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Abstract: A thermal runaway prognosis scheme for battery systems in electric vehicles is proposed
based on the big data platform and entropy method. It realizes the diagnosis and prognosis of
thermal runaway simultaneously, which is caused by the temperature fault through monitoring
battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring
data is derived from the National Service and Management Center for Electric Vehicles (NSMC-EV)
in Beijing. Furthermore, a thermal security management strategy for thermal runaway is presented
under the Z-score approach. The abnormity coefficient is introduced to present real-time precautions
of temperature abnormity. The results illustrated that the proposed method can accurately forecast
both the time and location of the temperature fault within battery packs. The presented method is
flexible in all disorder systems and possesses widespread application potential in not only electric
vehicles, but also other areas with complex abnormal fluctuating environments.

Keywords: thermal runaway; battery systems; big data platform; National Service and Management
Center for Electric Vehicles

1. Introduction

Battery systems are critical components that strongly influence the driving performance and
cost-effectiveness of electric vehicles (EVs). The travel distance, acceleration performance, and security
requirements of EVs cannot be satisfied by the energy density and power density of the single-cell.
Therefore, the cells need to be assembled into a small battery module according to certain forms,
and battery systems can be composed of a number of battery modules in series or parallel to satisfy
the driving requirement of EVs [1]. Thermal runaway may occur with extreme phenomena, such as
battery leakage, smoking, or gas venting in the event the heating rate exceeds the dissipation rate.
In recent years, a spectrum of fatal fire accidents has shown the great threat to system safety and
durability. Generally, thermal runaway occurs when an exothermic reaction gets out of control, which
is interpreted as the reaction rate increasing due to the temperature increasing, and causes a further
increase in temperature and, hence, a further increase in the reaction rate. In some serious cases,
thermal runaway possibly results in an explosion [2]. Battery degradation and failure are strongly
dependent on the abnormality in cell temperature. Furthermore, to maintain the healthy state of the
battery, thermal management strategies are employed in electric vehicles [3].

A preeminent battery thermal management system (BTMS) is necessary and essential because
extreme temperatures affect the driving performance and safety of EVs. In some extreme cases,
thermal runaway might trigger fires and explosions if the battery temperature gets out of the safety
scope. The effectiveness of a BTMS depends on the design of the battery system and the operating
conditions. Daowd et al. [4] proposed an intelligent battery management system (BMS), including
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a battery pack charging and discharging control, with a battery pack thermal management system.
Finally, an experimental setup was implemented for the validation of the proposed balancing system.
Panchal et al. [5,6] presented in situ measurements of the heat generation rate for a prismatic lithium-ion
battery and a lithium-ion pouch cell (20 Ah capacity) at 1C, 2C, 3C, and 4C discharge rates and 5 ◦C,
15 ◦C, 25 ◦C, and 35 ◦C boundary conditions (BCs). The results show that the highest rate of heat
generation was found to be 91 W for the 4C discharge rate and 5 ◦C BC, while the minimum value
was 13 W measured at a 1C discharge rate and 35 ◦C BC. This illustrated that the increase in the
discharge rate and the discharge current caused a consistent increase in the heat generation rate for
an equal depth of discharge points. A model was developed using the neural network approach and
the predicted heat generation rate demonstrates an identical behavior with experimental results from
this model. Lan et al. [7] developed a novel design of BTMS based on aluminum mini-channel tubes
and applied it to a single prismatic lithium-ion cell under different discharge rates. To investigate
the thermal performance of a lithium-ion battery pack, Qian et al. [8] established a three-dimensional
numerical model using a type of liquid cooling method based on mini-channels and cold-plates. Though
simplified approaches, Mastali et al. [9] developed the simplified electrochemical multi-particle model
and homogenous pseudo-two-dimensional model to decrease the computational time; the speed and
simplicity of three-dimensional electrochemical-thermal models are still of concern. The second type
of model is the equivalent circuit model (ECM), where the battery is regarded as a mass point [10,11].
Therefore, they are suitable to be implanted in the battery management system (BMS) for the state
of charge (SOC) or the state of health (SOH) estimation [12–15]. Lin et al. [16] and Forgez et al. [17]
added lumped-parameter thermal models to the ECM to predict the thermal characteristics of the cell,
which made the model more comprehensive. The results showed this method could effectively control
the battery temperature at a 5 ◦C discharge and the temperature uniformity was obviously improved.
Through the studies mentioned in the literature, apart from a few studies monitoring temperature changes
through the temperature sensor, no effective and systematic theory or method concerns the accurate
and timely temperature fault detection and early detection and warning of thermal runaway during
real operation.

