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Abstract: This article deals with the assessment of the reliability of sensitive equipment due to voltage
sags. The most frequent problems of power quality are voltage sags. Equipment that cannot withstand
short-term voltage sag is defined as sensitive device. Sensitivity of such equipment can be described
by the voltage–tolerance curves. A device (generator) to generate voltage sags (also interruptions)
with duration at least 1 ms has been designed and developed for this purpose. Equipment sensitive
to voltage sags was tested using this generator. Overall, five types of sensitive equipment were
tested: personal computers, fluorescent lamps, drives with speed control, programmable logic
controllers, and contactors. The measured sensitivity curves of these devices have been used to
determine the number of trips (failures) due to voltage sags. Two probabilistic methods (general
probability method and cumulative probability method) to determine probability of equipment
failure occurrence are used. These methods were applied to real node in the distribution system
with its actual performance of voltage sags/swells. The calculations also contain different levels of
sensitivity of the sensitive equipment.
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1. Introduction

New technologies are increasingly dependent on electrical energy with defined level of voltage
quality. Especially, industrial processes are fully automated and require continuous supply of
electrical energy. These automated processes utilize equipment that is sensitive to the voltage quality,
mainly voltage sag. The most common equipment sensitive to the voltage sags includes: personal
computers (PC), fluorescent lamps (FL), programmable logic controllers (PLC), adjustable speed drives
(ASD), contactors, converters, microprocessors, and so on. It is very important to keep industrial
processes at the utmost level of functionality. Any downtime can be directly correlated with the loss of
the production, profits, and income. Moreover, distribution companies are facing an increasing number
of customer complaints [1,2]. Out of different types of power quality disturbances (e.g., interruptions,
transients, voltage unbalance, flicker, current and voltage harmonics, and voltage swells and sags),
voltage sags are the most frequent and can cause malfunction of equipment. Therefore, the ability
of the industrial process equipment to withstand voltage sags is becoming more crucial than in the
past. In addition, sensitive equipment is usually connected to the back-up power supply so that it does
not trip during the disturbance. The invasion of electronic devices, controls and other types of digital
devices is the heart of the problem [3,4].

The faults in the power systems are the major cause of voltage sags in the electric delivery
system. Three-phase (symmetrical) faults lead to severe sags at many buses over the wide geographical
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region (depending on the network topology). These faults, fortunately, are very rare in the power
system. Single line-to-ground fault and other asymmetrical faults typically cause sags with higher
magnitudes, however they are much more common in the power system. Adverse weather conditions
(lighting strikes), contamination of insulators, and animal contact are other typical causes of faults in
the power system [5–8].

The voltage sag is defined as a sudden reduction of supply root mean square (RMS) voltage in
interval from 90% to 5% of the rated voltage at the voltage frequency and with its duration from 10
ms to 1 min. Some authors use the term “dip” instead of “sag” for this phenomenon. Voltage sags
are generally originated by starting of large motor loads or network faults as a rapid change of
network impedance. In addition, reacceleration of large motor loads or connection of transformers
(loads) can modify the shape of the voltage sag or can fairly influence characteristic of voltage sag.
Voltage sag can cause the trip of the sensitivity equipment in a process and/or can disrupt the entire
process. It is dependent on interconnection of individual sensitive equipment in the work process.
Equipment sensitivity to the voltage sag depends substantially on the applications, control settings
and specific load type [9]. Thus, it is very often difficult to determine which characteristics of given
voltage sags are most likely to cause equipment trips, or the case when equipment will ride-through
the event. The most frequently used characteristics are the magnitude and duration of the voltage
sag. Other, less commonly used, characteristics are also phase-angle shift (known as phase jump),
point-on-wave in time of sag initiation, unbalance and missing voltage [10–14].

