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Abstract: This paper presents a single-degree-of-freedom energy optimization strategy to solve the
energy management problem existing in power-split hybrid electric vehicles (HEVs). The proposed
strategy is based on a quadratic performance index, which is innovatively designed to simultaneously
restrict the fluctuation of battery state of charge (SOC) and reduce fuel consumption. An extended
quadratic optimal control problem is formulated by approximating the fuel consumption rate as
a quadratic polynomial of engine power. The approximated optimal control law is obtained by
utilizing the solution properties of the Riccati equation and adjoint equation. It is easy to implement in
real-time and the engineering significance is explained in details. In order to validate the effectiveness
of the proposed strategy, the forward-facing vehicle simulation model is established based on the
ADVISOR software (Version 2002, National Renewable Energy Laboratory, Golden, CO, USA).
The simulation results show that there is only a little fuel consumption difference between the
proposed strategy and the Pontryagin’s minimum principle (PMP)-based global optimal strategy,
and the proposed strategy also exhibits good adaptability under different initial battery SOC, cargo
mass and road slope conditions.
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1. Introduction

Hybrid electric vehicles (HEVs) are regarded as an important domain of the future automobile
industry due to their superiority in reducing fuel consumption and emissions. Generally, HEVs are
equipped with an internal combustion engine (ICE) and an energy storage system (ESS). They can be
classified into three types, including series hybrid system, parallel hybrid system and series-parallel
hybrid system [1]. The series-parallel hybrid system often utilizes a power-split device to split and
combine the power produced by electric motors and ICE [2]. The prominent examples are the one-mode
power-split in the Toyota Prius or Ford electronic-continuously variable transmission (e-CVT) and
two-mode power-split in the general motors (GM)-Allison electric variable transmission (EVT), Timken
EVT or Renault Infinitely Variable Transmission (IVT) [3].

Due to their complex electromechanical structure, designing an efficient energy management
strategy (EMS) for power-split HEVs is a challenging task. The strategy must ensure the
vehicle’s performance with minimum fuel consumption under different operation conditions and
driver characteristics. Previous investigations can be basically divided into rule-based strategies
and optimization-based strategies and all other subcategories are classified into these two main
categories [4].

The major benefit of rule-based strategies is the effectiveness in real-time supervisory control,
such as the thermostat strategy [5] and the logic threshold control strategy [6,7]. Subsequently,
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many more efforts have been made to further improve the fuel economy, for example, by extracting
optimization rules from global optimal control strategies [8,9], optimizing the rules combined with
intelligent algorithms [10,11], or establishing driving pattern recognizers [12]. However, these
strategies are mainly dependent on the results of extensive experiments or expert knowledge.
The optimality can’t be theoretically guaranteed. Nowadays, many artificial intelligent methods
have been successfully introduced to solve the energy management problem of HEVs. The fuzzy
control strategies [1,13,14] have to make considerable effort to build the fuzzy logic table, and only
an approximately optimal result can be obtained. The neutral network (NN) strategies [15,16] need
sufficient experimental data to train all possible combinations of driving conditions. The genetic
algorithm (GA) [17,18] is time-consuming due to the fact that it must complete a series of actions including
crossover, mutation and elite selection. The particle swarm optimization strategy [19,20] provides a
suboptimal solution and it will be not effective when the solution parameters are highly related.

The target of optimization-based strategies is to minimize the specific cost function, which may
include the fuel consumption, emissions, battery state of charge (SOC) or engine on/off switching
frequency. The energy management strategies, which based on Bellman’s dynamic programming
(DP) [21–23] or Pontryagin’s minimum principle (PMP) [24–26], have been widely investigated in
recent years. The DP-based strategy is a global optimization method to achieve the best fuel economy
for a given driving cycle, such as Mansour and Clodic [27] proposed a DP-controller for the Toyota
Hybrid System-II (THS-II) and Liu et al. [28] utilized the DP-based strategy to minimize a combination
of fuel consumption and selected emission species over a given driving cycle. Generally, a DP-based
strategy directly produces optimal trajectories rather than control laws [29], so it is always used as a
benchmark to evaluate other strategies or to optimize the parameters.

The PMP-based strategy looks for the solution to satisfy necessary conditions for optimality, so it
needs less computational time than that of the DP-based strategy [29,30]. Kim proposed that the
PMP-based strategy could provide a near-optimal solution if the future driving conditions were known
in advance [31]. Based on the theoretical background of PMP, the equivalent consumption minimization
strategy (ECMS) was presented, which converted electricity into equivalent fuel consumption and
minimized it at each control cycle [32,33]. The optimal co-state or the equivalence factor can be
determined only when the driving conditions are known a priori. The mismatch between co-state and
the driving cycle will result in over-charge or over-discharge of the battery. Considering about this
problem, the adaptive equivalent consumption minimization strategy (A-ECMS) was presented to
adjust equivalence factors based upon the SOC feedback or the prediction technique [34,35]. Except for
the requirement of keeping the terminal SOC equal to the initial value, both the PMP-based strategy
and the ECMS are difficult to handle the constraint of the SOC fluctuation during the operation process.

The quadratic optimal control theory has been comprehensively applied in power systems,
aerospace systems, social economic systems, and so on. For the classical linear quadratic regulator
(LQR) problem, the quadratic performance index represents a trade-off between the distance of the
state variable from the equilibrium point and the cost of the control input variable. In previous
studies [36,37], the pedal signal was interpreted as a vehicle’s speed command. When the square
of vehicle’s speed v2 and the battery’s residual energy E·SOC were chosen as the state variables,
a quadratic performance index was designed to ensure the vehicle’s driving performance, sustain
the battery SOC and restrain frequent and large-scale fluctuation of engine power simultaneously.
The fuel economy was improved indirectly and the energy management problem was transformed
into the LQR problem or the quadratic optimal tracking problem. The quadratic optimal control theory
was firstly introduced by authors to deal with this kind of problem. The strategy had two control
variables: the engine power and the motor power, so it was called as double-degree-of-freedom energy
management strategy.