Meanwhile, in order to maintain higher energy density, the size and complexity of the battery
cell is growing, which leads to a potential temperature imbalance and a risk of various battery faults.
So many fault diagnosis methodologies have been presented to reveal the thermal runaway of battery
systems. For external short-circuit detection, Xiong et al. [18] extracted the OCV-SOC relationship from
any existing current-voltage measurements by using an H infinity filter within several seconds. The
results show that the estimated OCV can result in accurate SoC estimation with a maximum error of
1%. Seo et al. [19] proposed a high accuracy model-based switching model method (SMM) to detect
the internal short circuit (ISCr) in the lithium-ion battery, which helps the battery management system
to fulfill early detection of the ISCr. Zhang et al. [20] proposed a novel method to perform online
and real-time capacity fault diagnosis for a parallel-connected battery group (PCBG) and the fault
simulation and validation results demonstrate that the proposed methods have good accuracy and
reliability. Due to the inconsistent and varied characteristics of lithium-ion battery cells, Chen et al. [21]
and Liu et al. [22] proposed the multi-scale dual H infinity filters and model-based sensor fault
diagnosis method, which can significantly reduce the computation work and retains good model
accuracy. Bai et al. [23] applied a combined power generation system (CPGS) to achieve a reliable
evaluation of a distribution network with micro-grids combined with fault duration. In addition, many
model-based diagnostic algorithms, such as extended Kalman, were presented to diagnose thermal
faults in lithium-ion batteries [24–27], and the simulation and experimental studies were demonstrated
to illustrate the effectiveness of the proposed schemes. Zheng et al. [28] presented a battery pack
system in a demonstrated EV with 96 cells in series and discovered the battery power fade fault
during the demonstration. The preliminary analysis indicated that the internal or contact resistance
increase causes the fault and calculating the Shannon entropy clearly identified the cause of the power
fade fault. Rezvanizanian et al. [29] examined the mobility prediction of LiFeMnPO4 batteries for an
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emission-free electric vehicle. Through the comparison with an adaptive recurrent neural network
(ARNN) with regression, the former performs with better accuracy in two different road types and
driving modes. All of these mentioned studies have modeled under online detection and prediction
on the SOH of battery system. However, the literature has rarely explored temperature fault diagnosis
and prognosis issues of battery systems directly for the real-time running vehicles. The conventional
threshold methods lack the ability of identifying the time and location that the abnormity occurs if the
abnormal data remains within the permitted limits together with the safety data. The existing BMS
technology generally cannot achieve an early warning effect of battery thermal runaway.

This paper focuses on a prognosis method for the thermal runaway of battery systems caused by
a temperature fault during vehicular operations. For addressing these mentioned issues, the entropy
method was employed. Furthermore, the abnormity coefficient was set up using the Z-score method
to evaluate the fault severity. Accordingly, homologous management strategies were proposed to
handle detected temperature fault problems and make real-time assessments of the fault levels. A vast
quantity of real-time voltage monitoring data was derived from the NSMC-EV in Beijing to validate
the proposed method. The results show that the proposed method can accurately forecast both the
time and location of the temperature fault within battery packs.

The remainder of this paper is structured as follows: Section 2 gives a brief introduction of the
proposed prognosis method. Section 3 describes the big data platform for data acquisition. Section 4
presents the detailed prognosis analysis and discussions about temperature faults for battery systems.
Finally, the key conclusions is summarized in Section 5.

2. Diagnosis and Prognosis Method

Information entropy has been widely employed to judge the degree of system disorder
in thermodynamics, information science, and other fields, which was firstly introduced by
Laude Elwood Shannon in 1948 [30]. It generally judges the degree of system disorder in a wide range
of scientific fields and is still an important method nowadays [31]. Due to the capability of measuring
the information content, combined with the case of information processing, it is a useful and popular
method for information entropy. The typical calculation process of the Shannon entropy is shown as
follows:

H(X) = −
n

∑
i=1

p(xi) log p(xi) (1)

where H(X) is the Shannon entropy, p(xi) is the data probability density in the ith region, and n is the
number of regions.