Any method for determining the number of device trips is based on a comparison of power
quality (PQ) characteristics offered by the utility and load/process sensitivity of the customers [1].
The aim of each method is to determine as accurate as possible the total number of device trips for
a certain period. Many authors use different calculation methods. Park et al. [15] uses the new concept
of the “area of severity” and the impact rankings of network lines and buses are also addressed. Area of
severity and the annual expected sag frequency (i.e., the expected number of voltage sags exceeds the
voltage threshold) are determined for three different sensitive load buses. The author uses stochastic
assessment of voltage sags. Chan and Milanovic [16] uses failure risk assessment. This author does
not use equipment status (trip or no trip) determined by voltage sags. Instead, the response of
the equipment is represented by the risk of equipment failure, with values ranging from 0 to 100.
Failure risk of 0 means that the equipment is unlikely to fail, while failure risk of 100 means that the
equipment will certainly fail. Failure risk values from 1 to 99 represent the uncertainty of equipment
response. This is made possible using a fuzzy logic based model. This method use Duration Severity
Index and Magnitude Severity Index as the concept of voltage sag severity indices. Some authors also
consider other impacts that may affect the accuracy of results: fault frequency of fault type (for voltage
sag performance calculating), number of fault positions on lines, fault resistance, time-varying fault
rates, and time-varying loading of the network [17,18].

2. Sensitive Equipment

In order to establish the consequences of voltage sags at a given point of common coupling (PCC),
the characteristic of voltage sag is compared with voltage–tolerance curve of sensitive equipment for
finding its performance. That means whether the equipment will trip (malfunction) or ride-through the
sag with specified characteristics. For simplification, many studies assume that sensitive equipment
has rectangular characteristic (i.e., voltage magnitude during the voltage sag has constant value).
Thus, one of the most common methods for determination of the equipment sensitivity to the voltage
sags is used: a duration–magnitude plot, as shown in Figure 1. Nevertheless, some equipment,
such as household electronic appliances and motor-contactors, has non-rectangular voltage–tolerance
characteristics in practice. The detailed information of equipment and its immunity to the voltage
sags can be obtained either from available standards, from equipment manufacturer or from overall
laboratory tests of equipment. However, there is a variety of equipment types, with characteristics
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that may change during the operation (depend on the protection setting, mode of operation, and other
factors) [19,20].
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Figure 1. Voltage–tolerance characteristic.

Typical rectangular voltage–tolerance characteristic of sensitive equipment is shown in Figure 1.
If specific values of voltage sag are situated in red area, the equipment will trip, and otherwise it will
not trip.

2.1. Inclusion an Uncertainty of Sensitive Equipment

Many publications (e.g., [21–31]) focused on laboratory tests describing sensitivity characteristics
of different sensitive equipment depend on equipment type, loading of equipment and power system
conditions. All of them consider that sensitive equipment have more or less rectangular characteristics.
By measuring several sensitive equipment units of the same type, characteristics inserted to the
voltage magnitude–duration chart are obtained. For generalization of all sensitive equipment behavior
(of a given type, e.g., personal computer), area of uncertainty using characteristics of measured
equipment is created. Therefore, the area of uncertainty for voltage–tolerance characteristics of
sensitive equipment can be described as a shaded area in the voltage sag magnitude–duration chart
shown in Figure 2a. The area of uncertainty is limited by four threshold values. The voltage sag
duration is determined by two values (Tmin and Tmax) and magnitude of voltage sag is determined
by minimal and maximal voltage magnitudes (Vmin and Vmax). As shown in Figure 2, voltage sags
with duration longer than specified duration threshold Tmax and deeper than specified magnitude
threshold Vmin will cause trip or malfunction of the equipment. In other cases, if magnitude of voltage
sag is above specified magnitude threshold Vmax and duration is shorter than Tmin, equipment will
withstand the voltage sag. It is impossible to determine behavior of equipment during the voltage sag
with the specific magnitude and duration with 100% accuracy, if the value of voltage is situated in area
of uncertainty (shaded area).
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This study is focused on five types of sensitive equipment, namely PC, FL, ASD, PLC and
contactors. It is assumed that these types of equipment have rectangular characteristics and may
occur anywhere in shaded area of individual type. Break point on characteristic is called knee point of
characteristic (curve) and is always situated in sub-region III (Figure 2a). Threshold values (Table 1)
are adopted on the basis of the laboratory tests and published results of sensitivity equipment.