In this paper, a further improvement is made based on the previous research. Generally, the pedal
signal is interpreted as a torque command for power-split HEVs. When the battery’s residual energy
E·SOC is chosen as the state variable, the quadratic performance index is designed only containing
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two items: the quadratic error of actual SOC from the desired value and the fuel consumption rate.
The motor power has no longer been restricted to take full advantage of the battery-motor system
dynamic behavior. Different from the conventional LQR problem, an extended quadratic optimal
control problem is formulated by approximating the fuel consumption rate as a quadratic polynomial
of engine power, where the state variable is adjusted around the desired value rather than zero, and the
quadratic form of the control variable is not about the control variable, but about the difference between
the control variable and an given function of time. The approximated optimal control law is derived by
utilizing the solution properties of the Riccati equation and adjoint equation. It is only related with one
control variable: the battery-motor system power, so it is called as single-degree-of-freedom quadratic
performance index strategy (SQPIS). To verify effectiveness of the proposed strategy, the Toyota Prius
is chosen as the research target due to the fact that it is the most typical power-split HEV. The vehicle
simulation model is developed based on the ADVISOR software, and the control performance and
oil-saving effect are tested repeatedly. The simulation results show that the fuel economy is improved
directly without sacrificing driving performance. The fuel consumption of SQPIS is very close to that
of the PMP-based global optimal strategy. Furthermore, the SQPIS exhibits good adaptability with
unchanged parameters under different initial battery SOC, cargo mass and road slope.

The contributions of this paper can be summarized as follows: firstly, the quadratic performance
index is designed to restrict the fluctuation of battery SOC and reduce fuel consumption simultaneously,
which is still difficult to handle by the PMP-based global optimal strategy or ECMS. Secondly,
an extended quadratic optimal control problem is formulated by approximating the fuel consumption
rate as a quadratic polynomial of engine power. The concrete form of the optimal control law is
derived theoretically, which is different from the conventional LQR problem. Thirdly, when the vehicle
requested power is regarded as a random process and its average changes slowly, an approximate
optimal control strategy is obtained, which is easy to be real-time implemented. Finally, the engineering
significance of the proposed strategy SQPIS is discussed in details.

2. Drivetrain Architecture and Energy Management Problem Description

The configuration of the Toyota hybrid system (THS) is illustrated in Figure 1. It mainly includes
the ICE, planetary gear, battery package, controller, motor/generator MG1 and MG2. The sun gear is
connected with the MG1, the ring gear is connected with the MG2 and the planet carrier is connected
with the ICE. The torque and speed between the wheel and engine are decoupled by the planetary
gear. That is to say, the engine could operate on the optimal operating line (OOL) by jointly adjusting
the MG1’s speed and engine’s torque, and the MG2’s torque is regulated simultaneously to guarantee
the sum of MG1’s power and MG2’s power is equal to the battery-motor system power Pess. In the
following discussion, only the static models of engine and motor are considered because their transient
processes are relatively short and can be ignored. Firstly, a brief introduction of the battery-motor
system model is given; the engine model and planetary gear model will be discussed in details in
Section 4.
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2.1. Efficiency Model of Battery-Motor System and Its Simplification

The battery package used in Toyota Prius is a nickel metal hydride (NiMH) battery. The vehicle
always operates in “charging sustaining mode” in which the SOC is kept within a predefined small
range throughout a driving cycle. This is a high efficiency region for the battery and it could provide
sufficient capacity to restrict large-scale fluctuation of engine power.

The battery charging and discharging are complex electrochemical reaction processes. Generally,
the battery package is described by an equivalent circuit model that is composed by a voltage source
in series with a resistance. As shown in Figure 2, both the open-circuit voltage VOC and the internal
resistor Rint are associated with the battery SOC. The battery efficiency is defined as:

η
kb
bat = Pbat(t)/

VOC

(
VOC −

√
VOC

2 − 4RintPbat(t)
)

2Rint

 (1)

where kb =

{
1, Pbat(t) > 0
−1, Pbat(t) ≤ 0

, Pbat(t) > 0 indicates the battery is discharging and Pbat(t) ≤ 0

indicates the battery is charging. As shown in Figure 3, the battery efficiency is related to its output
power Pbat(t) and SOC, so the battery efficiency model can be expressed as [37]:

d(E · SOC(t))
dt

= −Pbat(t)

η
kb
bat

(2)

where the battery capacity is 6 Ah, E = QV = 6(A)× 3600(s)× 308(V) is the battery’s total energy
and E · SOC(t) is the battery’s residual energy.
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The motor/generator MG1 and MG2 are both permanent magnet motors. They have sufficient
capability of short-time overload, wide flux-weakening range and high efficiency region. For the
permanent magnet motors and their controllers, a static efficiency model is adopted as:

Pbat(t) =
PMG1(t)

ηk1
MG1

+
PMG2(t)

ηk2
MG2

(3)

where PMG1(t) is the motor/generator MG1’s power, PMG2(t) is the motor/generator MG2’s power,

ηMGs is the efficiency of MGs and its controller, and ks =

{
1,PMGs(t) > 0

−1,PMGs(t) ≤ 0
.

By substituting Equation (3) into Equation (2), the efficiency model of the battery-motor system
can be obtained as:

d(E · SOC(t))
dt

= − 1

η
kb
bat

(
PMG1(t)

ηk1
MG1

+
PMG2(t)

ηk2
MG2

)
(4)

The battery-motor system power Pess(t) satisfies:

Pess(t) = PMG1(t) + PMG2(t) (5)

If the efficiency of the two-motor system is defined as:

ηm = Pess(t)/

(
PMG1(t)

ηk1
MG1

+
PMG2(t)

ηk2
MG2

)
(6)

then the efficiency model of Equation (4) can be rewritten as:

d(E · SOC(t))
dt

= − Pess(t)

η
kb
batη

km
m

(7)

where km =

{
1, Pess(t) > 0

−1, Pess(t) ≤ 0
.

The efficiencies ηbat and ηMGs are associated with the operating point of the battery and motor
(see Figures 3 and 4). Therefore, the efficiencies ηbat and ηm are available online according to the
operating points of the battery, the motor/generator MG1 and MG2.
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2.2. Energy Management Problem

Generally, the pedal signal reflects the driver’s intention and it can be interpreted as a torque
command. The requested power Preq(t) is determined by the vehicle control unit (VCU) based on the
pedal signal and vehicle speed, and it satisfies:
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Preq(t) = Pice(t) + Pess(t) (8)

where Pice(t) is the engine power.
The purpose of energy management is to reasonably assign the requested power Preq(t) between

engine and battery-motor system. In order to sustain the battery SOC and improve the fuel economy
simultaneously, the performance index can be established as:

J1 =
1
2

∫ t f

t0

[
γ1

(
E · SOCre f − E · SOC(t)

)2
+ γ2

.
m(t)

]
dt (9)

where t0 is the initial time, t f is the final time, SOCre f is a desired value that the battery SOC should
change around for efficiently using and protecting the battery and

.
m(t) is the fuel consumption rate.