The Z-score denotes the standard score, which has the function of risk prediction in the fields of
statistics and finance. For instance, Nanayakkara [32] developed a financial distress prediction model
for Sri Lankan companies using the Z-score model. Chadha and Aloy et al. [33,34] used Altman’s
Z-score model to evaluate the financial performance and avoided the high cost that is associated with
distress in predicting bankruptcy. However, the Z-score method has not demonstrated the ability and
potential of risk prediction of mechanical or electrical faults, especially electric vehicles. In this paper,
the Z-score method is applied to quantitatively evaluate the temperature fault within battery packs,
which can perform real-time detection and prognosis of abnormal temperature by setting the abnormal
coefficient. The voltages and temperatures of different cells are different due to the inconsistency of
the battery pack. The formula of the Z-score is expressed as:

Z =
x− µ

δ
(2)

where x is a specific score, µ is the average score and σ is the standard deviation.
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In order to confirm a reasonable real-time detection and evaluation standard, the abnormity
coefficient based on the Z-score is implemented as follows:

A =
|E− Eave|

σE
(3)

where E denotes the Shannon entropy, Eave denotes the average Shannon entropies, and σE denotes the
standard deviation of entropy.

It is worth mentioning that there are multiple iterations of the past data in the entropy calculation.
However, monitoring and diagnosis are required in real-time to predict the state of the battery and
connection failure, thus, the Shannon entropy calculation needs to be appropriately modified to
accommodate the online implementation requirement of EVs. The diagnosis and prognosis algorithm
flowchart based on the different extreme value selections for the Shannon entropy is shown in Figure 1.
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3. Data Acquisition Platform

The temperature and voltage data was derived from the NSMC-EV [35], which has the functions
of monitoring and collecting the real-time running data of EVs, such as the voltage and temperature
of the battery systems, conducting in-depth analysis and research through big data techniques.
The monitoring and management process of the NSMC-EV is shown in Figure 2. The data acquisition
frequency from the monitored vehicles ranges from 0.03 Hz to 1 Hz. In addition, the failure statistics
of the vehicle running state are categorized into six levels according to failure types, where the first
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level is the most dangerous. When anomalous information, such as the temperature reaching the limit
threshold, a corresponding fault alarm will be immediately dispatched to the relevant vehicle according
to the established response protocols. Eventually, the statistical statements about the vehicle-running
characteristic and fault statistics will be detected in the forms of daily, weekly, and annual reports.
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Through the big data platform, running information and the key component states of the monitored
vehicles can be obtained using the vehicle-to-platform communication. The main monitoring objects and
purposes of NSMC-EV are shown in Table 1, which illustrates that there is a potential thermal runaway
risk once the battery temperature reaches beyond the maximum threshold. Meanwhile it requires human
intervention for identifying potential problems to safeguard vehicle operation and maintain the battery
cycle life. The logical topological management structure of NSMC-EV is sketched in Figure 3, which is a
multi-level structure of “acquisition/access-storage-analysis-application”, implementing the fusion and
centralized supervision multi-source information, one-stop query and service, as well as data-supporting
the whole series of models. Until now, this center has provided around-the-clock monitoring service
for over 7000 units of EVs mainly consisting of public vehicles, such as taxis, buses, and sanitation
vehicles, etc.

Table 1. The main monitoring objects and purposes of NSMC-EV.

Order Number Monitoring Object Monitoring Purpose

1 Battery voltage To confirm whether there is a value beyond the range.

2 Cell voltage
The low voltage will lead to insufficient capacity, and the
high voltage will cause high temperature, gas precipitation,
water losses, and grid corrosion of the battery.

3 Battery temperature

To identify potential problems and optimize the vehicle
operation and cycle life of the battery. Once beyond the
maximum value means that there is a potential thermal
runaway and it requires human intervention.
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Table 1. Cont.

Order Number Monitoring Object Monitoring Purpose

4 Ambient temperature
Too high an ambient temperature will shorten battery life
and too low an ambient temperature will lead to battery
capacity decline.

5 Temperature difference Large temperature difference is because of the inconsistency
of the battery, which will cause endurance deterioration.

