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Abstract:



In this paper, a distributed randomized gradient-free algorithm (DRGF) is employed to solve the complex non-convex economic dispatch problem whose non-convex constraints include valve-point loading effects, prohibited operating zones, and multiple fuel options. The DRGF uses the Gauss approximation, smoothing parameters, and a random sequence to construct distributed randomized gradient-free oracles. By employing a consensus procedure, generation units can gather local information through local communication links and then process the economic dispatch data in a distributed iteration format. Based on the principle of projection optimization, a projection operator is adopted in the DRGF to deal with the discontinuous solution space. The effectiveness of the proposed approach in addressing the non-convex economic dispatch problem is demonstrated by simulations implemented on three standard test systems.
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1. Introduction


The general optimal economic dispatch is realized by designing unit commitment [1] for obtaining the minimum overall generation cost [2]. The centralized optimization methods are generally used in the economic dispatch problems, such as lambda iterative algorithms [3] and interior point algorithms [4], which require the objective function to be derivative. In practice, there exist conditions of valve-point loading effects in units’ startup stages [5], prohibited operating zones during the operation periods [6], and choices of the several economical fuels according to the actual power outputs [5]. These conditions make the economic dispatch problem non-convex, and in this paper, we investigate a non-convex optimization algorithm to address its non-convex characteristic.



Modern metaheuristic algorithms can solve non-convex optimization problems efficiently [7], mainly including genetic algorithm (GA [5,6,8]), particle swarm optimization (PSO [9,10,11,12]), differential evolution algorithms [13,14], and ant colony optimization (ACO, [15,16,17]). They all depend on dispatch centers to manage the information gathering from the whole system and will also use a centralized controller that will bring high communication costs. In addition, these controllers are prone to modeling errors and need a high-bandwidth communication structure with miscellaneous links [18]. Moreover, the reliability of the system is easily vulnerable to the single-point of failure [19]. Recently, the topology of power grids and communication networks are getting time-varying and extensible, but heuristic algorithms suffer a great challenge in meeting the changes.



At present, the distributed framework for economic dispatch has become a hot research topic [20,21,22]. Through building communication lines among the generation units and their neighbors, the distributed economic dispatch collects the essential iteration information and performs the real-time economic dispatch with global optimization. Simulations analyses in [20] show that the distributed dispatch will greatly cut down communication costs. The distributed gradient algorithm [21] has ensured the normal process of distributed economic dispatch when the events of units’ over-limits occur. It maintains the connectivity of the communication topology after reconstructing a virtual one. In [22], with the cost function of energy storage systems non-differentiable, the sub-gradient is used as an alternative of the gradient to implement the non-convex economic dispatch. The algorithms in [20,21,22] are not suitable for solving non-convex optimization problems for difficulties in calculating the cost function’s gradient or sub-gradient. The distributed auction-based algorithm (AA) proposed by [18] handles these non-convex constraints successfully through sharing bids among network agents and resolving the auction in a consensus procedure. However, it introduces too many intermediate variables, which will make the iteration format complex [23].



This paper adopts a distributed randomized gradient-free algorithm (DRGF) to solve non-convex economic dispatch problems with considering valve-point loading effects, prohibited operating zones, and multiple fuel options. The algorithm is based on a distributed communication structure which is cheap, reliable, and robust. Its iteration formula is implemented by employing the randomized derivative-free oracles. The effectiveness of the proposed method is verified on three test systems, and the simulation results indicate that the proposed DRGF approach can cope well with non-convex economic dispatch problems.



This paper is organized as follows. In Section 2, a non-convex economic dispatch with constraints of valve-point loading effects, prohibited operating zones, and multiple fuel options is presented. The DRGF is introduced in Section 3, and the simulation results presented in Section 4 show its effectiveness. Finally, the paper is concluded in Section 5.




