5 rad/s/W, n2 = 5 × 10−4 V/Var, ωc2 = 30 rad/s, ωn2 = 101 πrad/s,
Kp12 = 10, Ki12 = 15,300, Kp22 = 0.048, Ki22 = 400, H2 = 0.70, P2 = 100 kW, Q2 = 5 kVar.

IIDG3: Pn3 = 100 kVA, Un3 = 208 V, fn3 = 50 Hz, L13 = 1.5 mH, R13 = 0.15 Ω, C3 = 45 µF, L23 = 0.53 mH,
R23 = 0.05 Ω, m3 = 2.63 × 10−5 rad/s/W, n3 = 5 × 10−4 V/Var, ωc3 = 30 rad/s, ωn3 = 101 πrad/s,
Kp13 = 10, Ki13 = 15,300, Kp23 = 0.048, Ki23 = 400, H3 = 0.75, P3 = 100 kW, Q3 = 5 kVar.
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