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Abstract: This study proposes an evaluation method for variable generation (VG) acceptability with
an adequate level of power system flexibility. In this method, a risk index referred to as the ramping
capability shortage expectation (RSE) is used to quantify flexibility. The RSE value of the current
power system is selected as the adequate level of flexibility (i.e., RSE criterion). VG acceptability is
represented by the VG penetration level for the RSE criterion. The proposed evaluation method was
applied to the generation expansion plan in Korea for 2029 in order to examine the validity of the
existing plan for VG penetration. Sensitivity analysis was also performed to analyze the effects of
changes in system uncertainty on VG acceptability. The results show that the planned VG penetration
level for 2029 can improve by approximately 12% while securing flexibility.

Keywords: flexibility; ramping capability shortage expectation; sensitivity analysis; variable
generation (VG) acceptability; system uncertainty

1. Introduction

For the next few decades, the national renewable energy plan of Korea has been outlined in
the second basic energy plan (every five years), fourth new and renewable energy basic plan (every
five years), and seventh basic plan for long-term electricity supply and demand [1–3]. These plans
indicate that integrating renewable energy is essential to improve energy security and cope with the
post-2020 climate change regime. The expansion of photovoltaic (PV) and wind power systems is
considered as a core strategy to implement these plans. Their installed capacity is expected to account
for approximately 75% of total installed capacity in 2029 [3]. The annual average growth of PV and
wind power systems between 2017 and 2029 will be 1012 MW and 528 MW, respectively; these figures
correspond to the largest and second largest increase in renewable energy resources.

To cope with the challenges of supplying sustainable energy, renewable energy implementation
plans in Korea emphasize variable generation (VG) through PV and wind power systems, although
other renewable resources will be included. In the process of introducing VG into the power grid,
many studies have demonstrated the lack of flexibility in the operation and planning of the system
because unexpected variations in VG would lead to a power mismatch [4–8]. Flexibility is generally
defined as the ability to respond to changes in net load (i.e., load minus VG). Power systems may
not support flexibility because of uncertainties such as failure of power plants (FOPP) and load
forecast errors [8]. Increasing VG has made it harder to secure flexibility because of increased system
uncertainty. Accordingly, the flexibility issue has recently surfaced in the operation and planning of
power systems.

The flexibility issue is not limited to Korea. Most system operators and planners have encountered
this problem and have made efforts to secure flexibility [9,10]. Hence, the conventional generator has
received attention because it can provide ramping capability, which can be considered as the most

Energies 2017, 10, 825; doi:10.3390/en10060825 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en10060825
http://www.mdpi.com/journal/energies


Energies 2017, 10, 825 2 of 12

effective means to respond to variations in net load [11]. The greater the ramping capability of the
power system, the larger the grid acceptability for VG. However, as mentioned previously, system
uncertainty is an inevitable problem. Therefore, controlling the available ramping capability is of vital
importance to integrate more VG output, while maintaining flexibility.

Studies have been conducted to assess VG acceptability based on power system flexibility,
which can be categorized as deterministic and probabilistic approaches [12–15]. Ramping capability
was considered in the former approach, but related uncertainties in the system were neglected.
The load shedding experience of the Electric Reliability Council of Texas (Austin, TX, USA) is a
prime example of the necessity of reflecting system uncertainty [16], which was determined in [14,15].
The grid-acceptable wind power capacity was calculated using the unit commitment (UC) and
economic dispatch model [14]. A chronological method was used to generate the scenario. However,
the FOPP was neglected, which influences reliability. The wind curtailment ratio was also used as
a risk criterion. However, wind curtailment risk is not as serious as load curtailment risk, whose
effects on reliability are more severe. In [15], the wind power acceptability in China was computed.
Various risks were considered through a systematic approach, particularly transmission and storage
capacity risks, but FOPP was also neglected.

This study proposes a flexibility-based evaluation method for VG acceptability. In this method,
major system uncertainties, such as FOPP and VG forecast error, are considered in the flexibility
calculation. Flexibility is quantified using a risk index referred to as the ramping capability shortage
expectation (RSE), which represents the possibility of a ramping capability shortage due to major
system uncertainties in a particular period [8]. The RSE is used as a criterion in the evaluation of VG
acceptability. Korea’s VG penetration plan for 2029 does not provide a reasonable basis for the required
flexibility [3]. Thus, we examine the validity of the existing plan for VG penetration and evaluate VG
acceptability with an adequate level of flexibility using the proposed evaluation method. Moreover,
sensitivity analysis is performed to analyze the effects of system uncertainties on flexibility.