2. Non-Convex Economic Dispatch


This paper studies an optimal loads allocation problem within a single time period. Under the premise of satisfying the system’s active power balance constraint and units’ power outputs limits, the total loads can be distributed among all of the units by a most economical scheme.



In conventional economic dispatch, the cost of a thermal generator unit is a quadratic function, and the dispatch center is aimed to minimize the total costs of all generation units.


[image: ]



(1)




where C(P) represents the total costs of all units whose total number is n; Pi is the power outputs of unit i and Ci(Pi) is the production cost. The production characteristic coefficients are ai, bi, and ci.



If the ramp rate limits are considered, the power outputs limits can be expressed as [10]
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(2)




where [image: ] is the previous power output, the upper and lower power output limits are [image: ] respectively, and DRi and UPi are the down and up ramp limits, respectively.



The system must meet the active power balance constraints.


[image: ]



(3)




where Pd is the total load demand. The network losses of the system are Ploss calculated by the Kron formula [18].
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(4)




where Bij, B0,i, and B00 are the losses coefficients.



(a) Valve-point loading effects. To formulate the valve-point loading effects, a sinusoidal term is added to the original cost function [5]
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(5)




where di, ei are the valve-point loading coefficients of unit i.



(b) Prohibited operating zones. Considering this constraint can ensure the stable operation of generation units. Therefore, the units’ power outputs constraints will be modified as follows [9]:


[image: ]



(6)




where Lm,i and Um,i are the lower and upper boundaries of prohibited operating zone m of unit i, respectively. The number of prohibited operating zones of unit i is Mi.



(c) Multiple fuel options. Since units are practically provided with multiple fuel sources, each unit selects the most economical fuel in different operation range. When considering multiple fuel options, the cost function of unit i with valve-point loading effects is formulated as [10]


[image: ]



(7)




where [image: ] are the cost coefficients of unit i under fuel q. P(q−1),i is the lower power outputs limit when the fuel q is in use.




3. Distributed Randomized Gradient-Free Algorithm (DRGF)


3.1. Treatment of Active Power Balance Constraints


The power imbalance among economic dispatch can be described as


[image: ]



(8)




where PΔ is the power imbalance of the system, and it is the difference between the total power and the total loads plus the network active power losses. Then, each unit should adjust its power outputs to meet the supply-demand balance by keeping PΔ within an acceptable level [20].


[image: ]



(9)




where εi represents the power outputs adjustment factor of unit i [20]. It can be calculated by 1/n in this paper.



Assuming that each unit evaluates the network losses associated with its own power outputs [18] as


[image: ]



(10)




where Ploss(i) denotes the evaluated transmission losses by unit i. Based on the actual power outputs and the losses coefficients, the proposed approximation defines the power outputs including the losses, denoted by [image: ], as [18]


[image: ]



(11)




where [image: ] represents the proximate power generation that contains the information of network losses. The rationale for this choice is that the losses for the currently known solution Pi are very close to the losses for the unknown solution [image: ] [18], that is [image: ].




3.2. The Mathematical Reformulation of the Objective Function


The non-convex economic dispatch objective Function (5) can be rewritten as:


[image: ]



(12)




where the vector [image: ] represents the power output vector [image: ]. f(x) is the total operation cost, and fi(xi) is the production cost of unit i. Xi is the set of xi, which represents the feasible power output space. When considering network transmission losses, [image: ] refers to [image: ].



Hence, the original non-convex economic dispatch problem can be rewritten as a non-convex optimization problem. Because the objective function is non-convex and the constraint conditions are discontinuous, this paper employs a distributed randomized gradient-free algorithm to address the problem. Although the objective function in the distributed scheduling model is not smooth, it satisfies the Lipschitz continuity in the variable space [23], and the smoothed version of (12) is given by


[image: ]



(13)




where μi is the smoothing parameter of function [image: ], which represents the Gaussian approximation of fi(xi), explicitly given by [23]
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(14)




where the constant [image: ] is a conversion factor. The random sequence τi satisfies independent distribution, according to the Gaussian distribution for each i. The theory of using Gauss approximation to replace the objective function is briefly shown in the Appendix A.




