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Abstract: Active distribution networks characterized by high flexibility and controllability are an
important development mode of future smart grids to be interconnected with large scale distributed
generation sources including intermittent energies. However, the uncertainty of intermittent
energy and the diversity of controllable devices make the optimal operation of distribution
network a challenging issue. In this paper, we propose a stochastic optimal operation strategy for
distribution networks with the objective function considering the operation state of the distribution
network. Both distributed generations and flexible loads are taken into consideration in our strategy.
The uncertainty of the intermittent energy is considered in this paper to obtain an optimized operation
and an efficient utilization of intermittent energy under the worst scenario. Then, Benders decomposition
is used in this paper to solve the two-stage max-min problem for stochastic optimal operation. Finally,
we test the effectiveness of our strategy under different scenarios of the demonstration project of
active distribution network located in Guizhou, China.

Keywords: active distribution network; intermittent energy uncertainty; stochastic optimal operation;
benders decomposition

1. Introduction

In recent years, the access of intermittent energy, such as wind and solar, keeps increasing in
distribution networks. Under such a circumstance, active distribution networks (ADNs) characterized
by high distributed generation penetration and high control requirements have been widely accepted
as an important development mode of future smart grids [1,2]. Compared with traditional distribution
networks, active distribution networks have more controllable equipment, including energy storage
systems, flexible loads, and other distributed generation sources. In order to ensure the optimal operation
of active distribution networks, reasonable arrangement for the output of different types of controllable
equipment is essential [3]. However, in active distribution network, the uncertainty of intermittent
energy makes the traditional deterministic power system to a random-deterministic coupling power
system. At the same time, distribution network operation concerns more about the economic benefit
and the operating state, which brings great challenge to the power system optimization.

To realize optimal operation of an ADN considering the uncertainty of intermittent energy, two key
issues need to be taken into consideration: the uncertainty of intermittent energy and the coordination
between the risk and the economic benefit of the ADN.

Intermittent energy power forecasting is usually introduced to optimal operation to achieve
a more precisely control. There are a variety of models and prediction methods such as artificial
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neural networks (ANN), Kalman filtering method and fuzzy logic method used in power forecasting
to obtain accurate predictions [4]. However, the forecasting for intermittent energy influenced by
complex factors related to the environment is still a challenging problem. Researchers have done a lot
of works on optimal operation considering the uncertainty of intermittent energy including stochastic
unit commitment (SUC) [5–7] or stabilizing the unpredicted power fluctuation by energy storage
system and demand response [8]. Such as both [6,7], the uncertainty of wind power or load is divided
into several scenarios which represent different wind power output probability. It is obvious that the
accuracy of the solution mainly depends on the selection of uncertainty scenarios.

To deal with the coordination between the risk and the economic benefits in power system,
most researchers focus on minimizing the operating cost [9,10]. Like [9], it takes the minimization
of total UC schedule cost as main consideration, while considering the alleviation of wind power
curtailment and the risk of inclusion of wind energy generation at the same time. Due to the different
requirements of the system operators, some other objectives are also used such as minimizing the
variance for the risk-averse case or even multi-objectives [11–13]. Unlike the transmission network
concerns more about the operating cost, one of the priorities of ADN is to improve the economic
benefits brought by different controllable devices. At the same time, the operational characteristics
of ADN like the peak-valley difference and the network loss are also concerned. The reduction of
peak-valley difference and network loss can reduce the reserve capacity of the transmission network
and improve the efficiency of energy usage, which will also improve the economic efficiency of ADN.
So, the objective function presented in this paper will take the peak-valley difference, the network
loss and the economic benefits brought by different controllable devices into consideration. In order
to avoid the risk of optimization due to intermittent energy prediction errors, the uncertainties of
intermittent energies are also taken into account to ensure optimal operation of ADN under the
worst scenario.

Due to the complexity of both controllable equipment and objective function, the optimal
operation problem formulated as a mixed-integer linear programming (MILP) is non-deterministic
polynomial-time hard (NP-hard). Several algorithms such as the hybrid genetic algorithm [14],
differential evolution algorithm [15], discrete particle swarm optimization [11,16] and artificial bee
colony [17] are used to solve the problem. However, the intelligent algorithms mentioned above have a
common problem. They may not be able to obtain the optimal solution but a better one instead which
will lead to a considerable uncertainty of the optimal result. Outer approximation methods are used
in [18,19] to solve the mixed-integer nonlinear programming (MINLP) problem of unit commitment.
Some researchers also have applied other methods such as Lagrangian relaxation (LR) and Benders
decomposition (BD) to solve the problem [20,21]. This type of algorithm requires certain characteristics
for constraints or objective functions, such as convex functions, etc. So it cannot be applied to solve all
problems. But it is an effective way to simplify the problem-solving process.

In this paper, we mainly aimed to integrate the controllable resources in ADN to achieve a
more efficient power system operation. As discussed before, the objective function for optimization
will take the economic benefits of DGs, two key characteristics of ADN and the uncertainty of
intermittent energies into consideration. While taking the constraint of power flow and so on into
consideration, the optimization problem will form a complicated non-linear problem. To simplify the
nonlinear programming problem proposed, we reformulated the objective function into a two-stage
max-min problem. Benders decomposition is introduced to the approach to simplify the complexity of
sub-problem. The algorithm can limit the uncertainty of intermittent energy output according to the
requirement and find out the optimal controllable resource output.

The remaining part of this paper is organized as follows: Section 2 provides mathematical modeling of
an optimal operation strategy. Section 3 introduces the solution approach based on Benders decomposition.
The case study and optimization results are discussed in Section 4, combined with the active distribution
network demonstration project located in Guizhou, China. Section 5 concludes with the main results
of this paper.
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2. Mathematical Formulation

In this section, we establish the optimization formulation for optimal operation of active
distribution network considering multi-controllable resources. Combined with the conditions of
Guizhou demonstration project, direct load control for flexible loads are also taken into account in this
formulation as an adjustable resource for distribution network. In order to simplify the complexity of
flexible load modeling, we will divide flexible load including Heating, Ventilation and Air Conditioning
(HVAC) devices and electric vehicles into two categories, in accordance with their characteristics and
unified it with the distributed generation model. This can simplify the optimization formulation.