The rest of this paper is organized as follows. Section 2 explains the flexibility index RSE, which
is used as a criterion to evaluate the VG acceptability. In Section 3, the evaluation method for VG
acceptability is described. In Section 4, VG acceptability for the generation expansion plan in Korea is
evaluated. Sensitivity analysis is performed to confirm the effects of changes in uncertainty parameters
on VG acceptability. The conclusions and future prospects are discussed in Section 5.

2. Flexibility Index: Ramping Capability Shortage Expectation

When considering power balance, the concept of flexibility can be incorporated in power system
reliability, which addresses the risks faced by power systems. The risk considered is simply a power
mismatch due to system uncertainties, such as FOPP and net load forecast error (NLFE), which are
sources of risk. In other words, a causal relationship exists between risk and system uncertainty.
Increasing the VG of PV and wind power systems can increase risk. Studies conducted to evaluate risk
have failed to demonstrate this causal relationship [17–19]. The RSE index in our study was proposed
to overcome this limitation and explicitly evaluate power system flexibility [8].

2.1. RSE Definition

The ramping capability of a generator is defined as the ability to change its output during a specific
period. The system ramping capability (SRC) can be computed by adding the ramping capabilities of
every generator as follows:

SRCt = ∑
i∈I

Ai,t−∆tOi,t−∆tmin(Pmax,i − Pi,t−∆t, rri ∆t) (1)

In the SRC, the uncertainty of the generator is taken into account using availability Ai,t−∆t, which
is calculated using the Markov chain-based capacity state model [8]. This value varies with time Oi,t−∆t
and indicates whether generator i is online at time t − ∆t. If the generator is online, the value is one;
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otherwise, it is zero. Pmax,i and Pi,t−∆t are the maximum output and scheduled output of generator
i, respectively. rri is the ramp rate of generator i. ∆t is the minimum time interval considered in the
ramping capability calculation. The SRC should then be compared with the RC requirement (RCR) in
the net load side, which is given as follows:

RCRt = NLFEt + FNLt −∑
i∈I

Ai,t−∆tOi,t−∆tPi,t−∆t (2)

where NLFEt and FNLt are the net load forecast error and forecast net load at time t, respectively.
Ai,t−∆t is included in this equation, indicating that RCRt is affected by FOPP. If the loading generator
unexpectedly fails, additional ramping capability is required, which is reasonable.

If RCRt is not covered by SRCt, then the power is mismatched. This situation can be called a
ramping capability shortage if load shedding is required. Therefore, the risk index RSE is defined as
the sum of the probabilities, wherein the RCR will not be satisfied by the SRC for the entire period,
and is given as follows:

RSE = ∑
t

RSPt = ∑
t

∑
e∈Et−∆t

Prob(e)

[
∑

c∈Ct−∆t

Probc[RCRt > SRCt]

]
(3)

such that:

RSE = ∑
t

∑
e∈Et−∆t

Prob(e)

[
∑

c∈Ct−∆t

Probc[FNLt + NLFEt

> ∑
i∈I

Ai,t−∆tOi,t−∆t{Pi,t−∆t + min(Pmax,i–Pi,t−∆t, rri∆t)}
]] (4)

where Ci,t−∆t and Ei,t−∆t are the possible uncertainty scenarios set for the FOPP and NLFE at time
t − ∆t, respectively. The RSE has the following characteristics: (1) only the up-RC shortage risk (related
to increasing net load) is considered so that more critical problems can be incorporated in terms of
reliability; and (2) the calculation of the RSE is applied to the worst case of all possible FOPP scenarios.
The second characteristic intends to reduce the computational burden in generating scenarios. For more
details, refer to [8].

