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Abstract: This study was aimed to define a methodology based on existing literature and evaluate
the levelized cost of hydrogen (LCOH) for a decentralized hydrogen refueling station (HRS) in Halle,
Belgium. The results are based on a comprehensive data collection, along with real cost information.
The main results indicated that a LCOH of 10.3 €/kg at the HRS can be reached over a lifetime of
20 years, if an average electricity cost of 0.04 €/kWh could be achieved and if the operating hours
are maximized. Furthermore, if the initial capital costs can be reduced by 80%, in the case of direct
subsidy, the LCOH could even fall to 6.7 €/kg.
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1. Introduction

Global warming has become an unequivocal problem where the main cause is considered to
be anthropogenic greenhouse gas (GHG) emissions [1]. Means to mitigate GHG emissions such as
the implementation of renewable energy (RE) sources, stopping deforestation and increasing power
generation efficiencies have been presented [2]. New and efficient RE technologies such as wind and
solar power are being implemented in large quantities on a global scale. To demonstrate the rapid
growth of the global RE capacity, wind power rose from 17,333 MW to 369,608 MW from 2000 to 2014
and solar energy capacity increased from 805 MW to 175,305 MW during the same period [3].

These new energy sources entail problems linked to their power output as it is highly intermittent
and cannot meet steady energy demand [4]. One solution to this problem is to use hydrogen as an
energy carrier where hydrogen can be produced on site by water electrolysis, and compressed, stored
and re-electrified via fuel cells during low production days or used for mobility purposes [5].

Compared to conventional fuels hydrogen is a strong competitor. For example, hydrogen has more
energy content per unit mass but at the same time occupies more space at atmospheric temperature
which makes a high pressure or liquefied storage vital [4,6–12]. Hydrogen can be produced from
variable sources and by different processes such as coal gasification, partial oxidation of hydrocarbons,
steam reforming of natural gas and water electrolysis [13–15]. Water electrolysis is the only method
that does not entail GHG emissions, making it the perfect method to link to the rapidly increasing
RE capacity. Despite the advantages of hydrogen, large scale implementation has been slow to be
developed, due to high capital and running costs [16].

The term “hydrogen economy” has a relatively broad meaning [17] and can be traced to the
early 1970’s where the term was first used publicly in the work of Bockris [18,19], who referred to the
hydrogen economy as the concept of using hydrogen as the energy medium between future energy
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generation sites and consumers where the hydrogen could be used as a fuel or to produce electricity.
Since then the term has widely been used in relation to the part hydrogen plays in the car industry
and as an energy carrier linked to renewable energy sources aimed to balance intermittent energy
production [5,20]. Therefore, the term has been referred to as many “economies” instead of one
“economy” [17].

Although hydrogen has been considered a viable option as an energy carrier for stationary
applications, the main application of hydrogen has been linked to the car industry where hydrogen
could replace conventional fossil fuels, thus reducing GHG emissions [7,9,21]. During the first decade
of this century hydrogen “hype” linked to the car industry peaked [22]. However, despite the cooling
down of hydrogen hype, car manufacturers have reached a point where hydrogen driven vehicles are
ready for deployment.

Hydrogen production via water electrolysis is expensive due to the high investment and running
costs which make an economic assessment of such systems important. Life cycle cost (LCC) analysis
has been the method to study the cost due to its capability of capturing all upstream costs associated
with the overall lifetime of the selected system [12]. Hydrogen systems are often considered as a
replacement or addition to conventional energy sources at remote locations where diesel generators are
used extensively with relevant emissions and diesel cost. Therefore, as a means to compare different
systems at different locations the levelized cost of hydrogen (LCOH) method has been implemented
in order to evaluate the LCC in terms of cost per energy unit (kWh) or in terms of hydrogen mass
(kg) [12,23–25].

The literature reveals many studies that assess the economic feasibility of energy systems that
include hydrogen as an energy carrier, especially for remote locations [26–29]. The key similarity
among the results of those studies is that further reduction in hydrogen component cost is needed to
achieve economic competitiveness. Thus, new pilot projects and research on their results are needed
for the hydrogen systems to become economically competitive. Furthermore, although there is an
abundance of feasibility studies for hydrogen energy systems there is a certain lack of economic
assessments of real demonstration and pilot projects despite the fact that a number of hydrogen
systems have been installed [30].

The aim of this study was to evaluate the well-to-tank (WTT) LCOH of a hydrogen refueling
station (HRS) located in Halle, Belgium, compare the cost-level to previous benchmarks, and identify
the most critical cost factors. In addition, a sensitivity analysis for different uncertain components is
provided to evaluate further under which conditions certain target cost levels could be met. The LCC
model provides a holistic approach based on the existing literature. The main findings are that capital
costs should be pushed down in the future to reach more competitive cost levels, which in the current
assessment are only reached under the most favorable future running cost development.