In general, there are three kinds of distributed generations in a distribution network: power
regulation generations, energy storage systems, and intermittent energy. Different types of distributed
generations correspond to different constraints. In active distribution network, intermittent energy is
generally desirable to achieve the maximum power consumption, so in this paper we only consider
the uncertainty of intermittent energy. It won’t be taken as one of the controllable resources.

For power regulation generations such as thermal power generations and hydropower generations,
the constrains mainly include the ramp-up rate, ramp-down rate, maximum power limit and minimum
power limit in the form of (1)–(3):

χt−1
i − χt

i ≤ αdown (1)

χt
i − χt−1

i ≤ αup (2)

Llow,i ≤ χt
i ≤ Lup,i (3)

In this paper, we lump flexible loads such as HVAC together with former power regulation
generations as ‘power regulation devices’. For flexible load such as HVAC, the instantaneous
power will keep changing when it turns on or off to maintain the room temperature. However,
we only concern about the average power when taking optimization instead of instantaneous power.
The average power for a HVAC when the set-temperature is νset,i(t) can be expressed as (4) [22]:

Peq,i(νset,i, t) = (νset,i(t)− νoutside(t))/ηiReq,i (4)

Req,i is the equivalent thermal resistance for TCLi (degrees Celsius/W). νoutside(t) is the ambient
temperature. νset,i(t) is the set temperature for TCLi. ηi is the conversion efficiency from electricity
to heat. We assume that the set temperature for a customer can be adjusted from νmin,i to νmax,i
when taking customers’ comfort into consideration. The adjustable power range can be expressed
as (5) and (6):

Llow,i = (νmin,i − νoutside(t))/ηiReq,i (5)

Lup,i = (νmax,i − νoutside(t))/ηiReq,i (6)

So constraint for flexible load such as HVAC can be expressed as (7):

(νmin,i − νoutside(t))/ηiReq,i ≤ χt
i ≤ (νmax,i − νoutside(t))/ηiReq,i (7)

Considering that the set temperature of HVAC can be changed instantaneously, Constraints (1)
and (2) can be neglected or set αdown = αup = M. M is a large number. Other flexible loads like
brightness adjustable lighting can also be expressed as (7).

Apart from former ‘power regulation devices’, energy storage systems (ESSs) are another kind of
distributed energy in ADNs. This type of equipment can realize the energy transfer between different
time spans by charging and discharging. The characteristics of such equipment can be described by
the index of state of charge (SOC). The constraints for SOC can be expressed as (8)–(10):

St+1
soc,i = St

soc,i − (ϑt
i,eq − ϑr

i )/er
ϑ,i (8)
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0 ≤ ϑt
i,eq ≤ 2ϑr

i (9)

− Smax
soc − St

soc
κstep

· er
ϑ,i ≤ ϑt

i,eq − ϑr
i ≤

St
soc − Smin

soc
κstep

· er
ϑ,i (10)

Here we introduce ϑt
i,eq into the formulation to make sure all variables are non-negative and

ϑt
i = ϑt

i,eq − ϑr
i . It should be noticed that, St

soc,i is usually used to express the SOC for energy storage
device i by the end of time period t. But to simplify the future solution process, while not affecting the
variables, St

soc,i in this paper is defined as the SOC before the start of time period t.
In this paper, we merge flexible load with energy storage characteristics such as water heater and

electric vehicle with energy storage system as ‘energy storage devices’. For flexible load such as water
heater, it is usually used once a day. And it is necessary to reach a specified temperature at a specified
time. The state of household water heater can be expressed by temperature νi(t). The state of the water
heater can be expressed as (11):

St
soc,i = 1− (νE

i − νi(t))/(νE
i − ν0

i ) (11)

νE
i is the desired temperature for water heater i. ν0

i is the initial temperature for water heater i.
If we take the sensitivity of temperature to energy into account, the constraints for water heater can
also be expressed as (8)–(10). As the water heater cannot release energy, constraint (9) need to be
replaced by (12):

ϑr
i ≤ ϑt

i,eq ≤ 2ϑr
i (12)

SOC limit for a water heater is Smax
soc = 1 when νi(t) = νE

i and Smin
soc = 0, when νi(t) = ν0

i .
The rated capacity can be expressed as:

er
ϑ,i = (νE

i − ν0
i )en0,i (13)

en0,i is the energy required for the temperature of the water heater increased by one degree.
Other flexible load like electric vehicle is similar to energy storage battery. So it is much easier to be
reformulated as the mode of ESS. To reflect the customers’ requirement, an extra constraint will be
added to origin constraints. The SOC of an electric vehicle SEV

soc,i(t) needs to arrive a specific value
SEV

SOC,set at specific time tEV
set as expressed in (14).

SEV
soc,i(t

EV
set ) = SEV

SOC,set (14)

The formula can also be meaningful for a BESS. We can assume that BESS should return to the
initial state after a cycle of operation to support a continuous operation for next time span. The model
of energy storage devices when electric vehicles are merged can add an extra constraint shown as (15).

Stset
soc,i = Sset

soc (15)

Apart from former model merging, the uncertainty for the intermittent energy is also considered
in this paper described as a solution space for specify scenario. The prediction for intermittent energy
is pt

ψ,i. We use the normal distribution or Cauchy distribution to describe the prediction error for
intermittent energy centered on the predicted value pt

ψ,i. In this paper, we set a power deviation to
make sure the probability for intermittent energy output within the deviation range to be at least 0.95.
We can assume the upper deviation of the confidence interval for intermittent energy i is pt

ψ+,i and
the lower one is pt

ψ−,i. The output range for intermittent energy is [pt
ψ,i − pt

ψ−,i, pt
ψ,i + pt

ψ+,i]. To limit
the conservatism degree for intermittent power output, we introduce the method described in [23] to
employ an integer vi as the ‘cardinality budget’. The budget is used to restrict the number of time
intervals when the output of intermittent energy reaches the limitation. If vi equals 12, there will
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be less than 12 time intervals when the output reaches the limitation and for other time intervals
the output will be restricted to pt

ψ,i. When vi ≥ 8, the optimization solution will be feasible with
a probability greater than 0.95 [23]. In this paper, we assume η+

t,i and η−t,i are two binary variables
represent the status of deviation for pt

ψ,i. If η+
t,i = 1, the output of intermittent energy will be pt

ψ,i + pt
ψ+,i.