2.2. Comparison of RSE with Reliability Indices

The RSE-based flexibility evaluation is different from conventional evaluations based on reliability
indices, such as loss of load probability and loss of load expectation [20,21]. First, the reliability
indices-based evaluation is combined with the solution process of the stochastic UC problem.
The indices are included in the objective function of the problem; thus, an independent evaluation
is impossible. However, calculation of the RSE is independent from the solution process of the UC
problem. Second, in the reliability indices-based evaluation, generating uncertainty scenarios such as
FOPP and NLFE, as well as establishing simulation procedures are time-consuming. It is impossible
to consider all the possible scenarios for system uncertainty. In most related studies, reduction
techniques were used to generate uncertainty scenarios. However, scenarios for system severity were
not generated. System severity is defined as the extent to which the system is in danger of losing the
power balance. Severity should be considered in the flexibility study because the nature of the risks
observed in flexibility and reliability studies are the same. The RSE can take into account severity by
selecting the worst case for the FOPP scenario, thereby reducing the computational burden that occurs
as the size of the system increases.

3. Evaluation Procedure of the Variable Generation Acceptability

VG acceptability was evaluated to determine the maximum acceptable level of VG penetration
with an adequate level of power system flexibility (i.e., RSE criterion). This evaluation procedure
is based on the relationship between VG penetration level and flexibility. The RSE helps quantify
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the effects of VG penetration level on flexibility. As shown in Equation (4), the terms FNLt, NLFEt,
Pi,t−∆t, Prob(e), and Probc are associated with VG penetration level and their changes directly affect
the RSE. The RSE may decrease as VG penetration level increases, although the extent to which it
decreases depends on the characteristics of the system. If a power system has many fast-ramping units,
then the RSE is more likely to decrease gradually compared to a system with many slow-ramping
units. However, system uncertainties, such as the failure rate of generators, can affect the RSE, thereby
decreasing its value more abruptly.

After obtaining the relationship between the penetration level and RSE, the VG acceptability
under the RSE criterion can be easily determined. In this study, the RSE value of the current power
system was used as the RSE criterion in order to maintain the same flexibility level as that of the
current system. This approach is reliable because the flexibility of the current system is empirically
verified. RSE values above the RSE criterion and their corresponding VG penetration levels are
feasible. The maximum value among the feasible VG penetration levels indicates the VG acceptability.
Sensitivity analysis of the uncertainty parameters is then performed at this value to examine the effects
of uncertainty parameters on VG acceptability.

Figure 1 shows the flexibility-based evaluation procedure. The basic information for calculating
the RSE includes the forecasted net load profile for the worst case scenario, VG-related information,
load distribution information, VG forecast error, and the technical information of generators.
The forecasted net load profile can be obtained by combining the forecasted load profile and VG-related
information. The distribution information of the load and VG forecast errors are factored into the
uncertainty scenarios for NLFE (i.e., Ei,t−∆t in Equation (4)). The technical information of the generators,
such as failure rate, repair rate, and maximum generation output, are used to calculate the generator
states and their probabilities, which are then used to obtain uncertainty scenarios for FOPP (i.e., Ci,t−∆t
in Equation (4)).
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4. Case Study

The main objective of our simulation is not only to evaluate the maximum acceptable level
of VG penetration in Korea for 2029 but also to examine the influence of uncertainty parameters
on power system flexibility. The year of interest is 2029, which is the last forecasted year in the
latest generation expansion plan [3]. In recent years, the annual peak load tends to occur in the
winter season (i.e., December to February) in Korea. This is attributed to the use of equipment with
temperature-sensitive loads, such as electric heaters. In addition, 16 December 2016 was chosen as one
of the peak days [22]. Figure 2 shows the load profiles of the peak day; the peak load was 75,500 MW
at around 10:00 a.m.
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Figure 2. Load profiles of peak day in 2016.

The generators in Korea can be classified into dispatchable and non-dispatchable units. The power
system operator has no control over non-dispatchable units, which include not only VG systems but
also non-VG systems such as units with power below 20 MW, units owned by community energy
service providers [23], and new-energy units (i.e., units using energy converted from fossil fuels
or obtained through the chemical reaction between oxygen and hydrogen—for example, fuel cells,
integrated gasification combined cycle, hydrogen energy, etc.). We assumed that on the peak day
in 2029, the output patterns of VG and non-VG systems are the same as that in 2016. However, to
represent the changes in VG penetration level, the proportions of the PV and wind power systems
were adjusted to their expected generation capacity in 2029. This assumption is based on the fact that
the number of PV and wind power systems will proportionally increase from their current installation
rates by region, which may be significant because of the smoothing effect. This means that fluctuations
in total VG outputs are smoothened by the correlations between the VG outputs of each region [24].
Figure 3 shows the profiles of VG and non-VG outputs. The increase in VG output during hours 8–13
is because of PV power. With exception of PV power, most of the power of VG comes from wind
systems. However, the output is flattened by the smoothing effect. Figure 4 shows the net load profiles.
By employing an upscaling technique, the net load profile of the peak day in 2029 can be represented,
with a peak load of 101,154 MW that occurs during hour 18.
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Figure 4. Net load profiles of peak day.