6 Charge and discharge current
Provide the health state information of the battery to users,
which can be used to indicate the operating state and the
integrity of the battery connection.
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4. The Thermal Fault Prognosis Analysis and Discussion

4.1. Thermal Management Schematic

A well-designed thermal management system possesses the function of regulating EV and
HEV battery pack temperatures evenly, keeping them within the desired operating range. Proper
thermal design of every module has a positive impact on overall pack thermal management with the
corresponding thermal behavior. In general, a battery thermal management system (BTMS) with few
battery modules, using air as the heat transfer medium, is less complicated, which is more effective
than using liquid for cooling/heating. Nevertheless, a battery thermal management system with a
large number of battery modules faces the opposite issues. General schematics of BTMS using air
and liquid are shown in Figure 4a,b, respectively [36]. Either natural or forced air convection can be
used for air BTM. Figure 4a illustrates three air BTM methods including passive air cooling, passive
air cooling/heating and active air cooling/heating. As opposed to air, liquid has higher thermal
conductivity and heat capacity. Liquid BTM is regarded as a better solution, which can be divided into
passive or active methods, shown as Figure 4b. The thermal management system may be passive (i.e.,
only the ambient environment is used) or active (i.e., a built-in source provides heating and/or cooling
at cold or hot temperatures). The thermal management control strategy is settled through the electronic
control unit. A thermal management system probably uses air for heating/cooling ventilation or liquid
as the cooling/heating insulation layer. In addition, phase change materials are another choice for
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cooling/heating as thermal storage. However, the combination of these three methods are the most
common scheme in current BTMS.Energies 2017, 10, 919 7 of 16 
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Generally, for parallel HEVs, an air thermal management system is suggested, whereas for EVs
and series HEVs, liquid-based systems are more suitable for optimum thermal performance. NiMH
batteries require a more elaborate thermal management system than lithium-ion and valve-regulated
lead acid (VRLA) batteries. Lithium-ion batteries need a well-behaved thermal management system
due to the concerns of safety and low-temperature performance. Furthermore, the location of the
battery pack has a strong impact on the type of BTMS and whether the pack is air-cooled, liquid cooled,
or another method is used.

In addition to considering the temperature of a battery pack, uneven temperature distribution
should also be taken into account. Temperature variation from module to module could lead to different
charging/discharging behaviors for each module. This, in turn, leads to electrically-unbalanced
modules or packs and reduced pack performance. Higher temperatures degrade batteries more
quickly, while low temperatures reduce power and energy capabilities, resulting in cost, reliability,
safety, range, or drivability implications. Therefore, battery thermal management is all-important for
EVs to keep the cells in the desired temperature range, minimize cell-to-cell temperature variations,
prevent the battery from going above or below acceptable limits, and maximize the useful energy from
the cells and the pack with little energy for operation.

A perfect BTMS not only heats and cools the battery system as soon as possible, but also controls
the system’s thermal safety to prevent thermal runaway. The typical types of temperature faults in
NSMC-EV are over-temperature and excessive temperature difference (TD), which are usually caused
by abnormal temperature variation. Detecting when and where the abnormal temperature occurs will
play an extremely important role in safe battery management. The normal operating temperature
range of lithium-ion batteries is −20 to 60 ◦C, which is generally controlled at 15–60 ◦C for the safe
operation of the vehicles. The maximum permissible TD is 5 ◦C, which means the limitation of TD
within 5 ◦C. There are a certain amount of temperature probes in different locations of the battery
pack for different vehicles, the monitoring platform of NSMC-EV will send an over-temperature alarm
when any temperature probe exceeds 45 ◦C and an excessive TD alarm when TD > 5 ◦C.
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4.2. The Fault Prognosis of Over-Temperature