If η−t,i = 1, the output of intermittent energy will be pt
ψ,i − pt

ψ−,i, so the uncertainty set ℵ to describe the
intermittent energy output can be shown as (16):

ℵ :=
{

pt
i = pt

ψ,i + η+
t,i p

+
ψ,i − η−t,i p

−
ψ,i

}
s.t.

T
∑

t=1
(η+

t,i + η−t,i) ≤ vi, ∀i ∈ H, ∀t ∈ T
(16)

Based on the aforementioned unified model and uncertainty set of intermittent energy,
the optimization formulation for optimal operation of active distribution network can be described
as follow:

max f = max
T

∑
t=1

(
ε1 f1

(
χt

i
)
+ ε2 f2(St

λ)
)
+ min

p∈ℵ
max
ϑ∈Θ

(ε3 f3(ϑ
t
i,eq) + ε4 f4(Vζ)) (17)

f1(χ
t
i) = ∑

i∈Φ
λt × χt

i×κstep (18)

f2(St
λ) =

(
S0

λ,t − Srslt
λ,t )× λt (19)

f3(ϑ
t
i,eq) =

T

∑
t=1

(
∑
i∈Γ

λt × (ϑt
i,eq − ϑr

i

)
×κstep

)
(20)

f4(Vζ) = (V0
ζ −Vrslt

ζ )× ζ (21)

The former objection for optimal operation is consist by two parts. The first part includes the
profit for power regulation devices (e.g., Equation (18)) and the profit for the reduction of network loss
(e.g., Equation (19)). The second part includes the profit for energy storage devices (e.g., Equation (20))
and the profit for the reduction of peak-valley difference (e.g., Equation (21)).The objection is expressed
by two parts because the energy storage devices mainly focuses on the effect of peak load shifting in
this paper. The power regulation devices preferentially meet the network loss reduction requirement.
Since the capacity of intermittent energy is relatively small in the demonstration project, the influence
of its uncertainty on network loss is far less than that on peak-valley difference, so the uncertainty of
intermittent energy is considered in the second part. The network loss and the peak-valley difference
are two main indicators concerned by DSOs when assessing the operation of distribution network.
The calculation for both indicators are described in (22)–(24):{

S0
λ,t = floss(0, χNow

i , pt
ψ,i) ∀t ∈ T (a)

Srslt
λ,t = floss(0, χt

i , pt
ψ,i) ∀t ∈ T (b)

(22)

 V0
ζ = max

t

(
σ0

t
)
−min

t

(
σ0

t
)

∀t ∈ T (a)

Vrslt
ζ = max

t
(σrslt

t )−min
t
(σrslt

t ) ∀t ∈ T (b)
(23)


σ0

t = Dt − ∑
i∈Φ

χNow
i − ∑

i∈H
pt

ψ,i, ∀t ∈ T (a)

σrslt
t = Dt − ∑

i∈Φ
χt

i − ∑
i∈Γ

(
ϑt

i,eq − ϑr
i

)
− ∑

i∈H
pt

i ∀t ∈ T (b)
(24)

The initial state before optimization is recorded when the output for power regulation devices
maintain at current power χNow

i (for flexible loads such as HVAC, maintain at the user set value),
the output for energy storage devices maintain at 0 (for flexible loads such as EV, the charging time



Energies 2017, 10, 522 6 of 23

will start immediately until target is reached), the outputs for intermittent energy maintain at pt
ψ,i.

Correspondingly, the optimized state is recorded when the output for power regulation devices and
energy storage devices are optimized, the output for intermittent energy is pt

i when taking uncertainty
into account. This is to make sure we can get an optimized result when the intermittent energy
output reaches the worst scenario. floss(•) is the calculation formula for network loss, which won’t be
discussed in detail in this paper. ε1 to ε4 are weights for each objective. We can adjust the weights to
obtain a desired target combination. Then constraint for former objection is described as a set Ω. Some
constraints are aforementioned. We will rewrite it here for a more clearly expression.

Ω(χ, ϑ, p) = {(χ, ϑ, p, S) :

(χ, ϑ, p) ∈ = (25)

χt−1
i − χt

i ≤ αdown,i ∀t ∈ T, ∀i ∈ Φ (26)

χt
i − χt−1

i ≤ αup,i ∀t ∈ T, ∀i ∈ Φ (27)

Llow,i ≤ χt
i ≤ Lup,i ∀t ∈ T, ∀i ∈ Φ (28)

St+1
soc,i = St

soc,i − (ϑt
i,eq − ϑr

i )/er
ϑ,i ∀t ∈ T, ∀i ∈ Γ (29)

0 ≤ ϑt
i,eq ≤ 2ϑr

i ∀t ∈ T, ∀i ∈ Γ (30)

− Smax
soc − St

soc
κstep

· er
ϑ,i ≤ ϑt

i,eq − ϑr
i ≤

St
soc − Smin

soc
κstep

· er
ϑ,i ∀t ∈ T, ∀i ∈ Γ (31)

S1
soc,i = sini

i ∀i ∈ Γ (32)

ST+
soc,i = send

i ∀i ∈ Γ (33)

κstep = 1 (34)

χt
i , ϑt

k,eq, St
soc,i, ST+

soc,i, pt
l ≥ 0 ∀i ∈ Φ, ∀k ∈ Γ, ∀l ∈ H, ∀t ∈ T

}
(35)

= : =
{

Pf (t) = (χ, ϑ, p, t) (36)

Vb,min ≤ Vt
b ≤ Vb,max ∀b ∈ B, ∀t ∈ T (37)

It
l ≤ Il.Rated ∀l ∈ L, ∀t ∈ T

}
(38)