3.3. The Optimization Process of the Distributed Randomized Gradient-free Algorithm


The DRGF belongs to the distributed scheduling based on a distributed communication network structure, assuming that n units communicate over a network with a time-varying topology that can be denoted by a directed graph via a nodes set [image: ]. We define the matrix W[k] as the communication network structure at the time k (not negative), and the communication weight Wij[k] can describe the communication relationship among units. For all i, j ∈ V, the set of communication link is E(W(k)) = (i,j)|Wij[k] > 0, and each set also includes self-edges (i,i). The units’ connectivity at each time can be represented by a directed graph G(k) = (V, E(W[k])). For the communication matrix and units network, we make the following standard assumptions.



Assumption 1.

For all k, the communication matrix satisfies the following properties:

	(a)

	
W[k] is doubly stochastic;




	(b)

	
The diagonal entries of W[k] are positive, i.e., there exists a scalar ν > 0 such that Wij[k] > ν for all i ∈ V. Additionally, for all i, j ∈ V, if Wij[k] > 0, then Wij[k] > ν.











Assumption 2.

For all k, there exists a positive integer T such that the graph is strongly connected.
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(15)





Since the objective function is non-convex, it can use [image: ] to produce the random gradient-free oracles instead of gradient or sub-gradient in the iteration optimization


[image: ]



(16)




where [image: ] is the random gradient-free oracle of the iteration variable xi at iteration k.



Then, the units collect neighbors’ information by calculating the average weight.
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(17)




where [image: ] is the average weight of xi. The unit j communicates with unit i in a communication weight Wij[k] in the kth interation.



By integrating the above steps, the iteration form of optimization variables can be derived as


[image: ]



(18)




where PX is a projection operator defined in [24]. Iteration step-sizes satisfy the following conditions:


[image: ]



(19)







According to Formulas (13)–(19), the flowchart of the DRGF can be given by Figure 1. Further, the implementation process of the non-convex economic dispatch via the DRGF can be designed, as shown in Figure 2.


Figure 1. The flowchart of the distributed randomized gradient-free algorithm (DRGF).



[image: Energies 11 00244 g001]





Figure 2. The non-convex economic dispatch process via the DRFG.
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The specific procedures of Figure 2 are as follows:

	(1)

	
The input data of operation parameters include the production characteristic coefficients (ai, bi, ci, di, and ei), total number of generation units (n), the total load demand (Pd), and the losses coefficients (Bij, B0,i, and B00). The operation constraints contain the ramp rate limits, the lower and upper boundaries of prohibited operating zones, and the operation ranges of different fuel options.




	(2)

	
The initial power outputs may meet the initial supply-demand balance in Formula (3). So, all of them can be set to the same value [image: ] and Pd is given in references [5,9,25].




	(3)

	
After setting up the initialization power output, the Ploss(i) will be calculated by Formula (10) for considering the network losses. Then, by Formula (11), it can get the proposed approximation [image: ] which contains the information of network losses.




	(4)

	
When the power output falls into the prohibited operating zones, shown in Formula (6), then the unit will operate at its upper boundary (if Pi[k + 1] < Pi[k]) or lower boundary (if Pi[k + 1] > Pi[k]).




	(5)

	
According to the actual power output, the units select the most economical fuel q with the corresponding cost coefficients [image: ] and its operation curve follows the Formula (7).




	(6)

	
If the valve-point loading effects are considered, the sinusoidal term with coefficients di, ei will be added to units’ cost functions.




	(7)

	
When all the equality and inequality constraints are satisfied, it will form the objective functions and feasible solution space, such as shown in Formula (12).




	(8)

	
Next, implement the DRGF optimization (shown in Figure 1) and perform the kth optimization.