Table 1. Threshold values of the sensitive equipment.

Equipment Type
Voltage Range Duration Range

Vmin (pu) Vmax (pu) Tmin (ms) Tmax (ms)

PC 0.48 0.63 50 110
FL 0.22 0.62 10 55

PLC 1 0.46 0.76 30 380
ASD 2 0.71 0.89 5 20

1 Electric Power Research Institute (EPRI) carried out a comprehensive tests of the six PLC commonly used
in industrial processes. The task was to determine the ability of PLC to withstand voltage sags with different
depth and duration. All six PLC were programmed with the same “power-quality-test” algorithm. To carry out
an overall measurement of the PLC, it is necessary to consider several aspects: correctness of (CPU) operation,
and correctness of discrete and analog outputs. Furthermore, consideration should be given to the behavior of the
equipment due to voltage sags: shutdown and automatic restart of PLC, shutdown and manual restart of PLC,
faulty control signals. Due to difficulty of PLC measuring and testing, results were taken from the research institute
study [32]. 2 Due to complexity of measuring voltage–tolerance curves, results were taken from comprehensive
study results [22]. The author of the publication considers all kinds of voltage sags as well as changes of devices’
mechanical characteristics at given voltage sags.

For definition of threshold values of sensitive equipment, programmable power source from
Applied Precision Company was used. The power source is controlled using LabView program and
CompactRIO-9074 from National Instruments Company (Austin, TX, USA). The program generates
voltage sag defined by user with specific value of remaining voltage and duration of voltage sag.
Using certificated power network analyzer (ENA330, Elcom, Brno, Czech Republic), definite values
(remaining voltage and duration) defined by user in program were verified.

2.1.1. Voltage–Tolerance Curves Measurement for Personal Computers

Seven PCs were tested for measurement of voltage sags resistance of devices (voltage–tolerance
curves measurement). Tests of the devices were performed for the various phase instants of voltage,
with values ranging from 0◦ to 90◦ with an increment of 18◦. Individual measured curves were
regularly arranged in graphical dependence. Extreme characteristics were curves obtained for phase
instants values 90◦ and 0◦. This is why we considered only phase instants of these angles for further
testing. When setting the angle of voltage sag to 0◦, voltage sag starts at voltage crossing the value 0
towards positive half-wave. When setting the angle of voltage sag to 90◦, voltage sag occurs at the
moment of maximum voltage value in positive half-wave. Description of individual PC characteristics
is given in Table 2. Compared parameters are source, CPU, hard disk drive (HDD), random access
memory (RAM) and graphic processing unit (GPU).

Table 2. List and description of tested PCs.