The weight coefficient γ1 > 0 can be tuned to restrict the fluctuation of battery SOC and γ2 > 0 can be
tuned to achieve a better fuel economy.

As mentioned above, the engine can be adjusted to work on the OOL (see Figure 5). Each working
point of OOL has the minimum fuel consumption for a given engine power. Therefore, the fuel
consumption rate

.
m(t) can be regarded as a function only related to the engine power Pice(t) (see the

point line in Figure 6) and the fuel consumption over a driving cycle is equal to the integral of
.

m(t).
In order to apply the linear quadratic optimal control theory, the curve fitting method is used to
approximate

.
m(t) as a quadratic polynomial of engine power Pice(t), that is:

.
m f (t) = d1P2

ice(t) + d2Pice(t) + d3 (10)

where d1 = 7.643× 10−10, d2 = 3.385× 10−5 and d3 = 0.1758 (see the solid line in Figure 6).
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By substituting Equations (8) and (10) into Equation (9), the performance index becomes:

J2 = 1
2

∫ t f
t0

[
γ1

(
E · SOCre f − E · SOC(t)

)2
+ γ2

(
d1P2

ice(t) + d2Pice(t) + d3
)]

dt

= 1
2

∫ t f
t0

[
γ1

(
E · SOCre f − E · SOC(t)

)2
+ γ2d1

(
d1Preq(t)+d2/2

d1
− Pess(t)

)2
+ γ2d3 −

γ2d2
2

4d1

]
dt

(11)

where d1 and d2 are constants and Preq(t) is determined by the driver. Hence, the optimization problem
of Equation (9) or (11) is equivalent to that of Equation (12):

J3 =
1
2

∫ t f

t0

[
γ1

(
E · SOCre f − E · SOC(t)

)2
+ γ2d1

(
d1Preq(t) + d2/2

d1
− Pess(t)

)2
]

dt (12)

The requested power Preq(t) is determined by the VCU, that is to say, the energy management
problem can be deemed as a single-degree-of-freedom energy optimization problem where only one
control variable Pess(t) needs to be determined. If x(t) = E · SOC(t) is selected as the state variable,
u(t) = Pess(t) is the control variable, from the Equation (7), a first order system is obtained as:

.
x(t) = ax(t) + bu(t) (13)

where a = 0, b = −1/(ηkb
batη

km
m ) < 0. And the quadratic performance index Equation (12) is

rewritten as:

J =
1
2

∫ t f

t0

[
q(x∗ − x(t))2 + r(u∗(t)− u(t))2

]
dt (14)

where x∗ = E · SOCre f is a constant and:

u∗(t) =
d1Preq(t) + d2/2

d1
(15)

is a function of time only related to the requested power Preq(t). The weight coefficients are:{
q = γ1

r = γ2d1
(16)

Because d1 > 0 is a constant, tuning the weight coefficients γ1 and γ2 are equivalent to tuning the
weight coefficients q and r. Both q and r are positive value and the value range of γ1 is [10−4d1, 10−3d1].
The specific reason will be explained in the next section.

3. Single-Degree-of-Freedom Quadratic Performance Index Strategy

The linear quadratic optimal control theory is easy to achieve the close loop state feedback control
and to be applied in actual engineering. In Section 2, the energy management problem has been
transformed into the quadratic optimal control problem of Equation (12), which is different from
the conventional LQR problem. In this section, the optimal control law is derived in theory for the
problem that has the performance index as Equation (14), and the practical significance is discussed
with engineering concepts.

3.1. Extended Quadratic Optimal Control Problem and Relevant Results

For the linear system as:
.
x(t) = Ax(t) + Bu(t) (17)



Energies 2017, 10, 896 8 of 23

the optimal control law u(t) will be found to minimize the quadratic performance index:

J =
1
2

∫ t f

t0

[
(x∗ − x(t))TQ(x∗ − x(t)) + (u∗(t)− u(t))TR(u∗(t)− u(t))

]
dt (18)

where x(t) and x∗ are the actual and desired state variable, u(t) is the control variable, u∗(t) is a function
of time which has been given. Q and R are the weight coefficient matrices, and the terminal time t f is
limited to ensure the performance index Equation (18) is finite. Note that the above optimal control
problem is different from the conventional LQR problem. It is called as an extended quadratic optimal
control problem, where the state variable x(t) is adjusted around the desired value x∗ rather than zero,
and the quadratic form of the control variable is not about the control variable u(t), but about the
difference between the control variable u(t) and an given function of time u∗(t), which comes from
the optimization problem of Equation (12).

The target is to find the optimal control law u(t) to minimize the quadratic performance index
Equation (18). According to the quadratic optimal control theory, the Hamiltonian function of extended
quadratic optimal control problem is:

H = 1
2 (x
∗ − x(t))TQ(x∗ − x(t)) + 1

2 (u
∗(t)− u(t))TR(u∗(t)− u(t)) + xT(t)ATλ(t) + uT(t)BTλ(t) (19)

where λ(t) is the co-state variable that satisfies:

.
λ(t) = −∂H

∂x
= Q(x∗ − x(t))− ATλ(t) (20)

and the minimum value of Hamiltonian function (Equation (19)) can be obtained by making its partial
derivative of u(t) equal to zero, i.e.,

∂H
∂u

= −R(u∗(t)− u(t)) + BTλ(t) = 0 (21)

That is:
u(t) = −R−1BTλ(t) + u∗(t) (22)

Further, assuming that:
λ(t) = K(t)x(t)− g(t) (23)

where K(t) = KT(t) is the solution of differential Riccati equation and g(t) is the adjoint variable.
Substituting Equation (23) into Equation (22) gives:

u(t) = −R−1BTK(t)x(t) + R−1BTg(t) + u∗(t) (24)

and the derivative of Equation (23) is:

.
λ(t) =

.
K(t)x(t) + K(t)

.
x(t)− .

g(t) (25)

Substituting Equations (17) and (24) into Equation (25) gives:

.
λ(t) =

( .
K(t) + K(t)A− K(t)BR−1BTK(t)

)
x(t) + K(t)BR−1BTg(t) + K(t)Bu∗(t)− .

g(t) (26)

Substituting Equation (23) into Equation (20) yields:

.
λ(t) =

(
−Q− ATK(t)

)
x(t) + ATg(t) + Qx∗ (27)
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Now, Equation (28) can be derived by comparing Equation (26) with Equation (27):( .
K(t) + K(t)A− K(t)BR−1BTK(t)

)
x(t) + K(t)BR−1BTg(t) + K(t)Bu∗(t)− .

g(t)

=
(
−Q− ATK(t)

)
x(t) + ATg(t) + Qx∗

(28)

For any time t ∈ [t0, t f ], the Equation (28) holds for arbitrary x(t), u∗(t) and x∗. Therefore,
the corresponding items are equal, and the Riccati equation and adjoint equation are received, i.e.,

.
K(t) + ATK(t) + K(t)A− K(t)BR−1BTK(t) + Q = 0 (29)

.
g(t) = −

(
A− BR−1BTK(t)

)T
g(t)−Qx∗ + K(t)Bu∗(t) (30)

Because there is no terminal item in performance index Equation (18), the terminal condition of
Equations (29) and (30) are K(t f ) = 0 and g(t f ) = 0 respectively. In adjoint equation Equation (30),
K(t)Bu∗(t) is a new added item and it makes the extended quadratic optimal control problem different
from the previous ones. Note that, this difference is very important and how this added item works
will be explained in the following section.

3.2. Derivation of Single-Degree-of-Freedom Quadratic Performance Index Strategy

For the energy management problem stated in Section 2, the related matrices and variables are
scalars (see in Equations (13) and (14)). According to the results of the extended quadratic optimal
control problem mentioned above, the optimal control law u(t) can be obtained as:

u(t) = −b(k(t)x(t)− g(t))/r + u∗(t) (31)

where u∗(t) is a given function of time defined by Equation (15), k(t) satisfies the Riccati equation:

.
k(t)− b2k2(t)/r + q = 0, k

(
t f

)
= 0 (32)

and g(t) satisfies the adjoint equation:

.
g(t) =

(
b2k(t)/r

)
g(t)− qx∗ + bk(t)u∗(t), g

(
t f

)
= 0 (33)

3.3. Analysis from the Perspective of Engineering Application

The optimal control algorithm must look ahead and back, and the quadratic performance
index-based control algorithm is also no exception. The Equations (29) and (30) are end boundary
value problems. The solving process should be along the opposite direction of time, and u∗(t) of
Equation (15) for time t ∈ [t0, t f ] must be known in advance. Consequently, it will bring about a
real-time implementation issue. In following discussion, we will mainly focus on the algorithm of
Equations (31)–(33), and find out the specific solutions. The main results are described as follows:

(a) According to the characteristics of the solution of Riccati equation, if t f is large enough (for
example, t f = 1600 s), the solution k(t) of Equation (32) will keep as a constant except for the time
near to t f . In other words, in most time of t ∈ [t0, t f ], k is a constant and satisfies the algebraic
Riccati equation:

− k2b2/r + q = 0 (34)

Solving the Equation (34) for k gives k = −√qr/b > 0, so the solution k is independent of the
driving cycle and u∗(t).
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(b) For the constant k = −√qr/b, the adjoint Equation (33) is a linear differential equation that
satisfies the superposition principle. The solution g(t) of Equation (33) can be divided into two
responses of x∗ and u∗(t), i.e., g(t) = gx∗(t) + gu∗(t), and satisfies:

− r
kb2

dgx∗ (t)
dt + gx∗(t) = − 1

b

√
r
q

dgx∗ (t)
d(−t) + gx∗(t) = T dgx∗ (t)

d(−t) + gx∗(t) = −
√

qr
b x∗, gx∗

(
t f

)
= 0 (35)

− r
kb2

d
.
gu∗ (t)

dt + gu∗(t) = − 1
b

√
r
q

d
.
gu∗ (t)

d(−t) + gu∗(t) = T d
.
gu∗ (t)

d(−t) + gu∗(t) = k
√

r
q u∗(t) = − r

b u∗(t), gu∗
(

t f

)
= 0 (36)

Obviously, along the opposite direction of time, Equations (35) and (36) are the stable first
order filters with time constant T = −

√
r/q/b = ηbatηm

√
r/q > 0, and the steady amplification

coefficients of their solutions about x∗ and u∗(t) are −√qr/b > 0 and −r/b > 0 respectively. Because
x∗ = E · SOCre f = 0.6E is a constant, in most time of t ∈ [t0, t f ], the solution gx∗(t) of Equation (35)
is a constant gx∗ = −

(√
qr/b

)
· E · SOCre f , except for the time near to t f , i.e., t ∈ [t f − 3T, t f ]. And if

the average value of requested power Preq(t) changes slowly, the following filtering result along the
positive direction of time:

− 1
b

√
r
q

du∗(t)
dt

+ u∗(t) = T
du∗(t)

dt
+ u∗(t) = u∗(t), u∗(t0) = 0 (37)

can be used to replace the filtering result along the opposite direction of time (note that, in general,
if Equation (36) does not represent a filtering arithmetic, the above results can’t be obtained). Defining
a new variable:

_
g (t) = −

√
qr
b

x∗ − r
b

u∗(t) (38)

replacing g(t) with
_
g (t) and letting k = −√qr/b in Equation (31), the approximated optimal control

law can be obtained as:

u(t) =
−b
r

(
kx(t)−_

g (t)
)
+ u∗(t) =

√
q
r
(x(t)− x∗)− u∗(t) + u∗(t) (39)

In the approximated optimal control law of Equations (37) and (39), only the present and past
information of x(t) and u∗(t) are used to achieve the present control variable u(t), so the real-time
implementation problem no longer exists.