	(9)

	
Re-examine the power outputs constraints, and if the constraints meet the Formula (6), it will get into the next step; otherwise, it will go back to step (3).




	(10)

	
Calculate the power imbalance PΔ, and if it exceeds the allowable value, a step of adjustment will be implemented, which is [image: ], then the optimization process will restart from step (3) until the power imbalance PΔ less than 0.01 MW, and finally, the optimum solution can be obtained.









The pseudo code of the distributed randomized gradient-free algorithm for non-convex economic dispatch problem (Algorithm 1) is shown as follows:








	Algorithm 1: the distributed randomized gradient-free algorithm for non-convex economic dispatch problem



	

	1. 

	
INPUT: The operation parameters and constraints and the initial power outputs Pi[0].




	2. 

	
OUTPUT: The optimal power outputs




	3. 

	
PROCEDURE:




	4. 

	
for i = 1  to  n   do




	5. 

	
Calculate the network losses by Formula (10)


[image: ]












	6. 

	
Calculate approximate power generations by Formula (11):


[image: ]












	7. 

	
Deal with the prohibited operating zones according to Formula (6):




	8. 

	
  When Pi[k + 1] < Um,i && Pi[k + 1] < Lm,i  do




	9. 

	
    if  Pi[k + 1] < Pi[k]  then  Pi[k + 1] = Um,i




	10. 

	
    else if  Pi[k + 1] > Pi[k]  then  Pi[k + 1] < Lm,i




	11. 

	
    end if




	12. 

	
Consider valve-point loading effects according to Formula (5):


[image: ]












	13. 

	
Select the fuels according to power outputs according to Formula (7):


[image: ]












	14. 

	
end for




	15. 

	
Optimize sub-problem1:


[image: ]












	16. 

	
Generate Wij[k] and τi[k]; Calculate [image: ],[image: ], and [image: ].




	17. 

	
Go into the optimal iteration process:




	18. 

	
  for k = 0   to  K  do


[image: ]












	19. 

	
Calculate the error precision




	20. 

	
    if the error precision less than 10−5then output theoptimization




	21. 

	
    else reiterate the step 16




	22. 

	
    end if




	23. 

	
Revalidate the constraint conditions in Formulas (2) and (6)




	24. 

	
Calculate the power imbalance by Formula (8)


[image: ]












	25. 

	
    if  [image: ]  then  output the optimum solution




	26. 

	
    else  do   [image: ] and then return to step 4.




	27. 

	
    end if




	28. 

	
end for
















4. Numerical Examples


Three test systems are employed for simulation to verify the effectiveness of the proposed DRGF in solving non-convex economic scheduling problems. The solution space in this paper is compared with the ones get by existing methods.



4.1. Description of the Test Systems


The first test system consists of six units whose cost functions are all quadratic, with prohibited operating zones for four units and network losses. The total load demand is 1263 MW, and the details of the six units are reported in [9].



The second system consists of 10 units with considering both valve-point loading effects and multiple fuel options. The unit-1 has two fuel options, while others have three. The total load demand is 2700 MW, and the details of the ten units are shown in [5].



The third test system contains 40 units with cost functions modeling valve-point loading effects. The load demand is 10,500 MW, and the details of the 40 units are given in [25].




4.2. Setting of Simulation


The DRGF iterates over the power outputs based on the randomized derivative-free oracles. According to the flow chart, the parameters of μi and α[k] may affect the convergence of the algorithm. In [26], the influence of the number of optimization variables and μi on the convergence of the algorithm is studied by several examples. It is a fact that, with the number of optimization variables increasing, the DRGF algorithm requires more iteration to achieve optimal result. μi is set at 0.0005 in the test examples. A dynamic iteration step-size is put to use in this paper, such as [image: ]. The coding is written with MATLAB 2012 programming language and executed on the Intel (R) Core (TM) i5, 2.20-GHz, 8.0-GB RAM processor.