In order to verify the feasibility and reliability of the proposed prognosis method for temperature
anomaly, the cell data of Vehicle 1 (vehicle plate: Jing Q6S772, Fukuda pure electric sanitation truck,
a style of 5023ZLJEV 2T dump truck, with a top speed of 45 km/h. The type of battery is a lithium-ion
phosphate battery with 120 cells in series, the monomer voltage is 3.3 V and total voltage is 396 V)
on March 6th, 2017 was retrieved from NSMC-EV and the work period of the monitored vehicle
was 09:48:39–16:07:52 (more than 6 h), which experienced an over-temperature alarm of T > 45 ◦C at
11:07:20. There are 16 temperature probes in the different locations of the battery pack and the data
acquisition frequency of 0.05 Hz. The temperature and SOC curves of Vehicle 1 are shown in Figure 5,
which demonstrates that the temperature of Probe 1 and Probe 9 had different fluctuations form the
other probes. In addition, Probe 1 experiences an over-temperature fault with the vehicle running.
However, although the abnormity appeared early, it cannot be identified before the alarm occurs by
the conventional temperature sensor because it is still in the normal temperature range of T < 45 ◦C.
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As for the presented entropy method in Section 2, the length of the computation window K has
significant influence on the accuracy of entropy. If K is too small, the temperature fluctuations cannot
be fully revealed. On the contrary, the iterations would become too few to pick out the abnormal
temperature fluctuations. Furthermore, because of the graduality and stability of temperature,
the temperature fluctuations are relatively small and the position of the abnormal temperature is
difficult to detect in a short period of time, so K = 100 was selected as the length of the computation
window in this study through the trial-and-error method.

With the vehicle operation and the rise of the battery temperature, the temperature of all probes
will gradually stabilize. It is difficult to detect the abnormal temperature fluctuations after temperature
stability or failure, so the monitoring data should be processed from the vehicle starting every day.
Figure 6a shows the abnormal coefficients of Vehicle 1 in the first 6 h. Probe 1 and Probe 9, especially
Probe 1, have obviously larger abnormal coefficients than the others do. This fluctuation of abnormal
coefficients is consistent with the temperature fluctuation shown in Figure 5, which verifies that
the proposed method can accurately identify the time and location of the abnormal temperature.
In order to verify the prognosis performance of the proposed method, the first 3 h were chosen as the
calculation unit, during when the over-temperature has not been triggered. The abnormal coefficient
in the first 3 h of Vehicle 1 is shown in Figure 6b, which shows that both Probe 1 and Probe 9 with
abnormal temperature can be detected. Therefore, the proposed method can accurately predict the
over-temperature fault.
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8a,b, respectively. The results reveal that both Probe 1 and Probe 9 can be easily detected and the Ab 
of Probe 1 is much greater than that of Probe 9 and the others. By defining certain detection thresholds 
as Ab = 1 and Ab = 1.2, the over-temperature fault alarm can be avoided if the abnormal temperature 
is detected in advance by this method. Actually, for the purpose of accurate over-temperature fault 
prognosis, much more monitoring data were derived from NSMC-EV. The evaluation strategy of the 
abnormal temperature was obtained by the trial-and-error method through a large number of 
analytical results, which is feasible, reliable, and can accurately forecast both the time and location of 
over-temperature faults. Thus, this method can effectively prevent the over-temperature fault by 
detecting the abnormal temperature in real-time. 

Figure 6. The abnormal coefficient in the (a) first 6 h and (b) first 3 h of Vehicle 1.

As shown in Figure 6, the anomaly coefficient curves have crosses and accidental extremes,
which are not conducive to quantifying the level of the abnormal coefficient. In order to make the
abnormal coefficient more readable, and to facilitate a horizontal comparison and evaluation between
different temperature probes, a boxplot was employed to express the abnormal coefficient to forecast
the temperature faults in this section, which is represented as Ab. Boxplots can reflect the center and
spread scope of the data distribution. By drawing the boxplots of multiple sets of data on the same
coordinates, the distribution difference is clearly displayed. The structure diagram of the boxplot is
shown in Figure 7. The boxplot requires the statistical concept of quartiles, which means the position
numbers of three segmentation points. Q1 denotes the lower quartile, which is equal to the number of
25% of all values. Q2 is the median, which is equal to the number of 50% of all values. Q3 is the upper
quartile, which is equal to the number of 75% of all values. The abnormal coefficient Ab is the median
of the boxplot in this paper.
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The abnormal coefficient boxplot in the first 6 h and the first 3 h of Vehicle 1 are shown in
Figure 8a,b, respectively. The results reveal that both Probe 1 and Probe 9 can be easily detected
and the Ab of Probe 1 is much greater than that of Probe 9 and the others. By defining certain
detection thresholds as Ab = 1 and Ab = 1.2, the over-temperature fault alarm can be avoided if
the abnormal temperature is detected in advance by this method. Actually, for the purpose of
accurate over-temperature fault prognosis, much more monitoring data were derived from NSMC-EV.
The evaluation strategy of the abnormal temperature was obtained by the trial-and-error method
through a large number of analytical results, which is feasible, reliable, and can accurately forecast
both the time and location of over-temperature faults. Thus, this method can effectively prevent the
over-temperature fault by detecting the abnormal temperature in real-time.
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4.3. The Fault Prognosis of Temperature Difference 