(c) The control law of Equation (39) consists of two parts,
√

q/r(x(t)− x∗) = −(x(t)− x∗)/(bT)
is the feedback item to restrict the fluctuation of the battery SOC, and−u∗(t) + u∗(t) is the feedforward
item that the battery-motor power plays a role of peak shaving and valley filling for engine power. It is
obvious that, as r increases or q decreases, and or the efficiency of battery-motor system ηbatηm increases,
the time constant T = ηbatηm

√
r/q increases, the alternating component of u(t) increases and u∗(t)

approaches the average value of u∗(t). The feedback action is weakened, and the feedforward action
is enhanced. As a result, the fluctuation of battery SOC is enlarged and the degree of hybridization is
deepened, which is helpful to improve the fuel economy. Conversely, as r decreases or q increases,
and or the efficiency of battery-motor system ηbatηm decreases, the time constant T = ηbatηm

√
r/q

decreases, −u∗(t) and u∗(t) tend to counteract with each other. The feedback action will be enhanced,
and the feedforward action will be weakened. As a result, the fluctuation of battery SOC is shrunken
and the degree of hybridization is decreased, which is not helpful to reduce fuel consumption.
In general, the recommended value of time constant T is dozens of seconds. The specific selection
process can be obtained by combining typical driving cycles. Except for achieving a better fuel economy,
the battery-motor system power Pess(t), the engine power Pice(t) and the battery SOC should also
satisfy the following test conditions:

Pess_min ≤ Pess(t) ≤ Pess_max (40)
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0 ≤ Pice(t) ≤ Pice_max (41)

SOCmin ≤ SOC(t) ≤ SOCmax (42)

where Pess_max and Pess_min are the maximum and minimum power of battery-motor system, Pice_max
is the maximum engine power, SOCmax = 0.75 and SOCmin = 0.45 are the maximum and minimum
battery SOC, respectively.

(d) For a given filter time constant T, when the requested power Preq(t) changes violently,
the battery-motor system is just trying to peak shaving and valley filling for engine power. When
the requested power Preq(t) is relatively steady, the battery-motor system power Pess(t) will tend to
be zero. It is implied that the proposed strategy has the ability to adapt various driving conditions,
such as the urban or suburb driving condition.

(e) In this paper, three operation modes are added to further reduce the fuel consumption and
they are switched according to the requested power Preq(t). The basic logics are listed as follows: if the
Preq(t) is less than P0, the battery-motor system provides the requested power or recycles the braking
energy; otherwise, the engine and the battery-motor system provide the requested power together and
the battery package acts as an energy buffer unit.

Thus, the final power-split algorithm is:
u(t) = Pess(t) =


Preq(t), Preq(t) < 0(regenerative braking mode)
Preq(t), 0 ≤ Preq(t) < P0(electric drive mode)(√

q/r(x(t)− x∗)− u∗(t) + u∗(t)
)
, Preq(t) ≥ P0(hybrid mode)

Pice(t) = Preq(t)− Pess(t)

(43)

where u∗(t) and u∗(t) are decided by Equations (15) and (37), respectively.

4. Vehicle Simulation Model

The ADVISOR software can be used to make rapid analysis for HEVs, such as driving performance,
fuel consumption, emissions and etc. All the component models in software are public and they can
be easily modified under the Matlab/Simulink environment. In this paper, a forward-facing vehicle
simulation model is developed and embedded in ADVISOR platform to verify the effectiveness of
the proposed strategy SQPIS. As shown in Figure 7, each module represents an actual drivetrain
component in a Toyota Prius.

The simulation process can be simply described as follows: the speed versus time information
for a given driving cycle is stored in the drive cycle module. At each control cycle, it provides the
desired speed v∗(t) to the driver module. In order to trace the given driving cycle, the accelerator
pedal or the brake pedal should be continuously regulated by the driver. In the driver module, this
process is realized by a proportion-integral (PI) regulator. Through the PI regulator, the difference
between desired speed v∗(t) and actual speed v(t) is converted into the requested power Preq(t).
The proposed strategy SQPIS is embedded in the energy optimization strategy module. The engine
power Pice(t) and battery-motor system power Pess(t) are obtained by Equation (43), and then they
are converted into corresponding torque or speed command for engine, motor/generator MG1 and
MG2. If these commands don’t exceed the power limitation of these components, they will provide the
actual torque signal to the planetary gear module. Taking the gear ratio into consideration, the actual
torque signal is passed forward through the final drive module until it results in a driving force F(t)
at the wheel/axle module interface. Generally, the vehicle should overcome the rolling resistance,
aerodynamic resistance and grade resistance. The actual vehicle speed v(t) can be derived by Equation
(44) in the vehicle module and it eventually feedbacks to the driver module as an input variable:

F(t) = δm
dv(t)

dt
+ mg fr cos θ + mg sin θ +

1
2

ρCD Av2(t) (44)
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where δ is the rotating mass efficient and δ > 1, m is the vehicle total weight including the passengers
mass and cargo mass, g is the gravitational acceleration constant, fr is the rolling resistance coefficient,
θ is the road slope, ρ is the air density, CD is the aerodynamic drag coefficient and A is the vehicle
frontal area.
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4.1. Engine Model

The Toyota Prius is powered by a 1.5-L 1NZ-FXE four-cylinder gasoline engine. As shown in
Figure 8, the fuel consumption model is used to describe the input/output characteristics of engine,
and the fuel consumption rate

.
m(t) can be defined as:

.
m(t) = f (Tice(t), ωice(t)) (45)

where Tice(t) is the engine torque and ωice(t) is the engine speed.
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Figure 8. Fuel consumption rate of 1NZ-FXE (Coolant Temperature is 95 °C). Figure 8. Fuel consumption rate of 1NZ-FXE (Coolant Temperature is 95 ◦C).