The case study project was co-funded by the European Commission. The 7th Framework
Programme for the Fuel Cell and Hydrogen Joint Undertaking (FCH JU) initiative and has been
given the acronym Don Quichote (DQ). The DQ project was initiated in 2012 and is a 5-year project
consisting of three phases. The first phase, analyzed in this paper, was the evaluation of an existing
hydrogen refueling station based on an alkaline water electrolyzer (WE), diaphragm compressor
(450 bar) and steel hydrogen storage (50 kg). Phase 2 is aimed to implement a state-of-the-art proton
exchange membrane (PEM) WE and a fuel cell (FC) for the re-electrification of the hydrogen and a
(40 kg) composite storage tank. The aim of the DQ project is obviously to benchmark the new PEM WE
system against the mature alkaline WE technology. Phase 3 includes the addition of a state-of-the-art
electrochemical compressor that will be benchmarked against the existing diaphragm compressor. The
focus of this study is only on phase 1 of the project and can act as a benchmark for phase 2.

The structure of this paper is split, as follows: the research methods are explained in Section 2
and a detailed description of the research process is given in Section 3. The results are presented in
Section 4, including the main LCC results along with a sensitivity analysis. Implications and further
discussion are provided in Section 5 and finally the main results are concluded in Section 6.



Energies 2017, 10, 763 3 of 15

2. Methodology

2.1. Life Cycle Costing (LCC)

LCC is an important method to evaluate the total cost of a product or a system over its given
lifetime [31,32]. By applying LCC into the early life cycle stage, changes are easier in terms of
minimizing the LCC. There is no global approach that fits all situations and as the literature reveals the
LCC discourse has been a long journey. Many methods have been proposed and are rather general in
approach [31–33]. Although the methods are different, many of the main steps are similar to some of
the first methods such as the steps in the method by Harvey [33]:

• Define the cost elements;
• Define the cost structure;
• Establish cost estimating relationships;
• Establish the method of LCC formulation.

Although LCC has been accepted as a methodology it is still being criticized. The main
disadvantages of the LCC method come from the fact that it includes a future estimation and can
lead to uncertain results. Despite the flaws of the LCC method it still provides a somewhat holistic
universal method to evaluate and compare different investment opportunities.

2.2. Levelized Cost of Hydrogen (LCOH)

Essentially the LCOH method is based on the levelized cost of energy (LCOE) method which is
widely used in the renewable energy sector where the LCC of renewables is presented in terms of cost
per energy output unit. The definition of the LCOE by IRENA [34] is depicted in Equation (1):

LCOE =
∑N

n=1(In + Mn + Fn)·(1 + i)−n

∑N
n=1 En·(1 + i)−n (1)

where In is the initial investment cost for year n, Mn is the maintenance cost in year n, Fn is the fuel
cost in year n, En is the energy generation in year n, i is the discount rate and N is the lifetime.

The LCOE method is a valuable tool when comparing different case studies and is not limited to
renewable energy sources but has been used widely to assess the cost of hydrogen. Hydrogen output
is usually measured in terms of energy and therefore, similarly to electrical calculations, the cost can
be presented in terms of cost per unit energy or mass of hydrogen [12,35].

2.3. LCC Assessment

The LCC framework was derived from the existing literature, both state of the art and mature
papers [12,24,25,29,35,36]. Equation (2) depicts how the investment cost was calculated:

Cinv = (Cwe + Cc + Cs + Cd + Cmisc) (2)

where Cinv is the investment cost, Cwe is the WE cost, Cc is the compressor cost, Cs is the storage unit
cost, Cd is the dispenser cost and Cmisc is miscellaneous costs or all other costs that were connected to
the station such as the Conformité Européene (CE) certification and the preparation costs.

The investment costs were annualized by the capital recovery factor (CRF) depicted in
Equation (3):

CRF =
i(1 + i)n

(1 + i)n − 1
(3)

where i is the nominal discount rate and n is the economic lifetime of the station. The annualized, a,
investment costs are therefore:

Cinv,a = CRF × Cinv (4)
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The operational and maintenance (O&M) costs were divided between fixed and variable expenses.
The annual fixed O&M is denoted by:

C f om,a = Cmc + Ccont + Crep,a (5)

where Cmc is the maintenance cost for the compressor, Ccont is the service contract cost and Crep,a is the
annualized replacement cost.