On the peak day in 2016, the number of available generators was 202, excluding non-dispatchable
units, units scheduled for maintenance, and failed units; the available capacity was 87,183 MW.
The dispatchable units can be categorized into several types: combined-cycle (using both gas and
steam turbines) fossil-fuel units, steam turbine fossil-fuel units, cogeneration units, hydraulic/pumped
hydraulic units, and nuclear power units. In 2016, the ratios of non-available units to total units, with
respect to the aforementioned types, were 1.3%, 10%, 4.8%, 45.5% and 21.7%, respectively. The same
ratios were applied to each type of generator in 2029. Accordingly, the number of available dispatchable
units is 296, with available capacity of 116,712 MW (as of 16 December 2029). Information on the type
and size of generators in 2029 is listed in [3]. Technical information on newly installed generators from
2017 to 2029 is assumed to be the same as that of the latest generators (see Appendix A for the details
of newly installed generators). Information on failure and repair rates can be seen in [25]. The NLFE is
assumed to have a normal distribution with a standard deviation of 5%.

The generation schedule was determined using M-CoreS (version: 2.10.161101, Master’s Space,
Seoul, Korea), a commercial software designed to simulate the short-term electricity market in



Energies 2017, 10, 825 7 of 12

Korea [26]. The Korean electricity market currently operates under the cost-based pool market
rule; the latest market rule was applied for this simulation. The detailed market rule is given in [27].
A MATLAB program (R2013b version) (MathWorks, Natick, MA, USA) was used to compute the
RSE for the resulting power generation schedule. Using a PC with a 3.7 GHz Intel Core i3-6100 CPU
(Santa Clara, CA, USA) and 16 GB RAM, the computational time for the market simulation and RSE
calculation were 5 and 13 min, respectively.

Figure 5 shows the generation schedule for the power system in 2029; “Hyd/pumped” is an
acronym of “hydraulic/pumped hydraulic unit”. For reference, the results were obtained for the
net load in 2029. The combined-cycle units followed the hourly variations in net load, and the
hydraulic/pumped hydraulic units offset the sharp increase in net load. The negative values of the
Hyd/pumped unit appeared during hours 4 and 13 because of the action of the pumped hydraulic
units; these values, however, were too small to be seen in the graph.
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Figure 6 shows the graph of RSE versus VG penetration level, with a step size of 1%, where the
RSE criterion (i.e., 10.6720 h/day) is indicated with a blue dotted line. The RSE values (i.e., risk level)
decreased in some sections as VG penetration level increased, although the sum of RCR during the
entire period increased (that is, more RC was required) with the increase in VG penetration level, as
shown in Figure 7. This may be because the system ramping capability is determined by the generation
schedule. The market rule for the generation schedule requires the system operator to secure operating
reserves. These are classified into three types: frequency regulation reserves (for governor free and
automatic generation control services), standby reserves, and replacement reserves. The second and
third type of reserves can either be spinning or non-spinning. The requirement for frequency regulation
reserves is at least 1500 MW, while the minimum requirements for spinning and non-spinning reserves
are 1500 MW and 1000 MW, respectively. The SRC can vary with this constraint and net load situations.
For all VG penetration levels, the highest ramping up in net load occurred at hour 8. When comparing
generation schedules based on VG penetration levels at hour 8, the result with larger RSE had greater
SRC (i.e., more operating reserves).

The planned VG penetration level in 2029 is 22%, and the corresponding RSE is 10.4513 h/day,
which is less than the RSE criterion. The RSE criterion intersects the RSE graph at two points, and the
VG penetration levels at each point are 19.2% and 35.8%, respectively. The feasible VG penetration
levels are between these two points. The larger one (i.e., 35.8%) corresponds to the maximum acceptable
level of VG penetration. It should be noted that this value is not only 12% larger than the planned VG
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penetration level (i.e., 22%) but is also helpful in maintaining the same flexibility as that of the current
system (as of 16 December 2016). According to the generation schedule, some RSE values may fall
below the RSE criterion in some sections after a VG penetration of 37%. However, those values would
be unstable because some variations in the values can lead to a violation of the RSE criterion.Energies 2017, 10, 825 8 of 13 
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Figure 7. Sum of RC requirement (RCR) versus VG penetration level.