The other typical thermal fault in NSMC-EV is excessive temperature difference (TD). The cell 
data of Vehicle 2 (vehicle plate: Jing B1Y163, CA E30 electric taxi) on November 2nd, 2016 was 
retrieved from NSMC-EV and the work period of the monitored vehicle was 07:55:57–23:59:54 (more 
than 16 h), which experienced an excessive TD fault alarm with a TD > 5 °C at 18:14:55, after the tested 
vehicle traveled for more than 9 h. There are 16 temperature probes in the different locations of the 
battery pack and the data acquisition frequency is 0.1 Hz. The temperature curves of Vehicle 2 are 
shown in Figure 9. This revealed that the temperature of Probe 11 has an abnormal fluctuation with 
the vehicle running, which directly leads to the generation of the TD fault. However, this abnormity 
cannot be detected by the conventional temperature sensor because it is still in the normal 
temperature range of 0–30 °C.  
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The SOC, speed, and TD curves of Vehicle 2 on November 2nd, 2016 are shown in Figure 10. 
This demonstrates that this car charged twice and parked several times at 14:58:03 and 21:47:46. In 
addition, the TD curves rise slowly with the increase of speed and vehicular running. 
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4.3. The Fault Prognosis of Temperature Difference

The other typical thermal fault in NSMC-EV is excessive temperature difference (TD). The cell
data of Vehicle 2 (vehicle plate: Jing B1Y163, CA E30 electric taxi) on November 2nd, 2016 was retrieved
from NSMC-EV and the work period of the monitored vehicle was 07:55:57–23:59:54 (more than 16 h),
which experienced an excessive TD fault alarm with a TD > 5 ◦C at 18:14:55, after the tested vehicle
traveled for more than 9 h. There are 16 temperature probes in the different locations of the battery
pack and the data acquisition frequency is 0.1 Hz. The temperature curves of Vehicle 2 are shown in
Figure 9. This revealed that the temperature of Probe 11 has an abnormal fluctuation with the vehicle
running, which directly leads to the generation of the TD fault. However, this abnormity cannot be
detected by the conventional temperature sensor because it is still in the normal temperature range of
0–30 ◦C.

Energies 2017, 10, 919 10 of 16 

 

(a) (b) 

Figure 8. The abnormal coefficient boxplot of the (a) first 6 h and (b) the first 3 h of Vehicle 1. 

4.3. The Fault Prognosis of Temperature Difference 

The other typical thermal fault in NSMC-EV is excessive temperature difference (TD). The cell 
data of Vehicle 2 (vehicle plate: Jing B1Y163, CA E30 electric taxi) on November 2nd, 2016 was 
retrieved from NSMC-EV and the work period of the monitored vehicle was 07:55:57–23:59:54 (more 
than 16 h), which experienced an excessive TD fault alarm with a TD > 5 °C at 18:14:55, after the tested 
vehicle traveled for more than 9 h. There are 16 temperature probes in the different locations of the 
battery pack and the data acquisition frequency is 0.1 Hz. The temperature curves of Vehicle 2 are 
shown in Figure 9. This revealed that the temperature of Probe 11 has an abnormal fluctuation with 
the vehicle running, which directly leads to the generation of the TD fault. However, this abnormity 
cannot be detected by the conventional temperature sensor because it is still in the normal 
temperature range of 0–30 °C.  

 

Figure 9. The temperature curves of Vehicle 2. 

The SOC, speed, and TD curves of Vehicle 2 on November 2nd, 2016 are shown in Figure 10. 
This demonstrates that this car charged twice and parked several times at 14:58:03 and 21:47:46. In 
addition, the TD curves rise slowly with the increase of speed and vehicular running. 