Set = described in (25) is the constraint for power flow, including power flow equality constraint
(e.g., Equation (36)), voltage constraint for buses (e.g., Equation (37)), transmission capacity constraints
(e.g., Equation (38)). All the three constraints are used to finalize the optimization results by more
stringent constraints when ϑt

k = ±ϑr
k and pt

l = pt
ψ,l + pt

ψ+,i

∣∣∣∣∣∣pt
l = pt

ψ,l − pt
ψ−,i . The constraints for

power regulation devices are described in (26)–(28). The constraints for energy storage devices
are described in (29)–(33). The complete representation for optimization formulation can be
summarized as (39):

max f = max
T
∑

t=1
(ε1 × ∑

i∈Φ
λt × χt

i×κstep + ε2 × (S0
λ,t − Srslt

λ,t )× λt × κstep)

+min
p∈ℵ

max
i∈Γ

(
T
∑

t=1

(
ε3 × ∑

i∈Γ
λt × (ϑt

i,eq − ϑr
i

)
×κstep

)
+ ε4 × ((max(σ0

t )−min(σ0
t ))

−(max(σrslt
t )−min(σrslt

t )))× ζ)

s.t.
constraint(16)
constraint(24)
constraints(26) to (38)

(39)
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3. Solution Methodology

The formerly proposed equation it is a relatively complicated problem with several extremum
calculations, thus the equation cannot be solved directly. The uncertainty for intermittent energy
has increased the solving difficulty of the problem significantly. To decrease the solving complexity,
Benders decomposition is introduced to this paper.

Benders decomposition is an effective method to solve complex programming problem [24].
An example of Benders decomposition can be expressed as (40):

min f (x) + cTy
s.t. F(x) + Ay ≤ b

x ∈ S, y ≥ 0
(40)

The Benders decomposition method will decompose the original optimization problem into
several parts to be solved. By the process of iteration, the solution of reformulated problem will
gradually approximate the optimal solution of the original problem. This method requires the
separation of variables shown as x and y, both variables can be vectors. f (x) and F(x) are the
functions for variable x. A is the coefficient matrix; b, c is the coefficient vector. S is the feasible set for
variable x. Then the original problem (40) can be divided into two parts by Benders decomposition.
Main problem is defined on the set S, it can be linear, non-linear or discrete. The problem is formulated
when y = y, where y is the solution of the sub-problem:

min f (x) + cTy
s.t. F(x) + Ay ≤ b

x ∈ S
(41)

The sub-problem should be a linear programming, shown as (42):

min f (x) + cTy
s.t. Ay ≤ b− F(x)

y ≥ 0
(42)

Firstly, the algorithm will solve the duration problem of sub-problem (42) based on a “possible
solution” of the main problem (41). This “possible solution” is one of the feasible solutions for main
problem. Then, additional constraints (feasibility cuts and optimal cuts) will be formed by solving the
sub-problem and new constraints will be added to main problem. The formation of both cuts will be
discussed in detail later. Furthermore, solve the main problem and bring the optimized results x back
to sub-problem (42) again, and so on. Solve the two questions alternately until the optimal solution
is obtained.

Based on the aforementioned algorithm, the main problem and the sub-problem for the optimization
problem proposed in this paper are expressed as (43) and (44).

Main problem:

max f = max
T
∑

t=1
(ε1 × ∑

i∈Φ
λt × χt

i×κstep + ε2 × (S0
λ,t − Srslt

λ,t )× λt × κstep) + ι

s.t.
constraints(26) to (28)
constraints(34) to (38)

(43)
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Sub-problem:

ι = min
p∈ℵ

max
i∈Γ

G(ϑt
i,eq)

= min
p∈ℵ

max
i∈Γ

(
T
∑

t=1

(
ε3 × ∑

i∈Γ
λt ×

(
ϑt

i,eq − ϑr
i

)
×κstep

)
+ ε4 × ((max(σ0

t )−min(σ0
t ))

−(max(σrslt
t )−min(σrslt

t )))× ζ)

s.t.
constraint(16)
constraint(24)
constraints(29) to (35)

(44)

The main problem takes the outputs of ‘power regulation devices’ as variables and the
sub-problem takes the outputs of both energy storage devices and intermittent energies as variables.

Firstly, the sub-problem needs to be simplified to a single extremum value problem. In the
sub-system V0

ζ = max
(
σ0

t
)
−min

(
σ0

t
)

is determined by the predicted value, therefore belongs to a

constant. To express max(σrslt
t )−min(σrslt

t ) by inequality, we introduce extra variable and constraints
in (45)–(47):

max(σrslt
t )−min(σrslt

t )

= min(hup − hlow)
(45)

hlow ≤ Dt − ∑
i∈Φ

χt
i −∑

i∈Γ
(ϑt

i,eq − ϑr
i

)
− ∑

i∈H
pt

i ∀t ∈ T (46)

hup ≥ Dt − ∑
i∈Φ

χt
i −∑

i∈Γ
(ϑt

i,eq − ϑr
i

)
− ∑

i∈H
pt

i ∀t ∈ T (47)

Therefore problem (44) can be described as (48):

min
p∈ℵ

max
i∈Γ

{
T
∑

t=1

(
ε3 × ∑

i∈Γ
λt ×

(
ϑt

i,eq − ϑr
i

)
×κstep

)
+
(

V0
ζ −min

{
hup − hlow

})
× ζ × ε4

}
s.t.
constraint(16)
constraints(29) to (35)
constraints(46) to (47)

(48)

Furthermore, (48) can be transformed as (49):

min
p∈ℵ

max
i∈Γ

{
T
∑

t=1

(
ε3 × ∑

i∈Γ
λt × (ϑt

i,eq − ϑr
i

)
×κstep

)
+ (V0

ζ −min{hup − hlow})× ζ × ε4}

= min
p∈ℵ

max
i∈Γ

(
T
∑

t=1

(
∑

i∈Γ
λt × (ϑt

i,eq − ϑr
i

)
×κstep

)
× ε3 + V0

ζ × ζ × ε4 − hup × ζ × ε4 + hlow × ζ × ε4)