In order to examine the impact of changes in system uncertainty on VG penetration level,
sensitivity analysis was performed with the following uncertainty parameters: the standard deviation
of NLFE and generator failure rates. The standard deviations of NLFE and generator failure rates
were chosen as representative uncertainty parameters for the load and generation sides, respectively.
Figure 8 shows the results of the sensitivity analysis. In Figure 8a, the graph was obtained by
increasing/decreasing the failure rates of the generators from –50% to +50%; in the horizontal axis, the
value of 100 indicates the original failure rates. It should be noted that the variations in RSE values did
not exceed the RSE criterion (i.e., 10.6720 h/day), indicating that the power system can withstand, to
some extent, future changes in failure rates. Moreover, the RSE changed linearly with the failure rates
of the generators, as expected from Equation (4).

The impact of the standard deviation of NLFE on the RSE was also examined by
increasing/decreasing its value from 1% to 9%, with a step size of 1%, as shown in Figure 8b.
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For reference, the default value was set to 5%. The graph shows the increase or decrease for each
section, although it tends to increase with respect to standard deviation in general. The standard
deviation can be used to interpret the accuracy of the forecasting technique. The results show that
the higher the accuracy, the lower the risk (i.e., RSE). This result will vary depending on the type of
system. The relationship between the RSE and uncertainty parameters enables the system operator to
effectively manage system risks.Energies 2017, 10, 825 9 of 13 
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5. Conclusions

This study proposed a flexibility-based evaluation method for VG acceptability. We explicitly
quantified power system flexibility using a risk index called the RSE. In this method, the RSE of the
current power system was used as the acceptable level of flexibility (i.e., RSE criterion). The VG
acceptability of the generation expansion plan in Korea for 2029 was evaluated using the proposed
method. The results show that the VG penetration level could improve by approximately 12%
compared to the planned VG penetration level. The results of sensitivity analysis also show the
extent to which system uncertainty affected VG acceptability. As part of future work, it would be
interesting to investigate the impact of flexible demand-side resources on the RSE. We also plan to
examine the time complementarity between VG resources.



Energies 2017, 10, 825 10 of 12

Acknowledgments: This research was supported by Korea Electric Power Corporation through Korea Electrical
Engineering & Science Research Institute (Grant no.: R15XA03-55).

Author Contributions: Chang-Gi Min carried out the main body of research and Mun-Kyeom Kim reviewed the
work continuously.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Newly Installed Generators from 2017 to 2029 (

Energies 2017, 10, 825 10 of 13 
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Table A1. Generation output limits and coefficient of cost function. 

Generator 
Name 

Maximum 
Output (MW) 

Minimum 
Output (MW) 

Coefficient of Cost Function 

2nd-Order (Gcal/MW2) 1st-Order (Gcal/MW) Constant (Gcal) 

CC1-GT 140 48 0.005454 2.489639 18.7936 
CC2-CC 200 82 0.001115 1.842653 18.01031 
CC3-GT 274 184 0.00003 1.871501 157.2697 
CC4-GT 274 184 0.00003 1.871501 157.2697 
CC3-CC 400 281 0.000386 1.138112 125.5207 
CC4-CC 400 281 0.000386 1.138112 125.5207 
CC5-GT 572.6 330 0.000643 1.19617 472.335 
CC5-CC 1000 542 0.000007 1.501309 100.2745 
CC6-GT 571.6 188 0.000111 2.111027 65.73368 
CC6-CC 950 439 0.000003 1.494521 70.40799 
CC7-GT 572.6 330 0.000643 1.19617 472.335 
CC8-GT 572.6 330 0.000643 1.19617 472.335 
CC7-CC 900 542 0.000007 1.501309 100.2745 
CC8-CC 900 542 0.000007 1.501309 100.2745 
CC9-GT 306.2 116 0.000003 2.461418 67.76106 
CC9-CC 470 175 0.000077 1.551216 40.38037 
CC10-GT 572.6 330 0.000643 1.19617 472.335 
CC10-CC 960 542 0.000007 1.501309 100.2745 
CC11-GT 572.6 330 0.000643 1.19617 472.335 
CC11-CC 1000 542 0.000007 1.501309 100.2745 
CC12-GT 572.6 330 0.000643 1.19617 472.335 
CC12-CC 920 542 0.000007 1.501309 100.2745 