Annual replacement costs were calculated by applying the single amount present value formula
and the CRF to the replacement costs. Equation (6) depicts how the annual replacement costs were
calculated, where t is the year of replacement, i is the nominal discount rate and Crep is the current
value of the component to be replaced:

Crep,a = CRF ×
Crep

(1 + i)t (6)

Similarly, the variable O&M is presented by:

Cvom,a = Ce + Cw (7)

where Ce is the annual electricity cost and Cw is the annual water cost. The annualized LCC can
therefore be expressed by Equation (8):

CLCC,a = Ccap,a + C f om,a + Cvom,a (8)

After the annualized LCC have been calculated the LCOH can be assessed by dividing the
annualized LCC noted as CLCC,a by the amount of produced hydrogen (kg H2) noted as EH2,a, on an
annual basis:

LCOH =
CLCC,a

EH2,a
(9)

3. Research Design

3.1. Scope of the Study

The focus was set for the customer’s perspective and includes the WTT boundary. The life cycle
phases considered were the acquisition and operational phases. A graphical representation of the
boundary is depicted in Figure 1.
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Figure 1. System boundary.

The acquisition phase included the main component, installation, and license costs while the
operational phase included the O&M costs which were divided between fixed and variable costs.
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As Figure 1 indicates, the system is connected to the internal electricity grid at Colruyt, which
provides electricity to the warehouse for example, and comprises electricity from wind turbines, solar
PV and the Belgium grid when needed. The proportion from each source to the station remains
unknown to the authors; hence the assumptions of electricity price described in Section 3.3.1.

3.2. Case Description

The system under investigation is a hydrogen refueling station located in Halle, Belgium, on
the site of Colruyt, one of the largest retail companies in Belgium (see Figure 2). The logistic center
comprises a warehouse which is operated 24 h a day, 7 days a week with numerous material handling
vehicles on site. The warehouse is powered by three approximately 1.5 MW wind turbines, an
approximately 1 MW solar PV system and the Belgium grid. The station is connected to the warehouse
and therefore hydrogen can be produced from any of these sources. In addition, the renewables can
inject electricity into the Belgium grid when needed. The material handling vehicles were completely
electrical until 2011, when an alkaline-based hydrogen refueling station, i.e., phase 1, was implemented
based on regional funding.
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Figure 2. The Don Quichote station in Halle.

As indicated, the project was split into three phases. However, the focus of this paper is on
phase 1, as the data collection for phase 2 was not complete at the time of writing. Phase 1 consists of
an alkaline WE (30 N m3/h), a diaphragm compressor (450 bar), a 50 kg (450 bar) hydrogen storage and
a (350 bar) dispenser. Phase 2 was commissioned in July 2015 and by then the initial station (phase 1)
had provided around 2,200 kg of hydrogen through approximately 2500 refuelings, maintaining over
95% (~8322 h) annual availability. Eleven hydrogen forklifts had already been implemented at that
time and the goal of Colruyt is to implement at least 75 forklifts before the end of the DQ project in
2017. The forklifts are also being subsidized by Interreg Europe.

3.3. Data Collection

3.3.1. Cost Data

The first part of the dataset consists of the capital expenses. High investment costs have previous
been found as one of the key obstacles to reach feasible LCOH levels [26–29]. For the present case study,
the investment costs were acquired from project partners and included in the component cost, the
integration cost of the system performed by the provider of the hydrogen components, CE compliance
of the complete station, relevant permits, and civil work on site. The lifetime of individual components
differs and is often dependent on operational hours and quality of maintenance. Therefore, the
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assumption was made that each component has a lifetime of 20 years and salvage value was neglected.
The initial capital expenses are depicted in Table 1 and do not include value added tax (VAT).

Table 1. Investment expenses without VAT.

Cost Factor Size Total Cost (€)

Electrolyzer ~156 kW 422,760
Compressor 450 bar 216,000
H2 storage 50 kg (450 bar) 157,500

1 × Dispenser 350 bar 218,000
Integration - 41,800

CE certification - 8000
Civil work - 75,000

Permits - 14,000

Total 1,153,060

The alkaline WE occupies the largest share or 37%, the compressor and the dispenser both take
up 19% each, and the storage unit takes up 14%. The remaining factors only account for 10% of the
total (Figure 3).
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The annual costs associated with the operational phase were divided between fixed and variable
costs. The fixed costs comprised a service contract cost, maintenance and replacement cost for the
alkaline WE, and maintenance cost for the diaphragm compressor (see Table 2 for fixed O&M values).

Table 2. Fixed annual operational expenses.