This model has been verified by ADVISOR software, and the actual fuel consumption rate
can be derived by using the linear interpolation method. Note that the engine temperature also has
a significant impact on the fuel consumption rate, especially during the cold starting process. Therefore,
the temperature correction factor is introduced to ensure the simulation precision:

.
mT(t) = fT ·

.
m(t) =

(
1 + 0.1 ∗

(
95− T

75

)0.65
)
· .

m(t) (46)
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4.2. Planetary Gear Model

The planetary gear consists of three basic components: sun gear, planet carrier and ring gear
(see Figure 9). The motor/generator MG1 is connected with the sun gear and the engine is connected
with the planet carrier. The motor/generator MG2 and the final drive are connected with the ring gear.
Since the rotation direction of engine is unchangeable, the rotation direction of planet carrier can’t be
reversed. Both the sun gear and the ring gear can rotate forward and reverse, so the rotation speed of
any gear can be determined by the other two gears. Assuming that the radius of the sun gear is S and
the radius of ring gear is R, the speed and torque of these components should satisfy the kinematic
constraints as Equations (47) and (48):{

TMG1 = − 1
1+ρ Tice

TMG2 = − ρ
1+ρ Tice + Tout

(47)

{
ωMG1 = (1 + ρ)ωice − ρωout

ωMG2 = ωout
(48)

where ρ = R/S is the ratio of ring gear radius and sun gear radius, Tice, TMG1, TMG2 and Tout are output
torque of engine, MG1, MG2 and output axle respectively, ωice, ωMG1, ωMG2 and ωout are output speed
of engine, MG1, MG2 and output axle respectively. Because the MG2 is directly connected with the
output axle, the speed ωMG2 can be determined by the vehicle speed v(t):

ωout(t) =
Gr

rw
v(t) (49)

where Gr is the ratio of final drive, rw is the wheel radius.
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4.3. Energy Optimization Strategy Model

As shown in Figure 10, the energy optimization strategy module can be divided into three parts.
In the first part, the operation mode switch block generates the operation mode signal mode(t). If the
requested power Preq(t) < 0, the system operates in regenerative braking mode and mode(t) = 1.
When 0 ≤ Preq(t) < P0, the system operates in electric drive mode and mode(t) = 2. Otherwise,
mode(t) = 3 represents the system operates in hybrid mode. In order to avoid the frequent switch
among these three modes, a hysteresis loop controller is added. The second part is the core algorithm
of SQPIS. Taking the operation mode signal mode(t), requested power Preq(t) and battery’s residual
energy E · SOC(t) as input variables, the engine power Pice(t) and the battery-motor system power
Pess(t) can be obtained by the approximate optimal control law of Equation (43).
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At last, the control command of engine, motor/generator MG1 and MG2 will be generated in the
third part. The OOL has been converted and stored in a data table (see Figure 5). The corresponding
engine optimal operating point

[
Topt

ice (t), ω
opt
ice (t)

]
can be derived by utilizing the interpolation and

table lookup method. As shown in Figure 10, the MG1’s speed should be regulated together to make
the engine operate at the given optimal working point, and the command ω∗MG1(t) is set equal to
(1 + ρ) ·ωopt

ice (t)− ρ ·ωout(t). On the other hand, the sum of output power from MG1 and MG2 should
be adjusted equal to the battery-motor system power Pess(t). Therefore, the MG2’s torque command
T∗MG2(t) is obtained by:

T∗MG2(t) =
Pess(t)−ω∗MG1(t)TMG1(t)

ωout(t)
(50)

5. Simulation Results and Comparative Analysis

In order to quantitatively demonstrate the effectiveness of the proposed strategy SQPIS in this
paper, the simulation tests are performed over different driving conditions. The results are compared
with the rule-based energy management strategy (rule-based EMS) [38], which have been applied to
Toyota Prius with impressive success, the A-ECMS [34] and the PMP-based global optimal control
strategy [31].

5.1. Test Design and the Selection of Weight Coefficient

The rule-based EMS is summarized as follows: when the vehicle decelerates, the engine power
is set to zero. If the requested braking power doesn’t exceed the maximum battery charging power,
the MG2 will operate as a generator. When the vehicle accelerates, if the requested power Preq(t) is
lower than P0 and the battery SOC is high enough, the MG2 will be used as a motor and drive the
vehicle individually. As the requested power Preq(t) increases or the battery SOC is lower than the
minimum value SOCmin, the engine will be started. It not only provides the requested power, but also
tries to sustain the battery SOC around the desired value, that is:

Pice(t) = Preq(t) + Kchg · (SOC(t)− SOCre f ) (51)

where Kchg is the fitting coefficient. When the requested power Preq(t) exceeds the maximum engine
power, the engine will operate at the maximum value and the MG2 will provide assistant power to
keep the vehicle still owning better driving performance.

The PMP-based global optimal control strategy attempts to search for the optimal control variable
to minimize fuel consumption under a given driving cycle. As shown in Figure 6, the fuel consumption
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rate
.

m(t) is a function only related to engine power Pice(t). Then, the total fuel consumption can be
treated as the integral performance index:

J =
∫ t f

t0

.
m(Pice(t))dt (52)

For the given requested power Preq(t), the engine power Pice(t) and battery-motor system power
Pess(t) should satisfy Equation (8). Therefore, taking Equations (1), (7) and (8) into consideration, the
optimal control variable Pess(t) can be obtained by searching the minimum value of the Hamiltonian
function [31], that is:

Pess(t) = min
Pess_min ≤ Pess ≤ Pess_max

0 ≤ Pice = Preq − Pess ≤ Pice_max

[ .
m(Pice(t)) + λ× d(E·SOC(t))

dt

]

= min
Pess_min ≤ Pess ≤ Pess_max

0 ≤ Pice = Preq − Pess ≤ Pice_max

 .
m
(

Preq(t)− Pess(t)
)
− λ×

VOC

(
VOC−

√
V2

OC−4RintPess(t)/ηkm
m

)
2Rint


(53)

where λ is the co-state variable, which converts the electric energy consumption into virtual fuel
consumption, VOC is the battery open-circuit voltage, Rint is the battery internal resistor, and ηm is the
efficiency of the two-motor system.

As mentioned above, the physical meaning of Hamiltonian function Equation (53) is the equivalent
fuel consumption and it has a similar formulation as ECMS. The co-state variable λ can be deemed
as the equivalence factor in ECMS. The optimality of ECMS is especially sensitive to the value of
equivalence factor, which should be tuned appropriately only when the driving cycle is known in prior.
The A-ECMS, which is on the basis of SOC feedback, is a better method to improve the robustness and
make it applicable in real-world conditions. Firstly, an initial guess value is given for the equivalent
factor λ, and then it must be adjusted according to the adaptation law every T seconds [34]:

λk+1 =
1
2
(λk + λk−1) + cp ·

(
SOCre f − SOC(t)

)
, t = k · T, k = 1, 2, ... (54)

where λk+1 is the new equivalence factor when t ∈ [kT, (k + 1)T], λk is the equivalence factor
when t ∈ [(k− 1)T, kT], λk−1 is the equivalence factor when t ∈ [(k− 2)T, (k− 1)T] and cp is the
proportional gain of feedback controller.