No. Source CPU HDD RAM GPU

PC1 LC-B300ATX 300 W AMD Athlon 166 MHz 82.3 GB 256 MB ASUS V9520
PC2 EuroCase ATX-400 W Intel Celeron 2.8 GHz 76.7 GB 512 MB NVIDIA GeForce 7300 GS
PC3 EuroCase ATX-400 W Intel Celeron 2.8 GHz 76.7 GB 512 MB NVIDIA GeForce 7050
PC4 CWT PUFP-4055 450 W Intel Core 2 Quad 2.66 GHz 500 GB 2 + 2 GB ASUS EAH5770
PC5 HP-D3006A0 300 W ATX Intel Celeron 2.6 GHz 320 GB 2 + 2 GB Intel Express
PC6 FSP Group 250 W AMD Phenom 2.2 GHz 320 GB 1 + 1 GB ATI Radeon
PC7 LiteOn PS-5301 300 W AMD Phenom 2.2 GHz 500 GB 1 + 1 GB ATI Radeon
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Figure 3 shows voltage–tolerance curves for all seven tested PCs with phase instants of voltage
sags 0◦ and 90◦ and curves for information technology CBEMA (Computer and Business Equipment
Manufacturers’ Association) and ITIC (Information Technology Industry Council). The fact that
voltage–tolerance curves of all tested PCs are situated under the curve ITIC means they comply
with resistance defined by ITIC curve. We take into consideration only voltage sags, not overvoltage.
However, the original curve CBEMA, which also defines the area of voltage events resistance of devices,
were not met by three PCs, namely: PC2, PC6 and PC7. By comparing the tolerance curves of PCs for
the phase instant of voltage 0◦ and 90◦, the difference is approximately 10 ms. Measured tolerance
curves at phase instant of voltage 90◦ and 0◦ have critical voltage values Ukrit, which are in the interval
from 0.48 to 0.63 pu and critical values of duration Tkrit are in interval from 50 to 110 ms.
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Figure 3. Voltage–tolerance characteristic of personal computers: (a) at phase instant of voltage 0◦ and
(b) at phase instant of voltage 90◦.

2.1.2. Measurement of Voltage–Tolerance Curves for Fluorescent Lamps

Five fluorescent lamps (Table 3) were tested for measurement of voltage sags resistance of
fluorescent lamps (voltage–tolerance curves). Testing of devices was performed the same way as in
Section 2.1.1.

Table 3. List of tested fluorescent lamps.

No. Ballast Power Type

FL1 electromagnetic 36 W tube
FL2 electronic 11 W CFL
FL3 electronic 8 W CFL
FL4 electronic 8 W CFL
FL5 electromagnetic 18 W tube
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Figure 4 shows voltage–tolerance curves at phase instant of voltage sag occurrence 0◦ (Figure 4a)
and at phase instant of voltage sag occurrence 90◦ (Figure 4b). Critical voltage values and tolerance
curves duration are almost unchanged. All curves, except the first fluorescent lamp FL1, showed nearly
rectangular tolerance curve. It is considered that all curves have rectangular character for simplification.
The critical voltage values are from 0.22 to 0.62 pu and the critical values of duration are from 5 to
55 ms.
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Figure 4. Voltage–tolerance characteristic of fluorescent lamps: (a) at phase instant of voltage 0◦ and
(b) at phase instant of voltage 90◦.

2.1.3. Measurement of Voltage–Tolerance Curves for Contactors

Figure 5 shows voltage–tolerance curves for three-phase contactors. Measurement was carried
out for five different contactors with parameters listed in Table 4.

Table 4. List of tested contactors.

No. Type Nominal Currant IN (A) Isolated Voltage VI (V)

C1 AC3/10 V25M 21 500
C2 AC3/10 V25M 21 500
C3 K25E 21 660
C4 Schneider LC1D25 25 680
C5 ABB A40 60 1000