4.3. Solution Quality


Table 1, Table 2 and Table 3 provides the optimization results of six units, ten units and forty units test systems by using the DRGF algorithm, including the optimal power outputs, the total power outputs (TP), the total network losses (TL), and the total costs (TC). Figure 3, Figure 4 and Figure 5 show the optimization curves of TC by various algorithms.


Figure 3. Optimization curves of six units test system. PSO-LRS: particle swarm optimization-simple local random search; NPSO: new particle swarm optimization; NPSO-LRS: new particle swarm optimization- simple local random search.



[image: Energies 11 00244 g003]





Figure 4. Optimization curves of 10 units test system. AA: auction-based algorithm.



[image: Energies 11 00244 g004]





Figure 5. Optimization curves of 40 units test system.



[image: Energies 11 00244 g005]






Table 1. Optimization results of six units test system. PSO-LRS: particle swarm optimization-simple local random search; NPSO: new particle swarm optimization; NPSO-LRS: new particle swarm optimization- simple local random search. DRGF: distributed randomized gradient-free algorithm.







	
The Units

	
Power Outputs by Different Algorithms (MW)




	
PSO-LRS

	
NPSO

	
NPSO-LRS

	
DRGF






	
P1

	
447.4440

	
447.4734

	
446.9600

	
447.4859




	
P2

	
173.3430

	
173.1012

	
173.3944

	
173.3303




	
P3

	
263.3646

	
262.6804

	
263.3436

	
263.3798




	
P4

	
139.1279

	
139.4156

	
139.5120

	
139.1003




	
P5

	
165.5076

	
165.3002

	
164.7089

	
165.4978




	
P6

	
87.16980

	
87.97610

	
89.01620

	
87.13306




	
TP

	
1275.95

	
1275.95

	
1275.94

	
1275.95




	
TL

	
12.9571

	
12.9470

	
12.9361

	
12.9584




	
TC

	
15,450

	
15,450

	
15,450

	
15,450










Table 2. Optimization results of 10 units test system.







	
The Units

	
Power Outputs by Different Algorithms (MW)




	
NPSO-LRS

	
Auction-Based Algorithm (AA)

	
DRGF




	
Fuels

	
Results

	
Fuels

	
Results

	
Fuels

	
Results






	
P1

	
2

	
223.3352

	
2

	
219.1314

	
2

	
219.1312




	
P2

	
1

	
212.1957

	
1

	
212.6569

	
1

	
212.6579




	
P3

	
1

	
276.2167

	
1

	
278.6388

	
1

	
278.6388




	
P4

	
3

	
239.4187

	
3

	
237.4048

	
3

	
237.4046




	
P5

	
1

	
274.6470

	
3

	
279.9248

	
3

	
279.9239




	
P6

	
3

	
239.7974

	
1

	
238.9899

	
1

	
238.9899




	
P7

	
1

	
285.5388

	
3

	
290.0868

	
3

	
290.0877




	
P8

	
3

	
240.6323

	
3

	
237.4048

	
3

	
237.4060




	
P9

	
3

	
429.2637

	
3

	
429.9043

	
3

	
429.9043




	
P10

	
1

	
278.9541

	
1

	
275.8573

	
1

	
275.8575




	
TP($/h) TC($/h)

	
2700.0

	
2700.0

	
2700.0




	
624.13

	
623.95

	
623.95










Table 3. Optimization results of 40 units test system.