= min
p∈ℵ

max
i∈Γ

(V0
ζ × ζ × ε4 −

T
∑

t=1

(
λt × ∑

i∈Γ
ϑr

i × κstep

)
× ε3 +

T
∑

t=1

(
λt × ∑

i∈Γ
ϑt

i,eq × κstep

)
× ε3

−hup × ζ × ε4 + hlow × ζ × ε4)

= min
p∈ℵ

max
i∈Γ

G′(ϑt
i,eq, hup, hlow)

(49)

To solve the further min-max problem, we use the dual approach to translate the maximize
problem of G′(ϑt

i,eq, hup, hlow) to a minimize problem. The solution space is defined as Ψ:
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max
i∈Γ

G′(ϑt
i,eq, hup, hlow)

= min
Ψ

F(ω+
t , ω−t , τt

i , µt
+,i, µt

−,i, δt
i , δ

begin
i , δend

i )

= V0
ζ × ζ × ε4 −

T
∑

t=1

(
λt × ∑

i∈Γ
ϑr

i

)
× ε3 +

T
∑

t=1

(
ω+

t × (Dt − ∑
i∈Φ

χt
i − ∑

i∈H
pt

i + ∑
i∈Γ

ϑr
i )

)
−

T
∑

t=1

(
ω−t × (Dt − ∑

i∈Φ
χt

i − ∑
i∈H

pt
i + ∑

i∈Γ
ϑr

i )

)
+

T
∑

t=1
∑

i∈Γ
2τt

i ϑr
i +

T
∑

t=1
∑

i∈Γ
µt
+,i(ϑ

r
i − Smin

soc,ie
r
ϑ,i)

+
T
∑

t=1
∑

i∈Γ
µt
−,i(S

max
soc,ie

r
ϑ,i − ϑr

i ) +
T
∑

t=1
∑

i∈Γ
δt

i (ϑ
r
i /er

ϑ,i) + ∑
i∈Γ

sini
i δ

begin
i + ∑

i∈Γ
send

i δend
i

(50)

s.t.
T

∑
t=1

ω+
t ≥ ζ × ε4 (51)

T

∑
t=1

ω−t ≤ ζ × ε4 (52)

ω+
t −ω−t + τt

i + µt
+,i − µt

−,i +
(
1/er

ϑ,i
)
δt

i ≥ λt × ε3 ∀i ∈ Γ ∀t ∈ T (53)

− er
ϑ,iµ

t
+,i + er

ϑ,iµ
t
−,i + δt−1

i − δt
i ≥ 0 ∀i ∈ Γ ∀t ∈ [2, T] (54)

− er
ϑ,iµ

1
+,i + er

ϑ,iµ
1
−,i − δ1

i + δ
begin
i ≥ 0 (55)

δT
i + δend

i ≥ 0 (56)

ω+
t , ω−t , τt

i , µt
+,i, µt

−,i ≥ 0 ∀i ∈ Γ, ∀t ∈ T (57)

In the former equation, ω+
t and ω−t correspond to the dualizing of constrains (46) and (47). µt

+,i

and µt
−,i correspond to constraint (31). τt

i corresponds to constraint (30). δt
i , δ

begin
i , δend

i correspond to
constraints (29) and (32) and (33). Constraints (51) to (56) correspond to initial variables hlow, hup, ϑt

i,eq
and St

soc,i. In the dual problem formation process, pt
i is considered as a known quantity, when taking

the uncertainty set of intermittent energy into consideration, (50) is a bilinear problem. To linearize the
equation, we first separate the bilinear part of problem as (58):

min
p∈ℵ

min
Ψ

F(ω+
t , ω−t , τt

i , µt
+,i, µt

−,i, δt
i , δ

begin
i , δend

i )

= minF(ω+
t , ω−t , τt

i , µt
+,i, µt

−,i, δt
i , δ

begin
i , δend

i , pi)

= min(L(ω+
t , ω−t , τt

i , µt
+,i, µt

−,i, δt
i , δ

begin
i , δend

i )−
T
∑

t=1
(ω+

t × ∑
i∈H

pt
i) +

T
∑

t=1
(ω−t × ∑

i∈H
pt

i))

= min(L(ω+
t , ω−t , τt

i , µt
+,i, µt

−,i, δt
i , δ

begin
i , δend

i ) +
T
∑

t=1
((ω−t −ω+

t )× ∑
i∈H

pt
i))

= min(L(ω+
t , ω−t , τt

i , µt
+,i, µt

−,i, δt
i , δ

begin
i , δend

i ) +
T
∑

t=1
∑

i∈H
((ω−t −ω+

t )× pt
i))

(58)

The bilinear pars of (58) can be reformulated by introduce some extra variables ωt, ω+
t , ω−t , η+

t,i,
and η−t,i. Among which η+

t,i, and η−t,i are binary variables:

min
T
∑

t=1
∑

i∈H

(
(ω−t −ω+

t )× pt
i
)

= min
T
∑

t=1
∑

i∈H
(ω−t −ω+

t )× (pt
ψ,i + η+

t,i p
+
ψ,i − η−t,i p

−
ψ,i)

= min(
T
∑

t=1
∑

i∈H
ωt × pt

ψ,i +
T
∑

t=1
∑

i∈H
ω+

t × p+ψ,i +
T
∑

t=1
∑

i∈H
ω−t × p−ψ,i)

= minR(ωt, ω+
t , ω−t )

(59)
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ωt = ω−t −ω+
t (60)

ω+
t ≥ −Mη+

t,i (61)

ω−t ≥ −Mη−t,i (62)

ω+
t ≥ ωt −M(1− η+

t,i) (63)

ω−t ≥ −ωt −M(1− η−t,i) (64)

T

∑
t=1

(η+
t,i + η−t,i) ≤ vi (65)

η+
t,i, η−t,i ∈ {0, 1} (66)

Now we have already translate the former multi-extremum equation to a single minimum
equlation. The optimization equation can be summarized as (67):