Cost Factor Value

Service contract/spear and wear 7.1% of WE investment expenses
Compressor maintenance 6% of compressor investment expenses

Cell stack change (2 × 15 N m3/h) 60,600 €/stack change

The variable expenses included the electricity and water costs. The electricity cost is usually the
largest cost factor of the LCOH, though uncertain how it will extend into the future, which makes it an
extremely important parameter. Detailed information regarding hourly availability of the renewables
and the cost of each kWh at Colruyt during the data collection period remained unknown to the
authors. This uncertainty was overcome by setting the initial price for electricity to the average
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Belgium grid price for mid-size companies according to Eurostat [37] during the period 2005 to 2016,
and further analyzing the impact of the energy price on the LCOH in the sensitivity analysis.

The water cost represents the actual water cost before entering the system and gives a realistic
view of the cost. Table 3 depicts the values of the electricity and water costs used in this study. The
sensitivity analysis covered situations such as the valorization of wind or solar power on the power
market in case of injection of electricity in the public grid.

Table 3. Variable operational expenses.

Cost Factor Cost/Unit

Water cost 4.9 €/m3

Electricity cost 0.09 €/kWh

One of the main replacement cost factors is the cell stack replacement. The WE is comprised
of 2 cell stacks (15 Nm3/h) each. The rated lifetime of the cell stacks is approximately (60,000 h)
corresponding to approximately 7 years, if operated continuously. However, the assumption was made
that the cell stacks would be replaced every 5 years to simplify the initial model. The cost of replacing
the cell stacks, parts, plus labor cost, were estimated at 60,600 €/change. The cell stack replacement
cost is included in the sensitivity analysis in Section 4.2.

Following the European Central Bank inflation target [38] and Ammermann et al. [39], the values
for the inflation and the discount rate were selected as 2% and 6% respectively in the initial model,
and later allowed to vary in the sensitivity analysis.

3.3.2. Field Data

The second part of the dataset was field data. At the beginning of the DQ project a comprehensive
data collection plan was set up and carried out by project partners on a weekly basis. It should be
noted that due to some scientific measurement campaigns the system did not always operate in the
most effective way.

The data represents the gross consumption of the HRS station which might affect the results
in a way but still provides information that are realistic and possibly higher than in studies that
only account for the minimum consumption. The main operational data used in this study were the
electricity and water consumption of the complete station ranging from the year 2014 to 2015. Missing
data from 2014 was replaced with data from 2015 resulting in a whole year of monthly values.

The electrical measurements comprise of the WE consumption, the control units and the
compressor, storage, and dispenser unit. Figure 4 shows the monthly values of the total electricity
consumption in a bar graph.
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Similarly, the water consumption, in terms of (m3) was collected and represents the gross
consumption before the water filtration system and does not represent the real consumption of
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The output of the station was based on produced hydrogen, in terms of the functional unit kg.
Due to a lack of a flow meter the hydrogen output was calculated by team members based on the
electrical consumption of the alkaline WE. The results represented the theoretical maximum production
of the AWE. The total monthly values from 2014 are depicted in Figure 6.
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The field data described above was assembled and are summarized in Table 4.

Table 4. Summary of the field data for phase 1 based on one year dataset.

Parameter Numerical Value

Electricity consumption ~71.6 kWh/kg
Annual H2 production ~1111 kg

Availability/annum ~8322 h
Water consumption ~0.023 m3/kg

Max potential daily H2 production ~65 kg/day
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As Table 4 indicates, the station was running on low capacity in the year 2014. The reason could be
that the number of forklifts was low and not been implemented into the daily routine at the warehouse.

The values in Table 4 were used to assess the LCOH. The assumption was made that the station
would be run 80% of the time, which is considered a realistic scenario for a decentralized HRS and
results in approximately 18,896 kg H2 per year. Estimations for different actual production capacity
levels are reported in the sensitivity analysis to demonstrate the effects capacity level has on the LCOH.
Table 5 summarizes the costs for the main design variables at the selected utilization factor.

Table 5. Values of selected design variables for the selected utilization (18,896 kg/year).

Cost Factor Cost/Unit Annual Cost

Water cost 4.9 €/m3 ~2120 €
Electricity cost 0.09 €/kWh ~121,717 €

Service contract/spear and wear 7.1% of WE investment expenses ~30,011 €
Compressor maintenance 6% of compressor investment expenses ~12,931 €

Cell stack change (2 × 15 Nm3/h) 60,600 €/stack change -

4. Results

4.1. Main LCC Results

The main LCC results are summarized in Table 6 where different lifetimes of 10, 15 and 20 years
have been assumed. The variable lifetime was selected to demonstrate the effect time has on the LCOH
in case of a short-lived demonstration project or a long-term investment. The results show that the
LCOH is highest for the 10 years lifetime with a value of 16.6 €/kg and decreases with time becoming
13.9 €/kg H2 for 20 years of lifetime.

Table 6. Summary of the main LCC results.