	
Units

	
Results (MW)

	
Units

	
Results (MW)

	
Units

	
Results (MW)






	
P1

	
110.9751

	
P15

	
394.5920

	
P29

	
10.8977




	
P2

	
110.9751

	
P16

	
394.5920

	
P30

	
88.1956




	
P3

	
97.88472

	
P17

	
489.5454

	
P31

	
189.1586




	
P4

	
180.0803

	
P18

	
489.5454

	
P32

	
159.7586




	
P5

	
88.1956

	
P19

	
511.7249

	
P33

	
189.1586




	
P6

	
106.1117

	
P20

	
511.7249

	
P34

	
164.8803




	
P7

	
260.2433

	
P21

	
523.4980

	
P35

	
164.8803




	
P8

	
285.1205

	
P22

	
523.4980

	
P36

	
164.8803




	
P9

	
285.1205

	
P23

	
523.4980

	
P37

	
96.6075




	
P10

	
204.9651

	
P24

	
523.4980

	
P38

	
109.2075




	
P11

	
168.9643

	
P25

	
523.4980

	
P39

	
109.2075




	
P12

	
168.9643

	
P26

	
523.4980

	
P40

	
511.7249




	
P13

	
215.0420

	
P27

	
10.8977

	
TP

	
10500




	
P14

	
304.2920

	
P28

	
10.8977

	
TC

	
121,788.7










A varieties of centralized algorithms have been successful presented to solve the six units test system and three improved PSO algorithms have achieved the best result with a minimum cost of 15,450 $/h. The new particle swarm optimization (NPSO) [10] and new particle swarm optimization- simple local random search (NPSO-LRS) [10] are almost the same in convergence rate and show their superiority over the particle swarm optimization-simple local random search (PSO-LRS) algorithm. The NPSO algorithm performs well due to the extra diversification provided by the worst experience component. As shown in Figure 3, the DRGF algorithm can also realize the same minimum generation cost. And it is slightly better than NPSO-LRS due to the distributed searching ability.



The 10 units test system mainly considers valve-point loading effects and multiple fuel options. As shown in Figure 4, a varieties of centralized algorithms have been successful presented to solve the 10 units test system, and three improved PSO algorithms have achieved the best result with a minimum cost of 624.13 $/h. Here, DRGF is faster in convergence rate than that of PSO algorithm. The behavior of AA falls between those of DRGF and NPSO-LRS. For all the three test cases, DRGF runs first in the performance ladder. The proposed worst experience component in the velocity update equation, and the random gradient-free search procedure strengthens the DRGF. From Figure 4, it can be found that the DRGF algorithm can achieve the optimal solution (about 623.95 $/h) as the AA algorithm does, which indicates that the distributed algorithm DRGF is superior to the NPSO-LRS.



When only considering valve-point loading effects, the 40 units test system can be optimized by the DRGF algorithm whose optimization results are provided in Table 3. As a comparison, Table 4 presents the optimal cost under different scheduling methods, and Figure 5 shows the cost curves of the NPSO-LRS, DRGF, and AA. It can be seen that the two distributed economic dispatch schemes (DRGF and AA) obtain a cost of 121,788.70 $/h within 100 iterations, and NPSO-LRS gets a cost of 121,664.43 $/h, the minimum in 100 trials, at about the 570th iteration. In terms of costs, the NPSO-LRS is slightly better than the distributed methods DRGF and AA. But it is found that the convergence speed of the distributed algorithm is obviously better than the centralized algorithm. The DRGF approach is simple and adaptive to large-scale generation systems.



Table 4. Costs for 40 units test system from 100 trials.







	
Algorithms

	
Dispatch Types

	
TC ($/h)




	
Minimum

	
Maximum

	
Average






	
GA (Genetic Algorithm)

	
Centr.

	
135,070.00

	
137,980.00

	
137,760.00




	
PSO

	
Centr.

	
130,380.00

	
137,740.00

	
134,970.00




	
NPSO

	
Centr.

	
121,704.74

	
122,995.10

	
122,221.37




	
PSO-LRS

	
Centr.

	
122,035.79

	
123,461.68

	
122,558.46




	
NPSO-LRS

	
Centr.

	
121,664.43

	
122,981.59

	
122,209.32




	
AA

	
Distr.

	
121,788.70




	
DRGF

	
Distr.