Figure 9. The temperature curves of Vehicle 2.

The SOC, speed, and TD curves of Vehicle 2 on November 2nd, 2016 are shown in Figure 10. This
demonstrates that this car charged twice and parked several times at 14:58:03 and 21:47:46. In addition,
the TD curves rise slowly with the increase of speed and vehicular running.
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stabilize. It is difficult to detect the abnormal temperature fluctuations after the temperature become 
stable, or there is a failure, so the first 3 h from the starting point are taken as the initial calculation 
window, if the abnormal temperature probe cannot be detected, then continues to calculate for the 
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the others and the abnormal coefficient Ab > 1, which is consistent with the temperature curves in 
Figure 9. Thus, abnormal temperature of Probe 11 can be detected in the first 6 h. From Figure 13a, 
Probe 11 has a distinct abnormal fluctuation and is easier to detect. Figure 13b demonstrates that the 
median position of Probe 11 is higher compared to those of other probes and the abnormal coefficient 
Ab > 1. The results show excellent consistency with the previous temperature curves in Figure 9. The 
excessive TD fault of Vehicle 2 occurred after it traveled more than 9 h. Therefore, the proposed 
prognosis method can detect the abnormal probe in real-time and identify the fault location in 
advance. 

Figure 10. SOC, speed and TD curves of Vehicle 2.

The abnormal coefficient and boxplot of Vehicle 2 in the first 3 h on November 2nd, 2016 are
shown in Figure 11a,b, respectively. It is observed from Figure 11a that some probes have anomalous
extremum points but no probe has obviously larger abnormity coefficients than the others. Figure 11b
displays that the median position of all probes that also be confirmed to Ab < 1, which is consistent
with the temperature curves in Figure 9. Thus, all of the probes have a safe temperature status and no
abnormal temperature can be detected in the first 3 h.
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Due to the design flaws of the battery box or the thermal runaway of batteries, the tendency
of the temperature change of different temperature probes will have certain differences. With the
vehicle operation and the rising of the battery temperature, the temperature will be gradually stabilize.
It is difficult to detect the abnormal temperature fluctuations after the temperature become stable, or
there is a failure, so the first 3 h from the starting point are taken as the initial calculation window,
if the abnormal temperature probe cannot be detected, then continues to calculate for the next 3 h.
The abnormal coefficient and boxplot of Vehicle 2 at the first 6 h and the first 9 h on November 2nd,
2016 are shown in Figures 12 and 13, respectively. Figure 12a indicates that Probe 11 has an abnormal
temperature fluctuation, but is difficult to detect due to the interference of Probe 2, Probe 6 and Probe
16. Figure 12b shows that the median position of Probe 11 is greater than those of the others and
the abnormal coefficient Ab > 1, which is consistent with the temperature curves in Figure 9. Thus,
abnormal temperature of Probe 11 can be detected in the first 6 h. From Figure 13a, Probe 11 has a
distinct abnormal fluctuation and is easier to detect. Figure 13b demonstrates that the median position
of Probe 11 is higher compared to those of other probes and the abnormal coefficient Ab > 1. The results
show excellent consistency with the previous temperature curves in Figure 9. The excessive TD fault
of Vehicle 2 occurred after it traveled more than 9 h. Therefore, the proposed prognosis method can
detect the abnormal probe in real-time and identify the fault location in advance.
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Figure 13. The abnormal coefficient at the first 9 h of Vehicle 2. (a) The abnormal coefficient curves; (b)
Boxplot of the abnormal coefficient.

In order to verify the stability of this method, the cell data of Vehicle 2 on November 1st, 2016
was derived from NSMC-EV and the period of the monitoring data was 10:51:05–23:36:38. An alarm
of excessive temperature difference of TD > 5 ◦C at 17:12:15 occurred in Vehicle 2 after the tested
vehicle traveled for more than 9 h. The temperature curves of Vehicle 2 are shown in Figure 14, which
illustrates that the temperature of Probe 11 has different fluctuations with the vehicle running. However,
the abnormal temperature cannot be identified as long as it is still in the safe temperature range.
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The abnormal coefficient and boxplot at the first 3 h of Vehicle 2 are shown in Figure 15. Figure 15a
indicates that Probe 11 has an abnormal temperature fluctuation and can be detected out. Figure 15b
demonstrate that Probe 11 can be easily detected and the limitation of the abnormal coefficient of Probe
11 is Ab > 1. However, the excessive TD fault can be avoided if the abnormal temperature is detected in
advance. Actually, for accurate excessive TD fault prognosis, much more monitoring data were retrieved
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from NSMC-EV and analyzed, which reveals the proposed method is feasible, reliable, and stable to
accurately predict the time and location of excessive TD faults within a battery pack. Thus, this method
can effectively prevent the excessive TD fault by detecting the abnormal temperature in real-time.