ST1 595 260 0.000136 1.863031 107.3797 
ST2 595 260 0.000136 1.863031 107.3797 
ST3 1022 609 0.000098 1.765468 199.9551 
ST4 1022 609 0.000098 1.765468 199.9551 
ST5 1000 609 0.000098 1.765468 199.9551 
ST6 1000 609 0.000098 1.765468 199.9551 
ST7 1000 609 0.000098 1.765468 199.9551 
ST8 1040 609 0.000098 1.765468 199.9551 
ST9 1040 609 0.000098 1.765468 199.9551 

ST10 580 260 0.000136 1.863031 107.3797 
ST11 580 260 0.000136 1.863031 107.3797 
ST12 1040 609 0.000098 1.765468 199.9551 
ST13 1040 609 0.000098 1.765468 199.9551 
ST14 1050 609 0.000098 1.765468 199.9551 
ST15 1050 609 0.000098 1.765468 199.9551 
ST16 1050 635 0.000025 1.899346 165.6219 

Nucl.1 1400 795 0.000105 2.043505 267.8154 
Nucl.2 1400 795 0.000105 2.043505 267.8154 
Nucl.3 1400 795 0.000105 2.043505 267.8154 
Nucl.4 1400 795 0.000105 2.043505 267.8154 
Nucl.5 1500 795 0.000105 2.043505 267.8154 
Nucl.6 1500 795 0.000105 2.043505 267.8154 
Nucl.7 1500 795 0.000105 2.043505 267.8154 
Nucl.8 1500 795 0.000105 2.043505 267.8154 
Nucl.9 1400 795 0.000105 2.043505 267.8154 
Nucl.10 1400 795 0.000105 2.043505 267.8154 
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Generator
Name

Maximum
Output (MW)

Minimum
Output (MW)

Coefficient of Cost Function

2nd-Order (Gcal/MW2) 1st-Order (Gcal/MW) Constant (Gcal)

CC1-GT 140 48 0.005454 2.489639 18.7936
CC2-CC 200 82 0.001115 1.842653 18.01031
CC3-GT 274 184 0.00003 1.871501 157.2697
CC4-GT 274 184 0.00003 1.871501 157.2697
CC3-CC 400 281 0.000386 1.138112 125.5207
CC4-CC 400 281 0.000386 1.138112 125.5207
CC5-GT 572.6 330 0.000643 1.19617 472.335
CC5-CC 1000 542 0.000007 1.501309 100.2745
CC6-GT 571.6 188 0.000111 2.111027 65.73368
CC6-CC 950 439 0.000003 1.494521 70.40799
CC7-GT 572.6 330 0.000643 1.19617 472.335
CC8-GT 572.6 330 0.000643 1.19617 472.335
CC7-CC 900 542 0.000007 1.501309 100.2745
CC8-CC 900 542 0.000007 1.501309 100.2745
CC9-GT 306.2 116 0.000003 2.461418 67.76106
CC9-CC 470 175 0.000077 1.551216 40.38037
CC10-GT 572.6 330 0.000643 1.19617 472.335
CC10-CC 960 542 0.000007 1.501309 100.2745
CC11-GT 572.6 330 0.000643 1.19617 472.335
CC11-CC 1000 542 0.000007 1.501309 100.2745
CC12-GT 572.6 330 0.000643 1.19617 472.335
CC12-CC 920 542 0.000007 1.501309 100.2745

ST1 595 260 0.000136 1.863031 107.3797
ST2 595 260 0.000136 1.863031 107.3797
ST3 1022 609 0.000098 1.765468 199.9551
ST4 1022 609 0.000098 1.765468 199.9551
ST5 1000 609 0.000098 1.765468 199.9551
ST6 1000 609 0.000098 1.765468 199.9551
ST7 1000 609 0.000098 1.765468 199.9551
ST8 1040 609 0.000098 1.765468 199.9551
ST9 1040 609 0.000098 1.765468 199.9551