The detailed vehicle model specifications of the Toyota Prius are shown in Table 1. For the
proposed strategy SQPIS, the switching power P0 in Equation (43) is 5 kW, which is the same as that of
the rule-based EMS. In order to avoid frequent switching between different opearation modes, a 2 kW
hysteresis loop is added. The weight coefficients could be determined by combining a certain driving
cycle. Different coefficient value is chosen to carry out the simulation test until a better fuel economy
is obtained. Meanwhile, the test conditions (see Equations (40)–(42)) also should be verified. In this
paper, the urban dynamometer driving schedule (UDDS) cycle, which represents a typical city test
schedule and is always used to evaluate the fuel economy of electric vehicles, is chosen to determine
the weight coefficients. When the weight coefficients q = 3.4861× 10−13, r = 7.643× 10−10, the filter
time constant is calculated as T = 46.8233s, and solutions of the Riccati equation and adjoint equation
are shown in Figure 11.
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Table 1. Toyota Prius model specifications.

Description Parameter Value Unit

Vehicle

Total weight 1368 kg
Wheel radius 0.287 m
Frontal area 1.746 m2

Aerodynamic drag coefficient 0.3 -
Rolling friction coefficient 0.009 -

Final drive ratio 3.93 -

Engine
Displacement 1.5 L
Max torque 102 @4000 rpm Nm
Max power 43 @4000 rpm kW

Motor/Generator1
(MG1) and controller

Max speed 5500 rpm
Max torque 55 Nm
Max power 15 kW

Motor/Generator2
(MG2) and controller

Max speed 6000 rpm
Max torque 305 Nm
Max power 31 kW

Battery Package Cell capacity 6 Ah
Nominal voltage 308 V

Planetary Gear Set Tooth number of sun gear 30 -
Tooth number of ring gear 78 -
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5.2. The simulation Test Results and Analysis

Abundant simulation tests are applied to validate the proposed strategy under some typical
driving cycles. Figures 12–15 are the simulation results of the rule-based EMS, A-ECMS, SQPIS and
PMP-based global optimal strategy under the UDDS driving cycle respectively. The initial value
SOC(t0) and desired value SOCre f are set to 0.6. In order to make comparison analysis among different
strategies, when the final value SOC(t f ) is not equal to the initial value SOC(t0), the charge deviation
will be converted into corresponding virtual fuel consumption by equivalent method. The equivalent
fuel consumption (EFC) could be expressed as:

EFC(L/100km) =

∫ t f
t0

.
m(t)dt
ρ f

+ s ·
(

SOCre f − SOC
(

t f

)) · 100
L

(55)

where
.

m(t) is the fuel consumption rate (g/s), ρ f is the fuel density (749 g/L), L is the total distance of
given driving cycle (km) and s is the equivalent factor, which is calculated by:
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s =
E

ρ f Qlhvηiceηmηbat
(56)

where E is total battery energy (J), Qlhv is fuel low heating value (42,600 J/g), ηice is average efficiency
of engine used to charge battery, ηm is average efficiency of two-motor system and ηbat is average
efficiency of battery.
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Figure 15. The simulation result of Pontryagin’s minimum principle (PMP)-based global
optimal strategy.

As shown in the first line of Table 2, the PMP-based strategy has the best fuel economy since it is
a global optimal strategy. On the other hand, comparing with the rule-based EMS, both the A-ECMS
and the SQPIS achieve a noticeable improvement in fuel economy, but the fuel economy of SQPIS is a
little better than that of the A-ECMS.
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Table 2. Simulation results of different drive cycles.

Drive Cycle Rule-Based EMS A-ECMS SQPIS PMP-Based Global Optimal Strategy

UDDS
EFC (L/100 km) 5.2733 4.0527 3.9984 3.6534

λ = −5.0142 × 10−5
SOC(tf) 0.5505 0.5987 0.5362 0.5972

HWFET
EFC (L/100 km) 4.2338 4.0581 4.0310 3.6445

λ = −5.1489 × 10−5
SOC(tf) 0.6082 0.5956 0.5756 0.6003

CSHVR
EFC (L/100 km) 4.7662 3.7175 3.6114 3.5605

λ = −5.2145 × 10−5
SOC(tf) 0.5883 0.6046 0.5515 0.5980

LA92
EFC (L/100 km) 6.4213 5.0392 4.8891 4.5662

λ = −4.7331 × 10−5
SOC(tf) 0.5934 0.5995 0.5543 0.5989

INDIA_URBAN
EFC (L/100 km) 4.7333 3.5538 3.4253 3.2982

λ = −5.4307 × 10−5
SOC(tf) 0.5807 0.6043 0.5398 0.6010

INDIA_HWY
EFC (L/100 km) 4.3588 3.8504 3.8223 3.6255

λ = −4.7461 × 10−5
SOC(tf) 0.5963 0.5916 0.5637 0.6007

NEDC
EFC (L/100 km) 4.6078 3.9271 3.8528 3.6949

λ = −5.6184 × 10−5
SOC(tf) 0.6202 0.6134 0.6012 0.6001

J1015
EFC (L/100 km) 4.6734 3.7336 3.6696 3.5542

λ = −4.9843 × 10−5
SOC(tf) 0.6074 0.6075 0.5795 0.5988

For the SQPIS, the average tracing error between the required and achieved speed is only
0.1472 km/h, and it could adjust the output power of MG1 and MG2 actively in order to avoid
large scale fluctuation of engine power. As shown in Figure 16, the engine efficiency distribution
for the rule-based EMS is relatively dispersed, but it will be more concentrated for the SQPIS and
PMP-based global optimal strategy. That is a powerful evidence to explain why the SQPIS is a more
effective strategy for reducing the fuel consumption.
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Just as the analysis of previous section indicated, the SQPIS has a good adaptability under
various driving cycles. Other seven driving cycles, including the urban and suburb condition, are
chosen to verify this point with unchanged weight coefficients. The EFC and final value SOC(t f ) of
different strategies have been listed in Table 2. Obviously, the fuel consumption difference between the
rule-based EMS and PMP-based global optimal strategy varies according to the driving cycle. The
minimum difference is 16.17% under the HWFET cycle and the maximum difference is about 44.34%
under the UDDS cycle.