Tolerance curves measurement at phase instant 0◦ showed that curves are not rectangular. As we
can see in Figure 5a, contactors are more resistant to deep voltage sags. This phenomenon is caused by
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the energy stored in magnetic field of the contactor coil. When the voltage on the contactor’s solenoid
changes suddenly, the inductance of the solenoid induces a transient DC current. This DC current
helps to keep the main contacts closed. This effect is strongest when the fault starts in the instant,
when the magnetic flux is close to maximum (at phase instant of voltage close to 0◦). If the fault starts
in the phase instant when the voltage is close to 90◦, the magnetic flux is minimal, thus there is no
energy in the magnetic field to induce a transient DC current helping to keep the contacts closed
and the characteristic is close to rectangular (Figure 5b). Figure 5a shows curves summary at phase
instant of voltage 0◦. At this phase instant, the most resistant was contactor C5, where, at power
supply interruption, it withstood until the voltage sag duration exceeded 110 ms. Measured tolerance
curves at phase instant of voltage 90◦ have nearly rectangular character and have similar waveforms
as the previous tested devices. Critical voltage value in this case (phase instant of voltage 90◦) is from
10 to 18 ms. Curves summary at phase instant of voltage 0◦ is shown in Figure 5b. To simplify the
calculations in the area of uncertainty for contactors, it is necessary to make some modifications of this
area. Figure 6a shows theoretical area of uncertainty for contactors. Red curve represents measured
tolerance curve for phase instant 0◦. It would be difficult to determine probability distribution for
this curve and therefore is modified (dotted curve). With this approximation, the modified area of
uncertainty is divided into smaller sub-regions in Figure 6b. In this case, there are more sub-regions
than at other mentioned sensitive equipment. This modification significantly simplifies the calculation
of probability of equipment trip for the area of uncertainty. Probability distribution in the four
sub-regions has two different tendencies of sensitivity. The first one assumes a combination of uniform
and/or exponential probability distribution (Figure 6c) and the second one is a combination of uniform
and/or normal probability distribution (Figure 6d) [33].
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The area of uncertainty is formed in Figure 7 from measured curves of tested contactors
(shaded area) and modified tolerance curve for phase instant of voltage 0◦ (red dotted line).
According to the procedure described above, the final area of uncertainty for contactors, which consists
of four sub-regions, is specified.Energies 2017, 10, 401 9 of 27 
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The final area of uncertainty for contactors is defined by four sub-regions by plotting the thresholds
(Figure 8). These thresholds are the input values used in the following calculations and simulations.

Energies 2017, 10, 401 9 of 27 

 

 
Figure 7. Area of uncertainty for contactors (shaded area), curve modification for phase instant 0° (red 
dotted line). 

The final area of uncertainty for contactors is defined by four sub-regions by plotting the 
thresholds (Figure 8). These thresholds are the input values used in the following calculations and 
simulations. 

 

Figure 8. Individual sub-region thresholds for contactors. 

2.2. Test Stand for Voltage Sags Generation 

For the purpose of voltage sag sensitivity testing, authors developed and tested stand build up 
from a customized programmable voltage source and a certified power quality analyzer. The 
structure of the test stand is shown in Figure 9. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300

V
ol

ta
ge

 V
(p

u)

Duration T (ms)

C1 - 90°

C2 - 90°

C3 - 90°

C4 - 90°

C5 - 90°

C1 - 0°

C2 - 0°

C3 - 0°

C4 - 0°

C5 - 0°

Figure 8. Individual sub-region thresholds for contactors.

2.2. Test Stand for Voltage Sags Generation

For the purpose of voltage sag sensitivity testing, authors developed and tested stand build up
from a customized programmable voltage source and a certified power quality analyzer. The structure
of the test stand is shown in Figure 9.Energies 2017, 10, 401 10 of 27 
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Tested devices (PCs, PLCs, relays, etc.) are powered from an Applied Precision 8325B
programmable power source. This type of power source is originally used for calibration of electricity
meters and the built-in signal generator cannot change the output voltage with dynamics required for
voltage sag sensitivity testing. Therefore, it was necessary to replace the built-in signal generator with
a custom signal generator.

The custom signal generator was built using a NI cRIO 9074 PAC (National Instruments Hungary
Kft, Debrecen, Hungary, Programmable Automation Controller). This embedded controller contains
a 400 MHz real-time processor and a Xilinx Spartan 2M gate field programmable gate array (FPGA)
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with eight-slot chassis for input/output modules. For this application, a NI 9264 analog output module
was used.