Y(χt
i) = min

p∈ℵ
min

Ψ
F(ω+

t , ω−t , τt
i , µt

+,i, µt
−,i, δt

i , δ
begin
i , δend

i )

= min
(

L(ω+
t , ω−t , τt

i , µt
+,i, µt

−,i, δt
i , δ

begin
i , δend

i ) + R(ωt, ω+
t , ω−t ))

s.t.
constraints(51) to (57)
constraints(60) to (66)

(67)

When we use Benders decomposition algorithm to solve the problem, the sub-problem will
formulate the feasibility-cuts and optimality-cuts. Take the problem shown in Equations (40)–(42) as
example. The duration for sub-problem (42) can be expressed as:

max (b− F(x))Tu
s.t. ATu ≤ c

u ≥ 0
(68)

According to the dual principle, when problem (68) has an unbounded solution,
the sub-problem (42) has no solution, which means original problem (40) also has no solution. In this
situation, an extra cuts (b− F(x))Tu f sb ≤ 0 will be added to the main problem as feasibility-cuts.
u f sb is the corresponding solution when the objective function is unbounded, also known as extreme
direction. When problem (68) has a bounded solution, in order to ensure the optimization result,
an extra cuts z ≥ (b− F(x))Tuopt will be added to the main problem as optimality-cuts. uopt is the
solution when the objective function get extreme value, also known as optimal pole. For the main
problem, y is eliminated but not completely disappeared. The optimization results for the sub-problem
will feedback to the main problem by the form of feasibility-cuts and optimality-cuts. Each iteration
will form new cuts. These cuts will accumulate until the optimal solution is obtained. The express for
main problem considering additional cuts can be expressed as:

min f (x) + z
s.t. z ≥ (b− F(x))Tuopt optimality− cuts

(b− F(x))Tu f sb ≤ 0 f easibility− cuts
x ∈ S

(69)
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Therefore the main problem proposed in this paper can be reformulated as:

max f = max
T
∑

t=1
(ε1 × ∑

i∈Φ
λt × χt

i×κstep + ε2 × (S0
λ,t − Srslt

λ,t )× λt × κstep) + ι

s.t.
constraints(26) to (28)
constraints(34) to (38)
f easibility− cuts
optimality− cuts

(70)

(1) Feasibility-cuts formulation:

We establish a relaxation function for the original sub-problem to check the feasibility, which
is also called L-shaped method. Here, we don’t care about the objection, so the problem can be
formulated as:

max
i∈Γ

(−
2
∑

c=1
αt

c+ −
6
∑

c=3
∑

i∈Γ
αi,t

c+)− (
2
∑

c=1
αt

c− +
6
∑

c=3
∑

i∈Γ
αi,t

c−)

s.t.
hlow + αt

1+ − αt
1− ≤ Dt − ∑

i∈Φ
χt

i − ∑
i∈Γ

(ϑt
i,eq − ϑr

i )− ∑
i∈H

pt
i

hup + αt
2+ − αt

2− ≥ Dt − ∑
i∈Φ

χt
i − ∑

i∈Γ
(ϑt

i,eq − ϑr
i

)
− ∑

i∈H
pt

i

St+1
soc,i + αi,t

3+ − αi,t
3− = St

soc,i − (ϑt
i,eq − ϑr

i )/er
ϑ,i

ϑt
i,eq + αi,t

4+ − αi,t
4− ≤ 2ϑr

i

ϑt
i,eq − ϑr

i + αi,t
5+ − αi,t

5− ≤
St

soc−Smin
soc

κstep
· er

ϑ,i

ϑr
i − ϑt

i,eq + αi,t
6+ − αi,t

6− ≤
Smax

soc −St
soc

κstep
· er

ϑ,i

αt
c+, αt

c− ≥ 0 ∀t ∈ T
αi,t

c+, αi,t
c− ≥ 0 ∀t ∈ T, ∀i ∈ Γ

constraints(32) to (35)

(71)

The dual form of the aforementioned problem can be expressed as (72):

Y′(χt
i) = min

(
L(ω+

t , ω−t , τt
i , µt

+,i, µt
−,i, δt

i , δ
begin
i , δend

i ) + R(ωt, ω+
t , ω−t ))

s.t.
T
∑

t=1
ω+

t ≥ 0

T
∑

t=1
(−ω−t ) ≥ 0

ω+
t −ω−t + τt

i + µt
+,i − µt

−,i +
(

1/er
ϑ,i

)
δt

i ≥ 0 ∀i ∈ Γ∀t ∈ T

constraints(54) to (56)
constraints(60) to (66)
ω+

t , ω−t , τt
i , µt

+,i, µt
−,i ∈ [0, 1] ∀i ∈ Γ, ∀t ∈ T

(72)

If Y′(χt
i) = 0, χt

i is a feasible solution for the check problem. If Y′(χt
i) < 0, the feasibility-cuts

formulation can be expressed as:
Y′(χt

i) ≥ 0 (73)

(2) Optimality-cuts formulation:

As shown in (70), we use ι represent the optimized value for the sub-system. In the k-th iteration,
we solve the main problem and introduce χt

i to the sub-problem (67). If the solution of the sub-problem
is smaller than ιi, then this solution is not an optimal one, so the optimality-cuts can be expressed
as follows:
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Y(χt
i) ≥ ι (74)

The computational algorithm framework is shown as Figure 1. The core steps include main
problem solving, sub-problem solving and constraint set updating.
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4. Demonstration Application for Optimal Operation

The demonstration application for active distribution network located in Guizhou, China.
The strategy of stochastic optimal operation is verified based on the structure of the demonstration.
The schematic diagram for the demonstration project is shown in Figure 2. The distributed generation
and flexible load conditions are listed in Table 1. All electric vehicles support vehicle-to-grid (V2G) mode.
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Table 1. Condition for Distributed Generation and Flexible Load in Demonstration Project.