The nature of PMP-based strategy is an open-loop optimization algorithm and it carries out
one-dimension optimization at each control cycle by utilizing the Equation (53). In addition to the large
amount of calculation, prior knowledge of the whole driving conditions is needed. Hence, as shown in
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Table 2, the value of co-state variable λ can only be derived by off-line calculation and it should be
adjusted under different driving cycles to ensure the final value SOC(t f ) is equal to its initial value.
Different from the PMP-based strategy, the SQPIS has the ability to restrict the SOC fluctuation and
reduce fuel consumption simultaneously. The simulation results indicate that the SQPIS achieves
a better compromise between the fuel economy and driving performance, i.e., the minimum fuel
consumption difference between the SQPIS and PMP-based global optimal strategy is only 1.43%
under the CSHVR cycle, and the maximum difference is 10.6% under the HWFET cycle. As mentioned
above, the SQPIS generates only a state feedback solution. Comparing with the PMP-based global
optimal strategy, the SQPIS can be real-time implemented in various driving cycles with the same
weight coefficients. Therefore, the robustness of the proposed strategy SQPIS is better than that of the
PMP-based global optimal strategy.

In order to solve the mismatch problem existing in the PMP-based strategy and ECMS, the
A-ECMS is proposed to adjust equivalence factor based on the SOC feedback value. Although the
A-ECMS is a better way to be implemented in real-world conditions, it still needs extensive calculation
in one-dimension optimization at each control cycle. Furthermore, as listed in Table 2, simulation results
indicate the fuel consumption of A-ECMS is also a little higher than that of the SQPIS. For example,
the minimum fuel consumption difference is 0.67% under the HWFET cycle and the maximum fuel
consumption difference is 3.75% under the INDIA_URBAN cycle.

The aforementioned results are obtained while the cargo mass and road slope stay the same.
The simulation results with m = {1368kg, 1568kg, 1768kg} and road slope tan θ = {0, 5%, 10%}
under the UDDS driving cycle are listed in Table 3. The vehicle dynamic performance could be ensured
by the rule-based EMS, A-ECMS and SQPIS with unchanged parameters, but for the PMP-based global
optimal strategy, the co-state variable λ should be adjusted according to the cargo mass or road slope.
Comparing with the rule-based EMS and A-ECMS, the fuel consumption of SQPIS is closer to that of
the PMP-based global optimal strategy.

Table 3. Impacts of cargo mass and road slope on fuel consumption under urban dynamometer driving
schedule (UDDS) driving cycle.

Cargo Mass Rule-Based EMS A-ECMS SQPIS PMP-Based Global Optimal Strategy

1368
EFC (L/100 km) 5.2733 4.0527 3.9984 3.6534

λ = −5.0142 × 10−5
SOC(tf) 0.5505 0.5987 0.5362 0.5972

1568
EFC (L/100 km) 5.8433 4.5030 4.4498 3.9802

λ = −4.8372 × 10−5
SOC(tf) 0.5498 0.5966 0.5364 0.5988

1768
EFC (L/100 km) 6.4531 4.9280 4.8785 4.3275

λ = −4.7621 × 10−5
SOC(tf) 0.5462 0.6049 0.5430 0.5981

Road Slope (0–500 m) Rule-Based EMS A-ECMS SQPIS PMP-Based Global Optimal Strategy

0%
EFC (L/100 km) 5.2733 4.0527 3.9984 3.6534

λ = −5.0142 × 10−5
SOC(tf) 0.5505 0.5987 0.5362 0.5972

5%
EFC (L/100 km) 5.5030 4.3343 4.2880 3.8715

λ = −4.9872 × 10−5
SOC(tf) 0.5505 0.5983 0.5362 0.5999

10%
EFC (L/100 km) 5.9062 4.6140 4.5462 4.1133

λ = −4.8528 × 10−5
SOC(tf) 0.5505 0.6067 0.5362 0.5989

As mentioned above, when the initial value SOC(t0) is set to 0.6, the final value SOC(t f ) obtained
by SQPIS can be brought back near to the desired value SOCre f . However, in the actual driving process,
the initial value SOC(t0) may be not 0.6. For the PMP-based global optimal strategy, the co-state
variable λ has to be adjusted off-line according to the initial value SOC(t0). But for the SQPIS, it is
easier to be implemented without changing any weight coefficient. When the initial value ranges from
0.5 to 0.7, the SOC trajectories under UDDS driving cycle are given in Figure 17. The simulation results
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indicate that the SOC trajectories tend to be convergent after 460s and the final values SOC(t f ) are
same under different initial battery SOC. The adaptability of the proposed strategy SQPIS is exhibited.Energies 2017, 10, 896 21 of 23 
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6. Conclusions

The quadratic performance index is innovatively applied to solve the energy management
problem of power-split HEVs. It is designed to restrict the fluctuation of battery SOC and reduce fuel
consumption simultaneously. By approximating the fuel consumption rate as a quadratic polynomial
of engine power, an extended quadratic optimal control problem is formulated. When the average
value of requested power changes relatively slow, the adjoint equation can be treated as a filtering
process and an approximate optimal strategy SQPIS is obtained. The SQPIS generates only a state
feedback solution and the amount of calculation is negligible.

The forward-facing vehicle simulation model of a Toyota Prius is established and embedded
in ADVISOR platform to validate the effectiveness of SQPIS. Compared with the rule-based EMS,
A-ECMS and PMP-based global optimal control strategy, our simulation results show that the SQPIS
has better oil-saving effect than that of the rule-based EMS and A-ECMS without sacrificing driving
performance and its fuel economy is nearly the same as that of the PMP-based global optimal control
strategy. Furthermore, the SQPIS also exhibits good adaptability under different initial battery SOC,
cargo mass and road slope. The proposed strategy SQPIS has good robustness with unchanged
weight coefficients and it is easy to be real-time implemented, so this strategy is extremely valuable in
engineering application.

Author Contributions: Chaoying Xia gave the concrete ideas of proposed strategy, the specific algorithm and its
engineering explanation. Zhiming Du and Cong Zhang performed the simulations. All of the authors wrote and
revised the manuscript.
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