	
121,788.70











4.4. Robustness Test of the Algorithm


Due to the randomness of the calculation process, results acquired from intelligent optimization algorithms are not unique. A great deal of optimization trials, e.g., 100 trials, should be conducted to examine their performance and the optimal operation cost is listed in Table 4 including the minimum, the maximum, and the average data. To compare the results in a statistical manner, the frequencies of attainment of a cost within the specific ranges are presented in Table 5.



Table 5. Frequency of convergence for 40 units test system from 100 trials.







	
Algorithms

	
Range of Costs (105 $/h)




	
1.215–1.220

	
1.220–1.225

	
1.225–1.230






	
NPSO-LRS

	
16

	
61

	
23




	
AA

	
100

	
0

	
0




	
DRGF

	
100

	
0

	
0










As shown in Table 4, the maximum and average cost of centralized algorithms have a large difference with the minimum costs, such as PSO for 7360 $/h and 4590 $/h; NPSO-LRS has achieved better optimization results in many algorithms, with the difference of 1317.16 $/h and 544.89 $/h, respectively. In contrast, the optimal solutions of the distributed scheduling are fixed (seen in Table 5), which demonstrate that the robustness of distributed algorithm is far better than the centralized algorithms. As a result, the DRGF algorithm is more suitable for solving complex non-convex economic dispatch problems.



In this paper, the average CPU (Central Processing Unit) running time is used to analyze the computation efficiency of the DRGF algorithm. We examine the average optimization time To and the operation time Tf with the fixed iteration number (200 steps) to achieve the optimal results under each test system, respectively. The algorithms run 100 times on the MATLAB 2012a, and the average results are shown in Table 6.



Table 6. The time of To and Tf by adopting different algorithms.







	
Algorithms

	
Tf (Second)

	
To (Second）




	
10 Units

	
40 Units

	
10 Units

	
40 Units






	
NPSO-LRS

	
0.00472

	
0.01193

	
0.00519

	
0.05639




	
AA

	
0.00118

	
0.00242

	
0.00146

	
0.00786




	
DRGF

	
0.00113

	
0.00229

	
0.00132

	
0.00723










As is known from the above figure, the algorithm NPSO-LRS will take more time to get the optimal results when the number of units is lager. By analysis and comparison with NPSO-LRS, it can be seen that the distributed scheduling schemes (AA and DRGF) for optimizing non-convex scheduling need less time. Due to different algorithms frameworks, centralized dispatches need to collect all the information of the optimization variables and then process and transmit them in a centralized way. The computational efficiency of the distributed DRGF algorithm is better than NPSO-LRS and AA algorithm.





5. Conclusions


This paper establishes a non-convex economic dispatch model after considering the constraints of valve-point loading effects, prohibited operating zones, and multiple fuel options. According to these complex non-convex characteristics, this paper introduces a DRGF with randomized derivative-free oracles instead of sub-gradients to solve the economic dispatch model. Simulation scenes are implemented on three test systems, and optimization results obtained by different algorithms have been made further comparisons. The analysis validates that the DRGF algorithm can effectively address the complex economic dispatch problem with valve-point loading effects, prohibited operating zones and multiple fuel options. In the next study, effort should be spent on improving the iteration efficiency of the proposed algorithm.
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Appendix A


According to [20] (Theorems 1 and 4, Formulas (11) and (A3)), the following lemma is introduced to provide some important properties of the function [image: ] and the random gradient-free oracle [image: ].



Lemma A1.

for each i, there has



(a) [image: ] is convex and differentiable, and it satisfies


[image: ]



(A1)







(b) The gradient [image: ] satisfies


[image: ]



(A2)







(c) The random gradient-free oracle [image: ] satisfies


[image: ]



(A3)




where fi is Lipschitz continuous over x with Lipschitz constant G0(fi). E[x] denotes the expected value of a random variable x. The further principle description and proof can be found in [26].
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