Energies 2017, 10, 919 13 of 16 

 

were retrieved from NSMC-EV and analyzed, which reveals the proposed method is feasible, reliable, 
and stable to accurately predict the time and location of excessive TD faults within a battery pack. 
Thus, this method can effectively prevent the excessive TD fault by detecting the abnormal 
temperature in real-time.  

(a) (b) 

Figure 15. The abnormal coefficient and boxplot at the first 3 h of Vehicle 2. (a) The abnormal 
coefficient curves; (b) Boxplot of the abnormal coefficient. 

4.4. The Security Management Strategy and Discussion 

Through the above analysis, the over-temperature fault and excessive TD fault can be predicted 
using the proposed method and it has well-behaved reliability and stability. By implementing a 
certain detection threshold as Ab = 1 and Ab = 1.2, the cell with abnormal temperature can be detected 
before the thermal faults occur, which has vital significance for the future prognosis and safety 
management of the battery fault, especially for the prevention of thermal runaway. The prognosis 
strategy of the thermal fault can be obtained through analyzing much more monitoring data retrieved 
from NSMC-EV using the trial-and-error method. The prognosis strategy flowchart of the thermal 
fault is shown in Figure 16. 

 

Figure 15. The abnormal coefficient and boxplot at the first 3 h of Vehicle 2. (a) The abnormal coefficient
curves; (b) Boxplot of the abnormal coefficient.

4.4. The Security Management Strategy and Discussion

Through the above analysis, the over-temperature fault and excessive TD fault can be predicted
using the proposed method and it has well-behaved reliability and stability. By implementing a certain
detection threshold as Ab = 1 and Ab = 1.2, the cell with abnormal temperature can be detected before the
thermal faults occur, which has vital significance for the future prognosis and safety management of the
battery fault, especially for the prevention of thermal runaway. The prognosis strategy of the thermal
fault can be obtained through analyzing much more monitoring data retrieved from NSMC-EV using the
trial-and-error method. The prognosis strategy flowchart of the thermal fault is shown in Figure 16.
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NSMC-EV currently provides around-the-clock monitoring services, mainly for public vehicles
apart from private cars, such as taxis, buses, and sanitation vehicles, which always have a relatively
small number of cells. Nevertheless, according to the analysis and discussion of different sets of
monitoring data, by setting a suitable value of the calculation window K, this technique is still
valid even if the EV has a larger number of cells (i.e., Tesla, with 6000+ cells). Therefore, it has a
strong timeliness and will have greater application prospects if some private cars with more cells are
monitored and managed by NSMC-EV in the future, which will also provide a foundation for the
establishment of safety precaution mechanisms for battery thermal runaway.

5. Conclusions

This paper presents a real-time thermal fault diagnosis and prognosis method based on the
NSMC-EV in Beijing. A vast quantity of real-time voltage monitoring data was collected from this big
data platform to verify the effectiveness of the presented prognosis method. The Shannon entropy
was applied to analyze the monitoring data. The analysis results showed that the proposed method
could detect probes with abnormal temperature, which can also effectively predict the occurrence
time and location. These were achieved with a relatively small calculation effort, which makes it
implementable in a real safety BMS. The feasibility, reliability, and stability of the prognosis capability
were also discussed and verified by analyzing extensive monitoring data. Furthermore, the prognosis
and safety management strategy for thermal faults of battery systems were also developed by applying
the Z-score method, and the abnormity coefficients were implemented to make real-time evaluation on
the faulty levels. The presented method is flexible in all disorder systems with abnormal fluctuations
regardless the data types and application fields, so it possesses widespread application potential in not
only electric vehicles, but also other areas with complex abnormally fluctuating environments.
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