Name Types of Devices Capacity of Devices

PV1

Photovoltaic
Intermittent energies

32.4 kW
PV2 91.8 kW
PV3 32.4 kW
PV4 91.8 kW

WTP1
Wind turbine

100 kW
WTP2 100 kW

BESS1 Battery energy storage system

Energy storage devices

100 kW/200 kWh
BESS2 100 kW/200 kWh
EV1

Electric vehicle

100 kW/200 kWh
EV2 10 kW/30 kWh
EV3 10 kW/30 kWh
EV4 10 kW/30 kWh

Hydro Hydropower 10,000 kW

CCHP Cooling-heating-power supply Power regulation devices 500 kW
Flexild HVAC

The electricity price adopts the peak valley electricity price as Shanghai, the electricity price is
¥0.68 per kWh from 9:00 to 22:00, and electricity price is ¥0.33 per kWh for the rest of the time. ζ is set
to ¥0.167 per kWh [25]. The controllable range for HVACs in the demonstration are shown in Figure 3.
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The upper and lower deviations for intermittent energies are shown in Figure 4. It should be
noticed that the deviation for photovoltaic during the night is 0, as it is obvious that the photovoltaic
system cannot generate electricity during the night.
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4.1. Basic Optimization Scenario

The optimization effect for stochastic operation strategy of ADN is firstly discussed under the
basic optimization scenario. The weight selection for objective function (ε1 to ε4) is set as Table 2.

Table 2. Weight Selection for Optimization.

Name Weight Selection

ε1 0.005
ε2 0.495
ε3 0.25
ε4 0.25

As the benefit brought by controllable devices is significantly higher than the network loss
reduce benefit when ε1 is close to ε2, we select the weights by the sensitivity of distributed power
output to network loss to ensure both the distributed power supply gains and loss benefits are
considered simultaneously.

The uncertainty for intermittent energy vi is set to 8. Table 3 showed the worst case after the
solution for intermittent energy. It can be seen that the worst case for intermittent tend to have a
negative deviation (η+

t,i = 1) when the load is relatively larger and have a positive deviation (η−t,i = 1)
when the load is relatively smaller.

Table 3. Intermittent energy uncertainty when vi = 8.

Name
Intermittent Energy Uncertainty

Time Period When η+t,i = 1 Time Period When η−t,i = 1

PV1 19 14,15,16,17
PV2 19,20 13,14,15,16,17,18
PV3 19 14,16,17
PV4 19,20 13,14,15,16,18

WTP1 19,20 13,14,15,16,17
WTP2 19,20 13,14,15,16,17

The optimization result for both energy storage devices and power regulation devices are shown
in Figures 5 and 6.
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Figure 6. Optimization result for power regulation devices: (a) Active Power for CCHP and Hydro;
(b) Active Power for Flexild.

It should be noticed that CCHP is connected to the ShuiPei feeder. As the rated power for CCHP
is relatively small compared to the load along the feeder, when the active power for CCHP is rising,
the benefit for power regulation devices and the benefit for network loss are increasing at the same
time, so the active power for CCHP rose to the upper limit as shown in Figure 6a.

The optimization effects are shown in Figures 7 and 8. The initial state before optimization is
recorded as (22a) and (23a). The total load after the optimization is shown as the red line in Figure 7 that
has already taken the worst intermittent energy case into consideration. The peak-valley difference has
reduced by 1531.36 kW (from 4218.08 kW to 2686.72 kW). The network loss has reduced by 591.689 kW
(from 1538.78 kW to 947.091 kW).
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Then the influence of both intermittent energy power output uncertainty and the objective
function weight selection to the optimization are discussed under different scenarios.

4.2. Different Intermittent Energy Uncertainty

In this part of the paper we select two more representative scenarios where vi = 0 and vi = 16 to
discuss the influence of different uncertainty for intermittent energy vi. vi represents the number of
time intervals when the intermittent energy output reaches the limits pt

ψ,i − pt
ψ−,i or pt

ψ,i + pt
ψ+,i.

When vi = 0 the active power for all intermittent energy will be strictly the predicted value,
which means there is no ‘worst scenario’ for the optimization equlation. Figure 9 shows the different
optimization results in ADN when vi = 0 compared to the loads in ADN when vi = 8. The peak-valley
difference is reduced to 2561.18 kW when vi = 0, which was better than vi = 8.
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Figure 9. Load comparison when vi = 0 and vi = 8.

The absolute difference of load is shown in Figure 10 for a more explicit analysis. It can be
observed that the time periods when the load difference is relatively large are basically the same
periods of intermittent energy prediction uncertainty selection periods.

As the active power for intermittent energy is small, the network loss wouldn’t be influenced that
much. The total network loss when vi = 0 is 949.29 kW, which is only a 0.23% difference compared to
the network loss when vi = 8.

When vi = 16, the intermittent power supply uncertainty has more choices, which will lead to a
worse scenario shown in Table 4.
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Table 4. Intermittent Energy Uncertainty when vi = 16.

Name
Intermittent Energy Uncertainty

Time Period when η+t,i = 1 Time Period when η−t,i = 1

PV1 7,10,11,12,19 8,9,13,14,15,16,17,18
PV2 7,10,12,19 8,9,13,14,15,16,17,18
PV3 7,10,12,19 8,9,13,14,15,16,17,18
PV4 7,10,12,19 8,9,13,14,15,16,17,18

WTP1 19,20 13,14,15,16,17
WTP2 19,20 13,14,15,16,17

Figure 11 compares the optimization result when vi = 16 with the result when vi = 8.
The peak-valley difference increased to 2714.12 kW, which is the worst among all three scenarios,
but the network loss is 945.74 kW, which has only a −0.14% difference compared to the network loss
when vi = 8.
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4.3. Different Objective Function Weight Selection

In this part, we will discuss the influence of different objective function weight selections. In all
scenarios of this part, vi is set to 8 to exclude the impact of intermittent energy uncertainty.

The first scenario is set to neglect the benefit of all controllable devices including both energy
storage devices and power regulation devices. This scenario happens when all controllable devices
are owned by the user, so the benefit of controllable devices does not affect the DSO’s choice of
optimization strategy. The weight selection for the objective function is set as in Table 5.
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Table 5. Weight Selection for Optimization.