Lifetime 10 15 20

LCOH (€/kg) 16.6 14.7 13.9

As seen in Table 6 the LCOH is lowest for the 20 years’ lifetime. A system like this would
realistically be a long-term investment and therefore the results from the 20 years lifetime were selected
for further analysis. The share of the main components in terms of annualized costs for 20 years
of lifetime (€/kg) is presented in Figure 7. The electricity cost has the largest share of 6.4 €/kg, the
investment costs second largest with a value of 4.5 €/kg, the fixed O&M for the WE and compressor
with a value of 2.3 €/kg, cell stack replacement cost with a value of 0.6 €/kg and water cost with a
near negligible value of 0.1 €/kg. It is evident that the electricity cost is the main cost factor, having
an approximately 40% larger share of the LCOH than the investment expenses, the second largest
cost factor.
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4.2. Sensitivity Analysis

Based on the results the main cost factors were identified and the effects of changes analyzed
in terms of the LCOH. The main factors considered were the electricity cost, electrical consumption,
investment expenses and discount rate. A sensitivity star is presented in Figure 8 where those factors
were subject to a change of ±60% from their base values, which was estimated as the maximum
plausible change over the assessment period, as explained further below.
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As seen in Figure 8 changes the price of electricity and electrical consumption have the same
impact on the LCOH due to their linear relationship. They have the largest effect but the investment
expenses have the second highest impact, approximately half of that of the electricity price. Although
Figure 8 provides a relatively good idea regarding the effects each cost factor could have on the
LCOH it fails to show numerical values of the LCOH when subject to somewhat realistic changes.
To demonstrate in more detail how the LCOH changes with respect to individual cost factors, Figure 9
is presented based on the following arguments:
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• As seen in Table 3 the base electricity cost in this study was set to 0.09 €/kWh, which was the
average electricity cost for medium size industries in Belgium for the period 2005 to 2016 [34].
This assumption is somewhat unrealistic considering that Colruyt gets most of the electricity from
onsite renewable energy sources and is benefiting from a green certificate scheme, which means a
portion of the LCOE from the renewables is subsidized. The actual value was not available for the
authors but the assumption was made that it could get as low as 0.04 €/kWh in case of injection
into the public grid. The maximum value of 0.15 €/kWh was considered to cover any fluctuations
in the price of electricity.

• As seen in Figure 8 the effects of the discount rate are not severe; however, an interval from 3% to
9% was selected based on assumptions.

• Although the initial capital expenses are a fixed cost at the beginning of the project it is important
to see how it affects the LCOH in the case of decreased costs in the future due to mass production.
To cover any uncertainties an increase in investment expenses of 20% and a decrease of −80%,
were selected.

• The water cost was neglected in the sensitivity analysis as it only occupies a small share of the
total costs and has been considered negligible in other studies [40].

• The most important part of the fixed O&M costs is the cell stack replacement cost and was selected
for further analysis. As the hydrogen implementation is still in its early stages the future costs
of the cell stacks are likely to decrease with mass production. Based on pure assumptions the
changes in replacement costs were selected as ±50%.
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As Figure 9 indicates the LCOH could be reduced to approximately 10.3 €/kg with an electricity
price of 0.04 €/kWh. In the case of a reduction of −80% of the total investment costs the LCOH could
be reduced to approximately 10.3 €/kg, together with the estimated minimum price of electricity down
to 6.7 €/kg over the longest assessed operational phase. The sensitivity of the LCOH on the cell stack
replacement cost shows a decrease to approximately 13.6 €/kg.

In the results above, a fixed and relatively modest number of operating hours, 80% of the time or
7008 h annually is assumed. As an important parameter, a specific sensitivity analysis was carried
out to see how the operating hours affect the LCOH. The results are depicted in Figure 10 where the
operating hours vary from 50% (4380 h)–95% (8322 h) over the 20-year lifetime.
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As Figure 10 indicates the LCOH could reach approximately 18 €/kg if the operating hours are
4380 h (50%) and as low as approximately 12 €/kg at 8322 h (95%), making the operating hours as
important factors as the electricity and investment costs.

5. Discussion

The main goal of this study was to evaluate the LCOH for a decentralized HRS in Belgium. The
cost model was derived from mature and state of the art literature and the calculations were based on
a comprehensive field data collection to ascertain as realistic costs as possible. The results can also be
used as benchmarks for the next phase of the DQ project, where a new state of the art PEM WE and FC
have been added to the current HRS.

The main limitations of the study are related to assumptions of the price of electricity and the
utilization of the HRS. The assumption of the price of electricity was based on an average value,
both for the high and low values, which is a simplification of a highly dynamic relationship. These
assumptions might lead to estimation errors as well, especially if actual operating hours tend to be
during peak hours when the cost of electricity is high or at other times resulting in lower electricity
costs. A further analysis of this relationship is an area of further study.