ST10 580 260 0.000136 1.863031 107.3797
ST11 580 260 0.000136 1.863031 107.3797
ST12 1040 609 0.000098 1.765468 199.9551
ST13 1040 609 0.000098 1.765468 199.9551
ST14 1050 609 0.000098 1.765468 199.9551
ST15 1050 609 0.000098 1.765468 199.9551
ST16 1050 635 0.000025 1.899346 165.6219

Nucl.1 1400 795 0.000105 2.043505 267.8154
Nucl.2 1400 795 0.000105 2.043505 267.8154
Nucl.3 1400 795 0.000105 2.043505 267.8154
Nucl.4 1400 795 0.000105 2.043505 267.8154
Nucl.5 1500 795 0.000105 2.043505 267.8154
Nucl.6 1500 795 0.000105 2.043505 267.8154
Nucl.7 1500 795 0.000105 2.043505 267.8154
Nucl.8 1500 795 0.000105 2.043505 267.8154
Nucl.9 1400 795 0.000105 2.043505 267.8154

Nucl.10 1400 795 0.000105 2.043505 267.8154
Nucl.11 1400 795 0.000105 2.043505 267.8154
Nucl.12 1400 795 0.000105 2.043505 267.8154
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Table A2. Ramp and on/off constraints.

Generator
Name

Ramp-Up Rate
(MW/min)

Minimum Up
Time (h)

Minimum
Down Time (h)

Ramp-Up Rate for
Start Up (MW/min)

Ramp-Down Rate for
Shut Down (MW/min)

CC1-GT 7 1 1 7 7
CC2-CC 8.7 4 3 8.7 8.7
CC3-GT 13.1 1.3 3.8 13.1 13.1
CC4-GT 13.1 1.3 3.8 13.1 13.1
CC3-CC 20 4 3.8 20 20
CC4-CC 20 4 3.8 20 20
CC5-GT 22.5 3.1 4.8 22.5 22.5
CC5-CC 36 4.2 5.3 48 48
CC6-GT 22.5 1 2 22.5 22.5
CC6-CC 34.5 4 3 34.5 34.5
CC7-GT 22.5 3.1 4.8 22.5 22.5
CC8-GT 22.5 3.1 4.8 22.5 22.5
CC7-CC 36 4.2 5.3 48 48
CC8-CC 36 4.2 5.3 48 48
CC9-GT 11.5 4 3 11.5 11.5
CC9-CC 18.55 4 3 18.6 18.6
CC10-GT 22.5 3.1 4.8 22.5 22.5
CC10-CC 36 4.2 5.3 48 48
CC11-GT 22.5 3.1 4.8 22.5 22.5
CC11-CC 36 4.2 5.3 48 48
CC12-GT 22.5 3.1 4.8 22.5 22.5
CC12-CC 36 4.2 5.3 48 48

ST1 15 6 12 15 15
ST2 15 6 12 15 15
ST3 12.5 8 18 30.6 30.6
ST4 12.5 8 18 30.6 30.6
ST5 12.5 8 18 30.6 30.6
ST6 12.5 8 18 30.6 30.6
ST7 12.5 8 18 30.6 30.6
ST8 12.5 8 18 30.6 30.6
ST9 12.5 8 18 30.6 30.6

ST10 15 6 12 15 15
ST11 15 6 12 15 15
ST12 12.5 8 18 30.6 30.6
ST13 12.5 8 18 30.6 30.6
ST14 12.5 8 18 30.6 30.6
ST15 12.5 8 18 30.6 30.6
ST16 10.5 7.7 20.8 1 1

Nucl.1 0.97 8 12 0.5 1.6
Nucl.2 0.97 8 12 0.5 1.6
Nucl.3 0.97 8 12 0.5 1.6
Nucl.4 0.97 8 12 0.5 1.6
Nucl.5 0.97 8 12 0.5 1.6
Nucl.6 0.97 8 12 0.5 1.6
Nucl.7 0.97 8 12 0.5 1.6
Nucl.8 0.97 8 12 0.5 1.6
Nucl.9 0.97 8 12 0.5 1.6

Nucl.10 0.97 8 12 0.5 1.6
Nucl.11 0.97 8 12 0.5 1.6
Nucl.12 0.97 8 12 0.5 1.6
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