Name Weight Selection

ε1 0
ε2 0.5
ε3 0
ε4 0.5

We take the basic optimization scenario discussed in the first part of this section as the initial
scenario. The optimization results for total load in ADN is shown in Figure 12.
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The peak-valley difference in this scenario is reduced to 2648.93 kW, which is better than the initial
scenario. It can be seen from Figure 12 that the total load in ADN in the first scenario is larger than
the total load in the initial scenario. That’s because as the benefit brought by controllable devices was
neglected, the objective function wouldn’t encourage the output of controllable devices. The network
loss comparison is shown in Figure 13. The total network loss reduced from 947.091 kW in the initial
scenario to 834.38 kW in this scenario.
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The second scenario is set to be more biased in favor of the benefit brought by controllable devices.
The weight selection for both ε1 and ε3 are set to be higher as in Table 6.
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Table 6. Weight Selection for Optimization.

Name Weight Selection

ε1 0.01
ε2 0.49
ε3 0.375
ε4 0.125

The optimization results for both load and network loss in ADN are shown in Figures 14 and 15.
As the objective function was set to encourage the benefit brought by controllable devices, the active
power for controllable devices appears to rise. The total load in ADN decreased as shown in Figure 14.
The peak-valley difference in this scenario was increased to 2711.80 kW. The network loss was also
increased to 1279.946 kW. The active power for different distributed generations are shown in Figures 16
and 17. The total active power is larger than in the initial scenario.
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Based on the former result and discussion, different weight selection will lead to a different
optimization effect. In practice, we can flexibly adjust the weight as needed in order to obtain an
optimized result.

4.4. Optimization Results Analysis

The summary of optimization results for the former scenarios is shown in Figure 18. The optimal
operation strategy proposed in this paper realizes an efficient usage of all kinds of controllable
resources. It can be seen from the figure that both network losses and the peak-valley differences are
improved in all scenarios compared to the original operation state.
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The left part of Figure 18a,b show the influence of the intermittent energy uncertainties on the
optimization result. The increase of intermittent energy uncertainties will lead to the decrease of the
optimization effect, while increasing the compatibility for intermittent energy fluctuations in ADN at
the same time.

The right part of Figure 18a,b shows the influence of different objective function weight selection
on the optimization results. By adjusting the objective function weight, we can choose to obtain better
power grid operation effect or to encourage more distributed power supply.

5. Conclusions

In this paper, we have developed an optimal operation strategy to realize an efficient usage of all
kinds of controllable resources in active distribution networks including distributed generations and
flexible loads. To decrease the formulation complexity, the models for all resources are summarized
as three kinds of devices: intermittent energy, energy storage devices and power regulation devices.
Uncertainty for intermittent energy is taken into account in this paper to ensure a high utilization
of intermittent energy even under the worst scenario. The prediction error can be flexibly adjusted
according to the requirements. Then, we establish an objective function taking two main indicators
reflecting the operation state of distribution network into consideration, the peak-valley difference and
the network loss. We can set the weight of optimization objection to realize different objective function
selection. The mathematical equations are reformulated to a two-stage max-min problem. The Benders
decomposition algorithm is used in this paper to solve the nonlinear programming problem. Finally,
the robustness of the strategy is verified in the demonstration application project for ADN located
in Guizhou, China. The simulation is performed under different simulation settings to ensure an
optimal operation for ADN. However, in all demand side loads only the controllable loads are taken
into consideration in this paper. In further research we will take both demand responses (such as price
incentives) and direct load control as responsible resources to realize comprehensive optimization for
both active control resources and passive response resources.

Acknowledgments: This work was supported by the National Natural Science Foundation of China: 51677116.

Author Contributions: The paper was a collaborative effort between the authors. The authors contributed
collectively to the theoretical analysis, modeling, simulation, and manuscript preparation.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

ADN Active Distribution Network
SUC Stochastic Unit Commitment
MILP Mixed-integer Linear Programming
HVAC Heating, Ventilation and Air Conditioning
TCL Thermostatically Controlled load
ESS Energy Storage System
SOC Status of Charge
V2G Vehicle-to-Grid
DSO Distribution System Operator
Sets
Φ Set of power regulation devices
Γ Set of energy storage devices
H Set of intermittent energy
B Set of all buses
L Set of all feeders
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Parameters
T Time periods in optimization horizon, in this paper the horizon is to be 24 h
κstep Time span for optimization, in this paper each time span is to be one hour
χt

i Output for power regulation device i in time period t
ϑt

i Output for energy storage device i in time period t
ϑt

i,eq Equivalent output for energy storage device i in time period t
pt

i Output for intermittent energy i in time period t
er

ϑ,i Rated capacity for energy storage device i in time period t
ϑr

i Rated power for energy storage device i in time period t
χr

i Rated power for power regulation device i in time period t
pt

ψ,i Forecasted output for intermittent energy i in time period t
pt

ψ+,i Upper deviation for intermittent energy i in time period t
pt

ψ−,i Lower deviation for intermittent energy i in time period t
η+t,i, η−t,i Binary decision variables represent the status of deviation for pt

ψ,i
αup,i Ramp-up limit for power regulation device i
αdown,i Ramp-down limit for power regulation device i
Llow,i Minimum power limit for power regulation device i
Lup,i Maximum power limit for power regulation device i
S1

soc,i Initial state of charge (SOC) for energy storage device i in optimization horizon
ST+

soc,i Final state of charge (SOC) for energy storage device i in optimization horizon
St

soc,i State of charge (SOC) for energy storage device i at the start of time period t
Smax

soc,i Maximum state of charge for energy storage device i
Smin

soc,i Minimum state of charge for energy storage device i
λt Electricity price in time period t
ζ Profit for peak-valley regulation per kWh
Vζ Peak-valley difference in optimization horizon
V0

ζ ,Vrslt
ζ Initial state and optimized state for peak-valley difference

St
λ Network loss in time period t

S0
λ,t, Srslt

λ,t Initial state and optimized state for network loss in time period t
Dt Load in time period t
Vt

b Voltage for bus b in time period t
It
l Transmission current for feeder l in time period t

hup, hlow Extra variables for peak-valley difference calculation
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