No consumer tax or other fees were applied to the LCOH, which would reflect real consumer
costs similar to some of the results in the study by Linnemann & Steinberger-Wilckens [36]. There was
no salvage value assumed nor any end of life costs due to uncertainty of the status of the components
after the lifetimes analyzed.

Based on the assumptions in this study the main results indicated that a LCOH of 13.9 €/kg could
be reached for a 20 year lifetime with 80% utilization. Furthermore, in favorable conditions, with
a reduction in investment expenses of −80% and electricity cost of 0.04 €/kWh a LCOH as low as
6.7 €/kg could be reached. Of these, a reduction in investment expenses requires subsidizing or a
technological leap, but the electricity part is already a plausible scenario with the RE systems operated
on the case site, and with an electricity cost of only 0.04 €/kWh the LCOH would drop down close to
6.7 €/kg.

When comparing the results with the existing literature on similar production systems [25,36],
variations in the results are found placing the current study in between the extremes. The key factor
explaining the differences seems to be the high impact on different assumptions, underlining the
earlier stated need for more studies of actual operating facilities.

In comparison to the study by Linnemann and Steinberger-Wilckens [36], where a small and a
large scale hydrogen plant were analyzed, costs of approximately 27.5 €/kg and 11.4 €/kg, respectively,
were presented. It is relevant to compare the cost of the smaller scale system from the reference
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study to the 13.9 €/kg in the current study. There is a large difference between the two which could
be attributed by different assumptions. The main differences are depicted in Table 7 but the main
difference was the operating hours. It should be noted that although the dates of the studies differ, the
technology is similar and the date of the cost information in the current study is from the year 2011
and therefore the validity of the comparison remains.

Table 7. Results and assumptions from selected studies.

Reference WE Size Annual Load Hours Electricity Cost LCOH

[36] ~305 kW 4000 0.091 €/kWh ~27.5 €/kg 1

[36] ~297 MW 6500 0.091 €/kWh ~11.4 €/kg 1

[25] ~1.1 MW - - 2.8 €/kg
[25] ~2.2 MW - - 6.2 €/kg

Current study ~156 kW 7008 0.09 €/kWh 13.9 €/kg
1 Values converted by authors based on ~39.4 kWh/kg (HHV H2).

In another study, Greiner et al. [25] provide a method of assessment for a wind-hydrogen
system on a Norwegian island, presenting both a chronological simulation and cost calculations.
In contrast to the current study and the reference study above there is a large gap between the results.
Greiner et al. [25] presented a LCOH of 2.8 €/kg and 6.2 €/kg for grid-connected and stand-alone
systems. Different assumptions (refer to Table 7) are the main reasons for the vast difference where
the largest factors might be the scale of the system and potentially the electricity costs. The study
by Greiner et al. [25] utilizes electricity from an onsite wind turbine and therefore the electricity cost
is only connected to the wind turbine cost and production capacity. They also assume hydrogen
demand of 450 kg/day. It is appropriate to compare the grid connected system to the current study
whereas both systems have renewables that inject electricity into the local grid, bearing in mind that
Greiner et al. [25] include the sold sale/purchase cost of market price electricity. In this way, in the case
of the lowest electricity cost in the current study the LCOH could reach 10.3 €/kg with an electricity
cost of 0.04 €/kWh. The assumption of the lower electricity cost is somewhat unrealistic where this
value could only be reached when injecting electricity into the public grid, which then affects the
results to some extent. The actual price would presumably fluctuate, but just how much is an area
for further study. It should be noted that the investment expenses in the current study include more
realistic costs than the comparison studies, and hence a potentially higher LCOH.

Based on the above it becomes evident that the main factor in keeping the LCOH as low as possible
is maintaining operating hours at the maximum level as the LCOH could drop to approximately
12 €/kg at 95% utilization, as depicted in Figure 10. The second largest cost factor, which is consistent
with the literature [6,16,40], is the electricity cost, as demonstrated in this study with the sensitivity
analysis. Investment expenses together with replacement costs form the third important category.

The cost figures used in this study date back to the year 2011 and represent relatively high costs
as DQ is a small-scale demonstration project. A larger scale commercial system could yield lower
initial and running costs where WE costs tend to follow a non-linear cost curve [4,11]. The sensitivity
analysis in Section 4.2 depicts the underlying potential in reducing these costs.

6. Conclusions

The main results showed that a LCOH of 13.9 €/kg could be reached if the operational hours
are maximized. However, as seen in the sensitivity analysis, by reducing the electricity cost down to
0.04 €/kWh, the investment expenses down by −80% of the total cost and maintaining 80% operating
hours a LCOH of 6.7 €/kg could be reached.

The results indicated that the critical cost factors are the electricity and investment expenses as
they have the largest impact on the LCOH. As hydrogen production is evidently capital intensive and
requires cheap and environmentally friendly electricity, combining the large quantity of renewables
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installed every year and green policies is critical to achieve the cost levels required. However, a
system such as the studied DQ could, together with selected RE technologies, provide an option for a
comprehensive off the grid solution even before the aimed cost competitiveness is achieved. Demand
for reliable low-carbon off the grid solutions with high self-sufficiency is growing fast, and the cost
requirement for competitiveness is less demanding.

Although the model and the results in this study were solely based on phase 1 of the
DQ project, this study takes a small but yet important step towards the hydrogen economy by
demonstrating the realistic cost of small scale hydrogen production and provides a benchmark for new
hydrogen technologies.
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13. Bičáková, O.; Straka, P. Production of hydrogen from renewable resources and its effectiveness. Int. J.
Hydrog. Energy 2012, 37, 11563–11578. [CrossRef]

14. Kothari, R.; Buddhi, D.; Sawhney, R. Comparison of environmental and economic aspects of various
hydrogen production methods. Renew. Sustain. Energy Rev. 2008, 12, 553–563. [CrossRef]

15. Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today
2009, 139, 244–260. [CrossRef]

http://epic-reports.awi.de/37530/1/IPCC_AR5_SYR_Final.pdf
http://epic-reports.awi.de/37530/1/IPCC_AR5_SYR_Final.pdf
http://dx.doi.org/10.1038/scientificamerican0906-50
http://www.ncbi.nlm.nih.gov/pubmed/16925035
http://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Capacity_Statistics_2015_slide_deck.pdf
http://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Capacity_Statistics_2015_slide_deck.pdf
http://dx.doi.org/10.1016/j.rser.2012.02.028
http://dx.doi.org/10.1016/j.solener.2005.01.002
http://dx.doi.org/10.1016/j.ijhydene.2009.05.063
http://dx.doi.org/10.1016/j.rser.2004.05.003
http://dx.doi.org/10.1016/j.coal.2005.05.002
http://dx.doi.org/10.1016/j.ijhydene.2008.05.047
http://dx.doi.org/10.1016/S0360-3199(97)00008-6
http://dx.doi.org/10.1016/j.rser.2014.10.011
http://dx.doi.org/10.1016/j.ijhydene.2012.05.047
http://dx.doi.org/10.1016/j.rser.2006.07.012
http://dx.doi.org/10.1016/j.cattod.2008.08.039


Energies 2017, 10, 763 15 of 15

16. Ogden, J.M. Prospects for building a hydrogen energy infrastructure. Annu. Rev. Energy Environ. 1999, 24,
227–279. [CrossRef]

17. McDowall, W.; Eames, M. Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy:
A review of the hydrogen futures literature. Energy Policy 2006, 34, 1236–1250. [CrossRef]

18. Bockris, J. The hydrogen economy—An ultimate economy? Environ. Mon. 1972, 1, 29–35.
19. Bockris, J. The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int. J.

Hydrog. Energy 2002, 27, 731–740. [CrossRef]
20. Maack, M.H.; Skulason, J.B. Implementing the hydrogen economy. J. Clean. Prod. 2006, 14, 52–64. [CrossRef]
21. Sigfusson, T.I. Planet Hydrogen: The Taming of the Proton; Coxmoor Publishing Company: Oxford, UK, 2008.
22. Bakker, S. The car industry and the blow-out of the hydrogen hype. Energy Policy 2010, 38, 6540–6544.

[CrossRef]
23. Lee, J.-Y.; An, S.; Cha, K.; Hur, T. Life cycle environmental and economic analyses of a hydrogen station with

wind energy. Int. J. Hydrog. Energy 2010, 35, 2213–2225. [CrossRef]
24. Lee, J.-Y.; Yoo, M.; Cha, K.; Lim, T.W.; Hur, T. Life cycle cost analysis to examine the economical feasibility of

hydrogen as an alternative fuel. Int. J. Hydrog. Energy 2009, 3, 4243–4255. [CrossRef]
25. Greiner, C.J.; KorpÅs, M.; Holen, A.T. A Norwegian case study on the production of hydrogen from wind

power. Int. J. Hydrog. Energy 2007, 32, 1500–1507. [CrossRef]
26. Khan, M.; Iqbal, M. Pre-feasibility study of stand-alone hybrid energy systems for applications in

Newfoundland. Renew. Energy 2005, 30, 835–854. [CrossRef]
27. Zoulias, E.; Lymberopoulos, N. Techno-economic analysis of the integration of hydrogen energy technologies

in renewable energy-based stand-alone power systems. Renew. Energy 2007, 32, 680–696. [CrossRef]
28. Hessami, M.-A.; Campbell, H.; Sanguinetti, C. A feasibility study of hybrid wind power systems for remote

communities. Energy Policy 2011, 39, 877–886. [CrossRef]
29. Gökçek, M. Hydrogen generation from small-scale wind-powered electrolysis system in different power

matching modes. Int. J. Hydrog. Energy 2010, 35, 10050–10059. [CrossRef]
30. Gahleitner, G. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for

stationary applications. Int. J. Hydrog. Energy 2013, 38, 2039–2061. [CrossRef]
31. Fabrycky, W.J.; Blanchard, B.S. Life-Cycle Cost and Economic Analysis; Prentice Hall: Bergen, NJ, USA, 1991.
32. Woodward, D.G. Life cycle costing—Theory, information acquisition and application. Int. J. Proj. Manag.

1997, 15, 335–344. [CrossRef]
33. Harvey, G. Life-cycle costing: A review of the technique. Manag. Account. 1976, 54, 343–347.
34. IRENA Secretariat. Renewable Energy Technologies: Cost Analysis Series. Available online: https://www.

irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf
(accessed on 25 November 2016).

35. Thomas, D.; Mertens, D.; Meeus, M.; Van der Laak W, F.I. Roadmaps for Economic Challenges:
Power-to-Gas Roadmap for Flanders. Available online: http://www.power-to-gas.be/final-report (accessed
on 25 May 2017).

36. Linnemann, J.; Steinberger-Wilckens, R. Realistic costs of wind-hydrogen vehicle fuel production. Int. J.
Hydrog. Energy 2007, 32, 1492–1499. [CrossRef]

37. Electricity Prices by Type of User: Medium Sized Industries. Available online: http://ec.europa.eu/
eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00117&language=en (accessed on
26 March 2016).

38. Gerdesmeier, D. Price Stability: Why Is It Important to You? Available online: https://www.ecb.europa.eu/
pub/pdf/other/whypricestability_en.pdf (accessed on 25 May 2017).

39. Ammermann, H.; Hoff, D.P.; Atanasiu, M.; Ayllor, J.; Kaufmann, M.; Tisler, O. Advancing Europe’s Energy
Systems: Stationary Fuel Cells in Distributed Generation. Available online: http://www.fch.europa.eu/sites/
default/files/FCHJU_FuelCellDistributedGenerationCommercialization_0.pdf (accessed on 25 May 2017).

40. Levene, J.I.; Mann, M.K.; Margolis, R.M.; Milbrandt, A. An analysis of hydrogen production from renewable
electricity sources. Sol. Energy 2007, 81, 773–780. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1146/annurev.energy.24.1.227
http://dx.doi.org/10.1016/j.enpol.2005.12.006
http://dx.doi.org/10.1016/S0360-3199(01)00154-9
http://dx.doi.org/10.1016/j.jclepro.2005.05.027
http://dx.doi.org/10.1016/j.enpol.2010.07.019
http://dx.doi.org/10.1016/j.ijhydene.2009.12.082
http://dx.doi.org/10.1016/j.ijhydene.2009.03.012
http://dx.doi.org/10.1016/j.ijhydene.2006.10.030
http://dx.doi.org/10.1016/j.renene.2004.09.001
http://dx.doi.org/10.1016/j.renene.2006.02.005
http://dx.doi.org/10.1016/j.enpol.2010.11.011
http://dx.doi.org/10.1016/j.ijhydene.2010.07.149
http://dx.doi.org/10.1016/j.ijhydene.2012.12.010
http://dx.doi.org/10.1016/S0263-7863(96)00089-0
https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf
https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf
http://www.power-to-gas.be/final-report
http://dx.doi.org/10.1016/j.ijhydene.2006.10.029
http://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00117&language=en
http://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00117&language=en
https://www.ecb.europa.eu/pub/pdf/other/whypricestability_en.pdf
https://www.ecb.europa.eu/pub/pdf/other/whypricestability_en.pdf
http://www.fch.europa.eu/sites/default/files/FCHJU_FuelCellDistributedGenerationCommercialization_0.pdf
http://www.fch.europa.eu/sites/default/files/FCHJU_FuelCellDistributedGenerationCommercialization_0.pdf
http://dx.doi.org/10.1016/j.solener.2006.10.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Life Cycle Costing (LCC) 
	Levelized Cost of Hydrogen (LCOH) 
	LCC Assessment 

	Research Design 
	Scope of the Study 
	Case Description 
	Data Collection 
	Cost Data 
	Field Data 


	Results 
	Main LCC Results 
	Sensitivity Analysis 

	Discussion 
	Conclusions 