The PAC is capable to generate an output signal with amplitude ±10 V with sampling frequency
of 20 kHz. The real time processor generates for each phase a sinusoidal signal with unit amplitude
sampled at 400 samples per period. Signal generated for each phase is then split in to a collection
of five-sample-wide data windows. These data windows are then multiplied with the user defined
voltage amplitude multiplier and then sent to FPGA using a DMA FIFO (Direct Memory Access First
In—First Out) buffer at the rate of 4 kHz. FPGA then uses its precise timing to write the samples to
the analog output module. When all samples of actual data are successfully written to the analog
output module, FPGA sends an interrupt request signaling to the real-time processor that a new data
window should be written to the FIFO buffer. As the real-time processor is not only responsible for
the signal generation, but also handles the communication with the remote graphical user interface
(GUI) application, there is possibility of some short duration lagging of the main signal generation
loop. This could lead to interruption of generated signal. Therefore, there are normally at least three
data windows buffered for the FPGA array, so even during some short time freezing of the main real
time processor the generation continues smoothly without interruption.

The voltage sag (or voltage interruption) is achieved by changing the amplitude multiplier to
a defined level for a defined time interval. As all five samples in a data window are multiplied by
the same value, the shortest possible interval of voltage sag is 250 µs. It is easy to reprogram the
voltage sag control timer loop to enable also shorter voltage changes—from the software point of view,
the limit is the sample rate of the analog output module. However, in this test stand configuration,
it is not possible to use such a high fault dynamics because very fast voltage changes often trigger the
internal protections of the power amplifier, so the dynamic of the voltage changes was in fact limited
by the programmable power source.

As the reaction of sensitive devices to voltage sag is often strongly dependent on the phase instant
of the voltage sag occurrence, the software also enables defining the desired point of wave (POW)
for the start of the fault [34]. Because of the generator architecture defined above, the point-of-wave
feature has the angle resolution of 4.5◦ at the 250 µs period of the fault timer loop. However, this angle
resolution is sufficient for most purposes. Basic properties of the signal generator and the power source
are summarized in Table 5.

Table 5. Basic properties of the signal generator and the power source.

Signal Generator Power Source

Sample rate 20 kHz Number of phases 3
Signal frequency 50 Hz Base frequency 40–70 Hz
Signal amplitude ±10 V Output voltage 0–600 V

Fault timer resolution 250 µs Power 2000 VA
POW resolution 4.5◦

2.3. Interconnection between Sensitive Equipment

For determination of the number of equipment malfunctions due to voltage sags, knowledge
about mutual connection of sensitive equipment that participate on the certain process is required.
In this regard, the response of entire process to the voltage sag is strongly dependent on the response
of particular equipment participating in the certain process [14].

Probability of equipment trips due to voltage sags is calculated in the area of uncertainty
of sensitive equipment. The overall probability of the process trips can be calculated by mutual
connections of individual sensitive equipment and their probability of particular trips. In general,
the overall probability of a process trip is written as:
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Ptrip = 1 −
[

m

∏
i=1

(
1 −

n

∏
j=1

pi,j

)]
(1)

where pi,j is the cumulative probability of tripping of jth equipment unit of the ith serially connected
equipment group; n is the number of parallel-connected equipment in the equipment group; and m is
the number of series-connected equipment/equipment groups. Typical connections of equipment in
usual processes are depicted in Figure 10 [13].
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2.4. Different Types of Sensitivity

Based on the voltage–tolerance curve location within the area of uncertainty for the certain
equipment or equipment type, there is a general trend to judge this area according to various types of
probability functions. Type of probability functions for two independent random variables V and T is
determined according to sensitivity of individual equipment [3]:

• Low sensitivity: Equipment has very good ride-through capabilities against voltage sags; it can
be represented using reverse exponential functions.

• High sensitivity: Highly sensitive equipment has very poor ride-through capability against the
voltage sags, therefore probabilities are assumed in exponentially decreasing order from high to
low voltage magnitude threshold and from low to high duration magnitude threshold.

• Moderate sensitivity: This type of sensitivity using normal probability functions with assuming
that the high probability is in the middle of area of uncertainty (i.e., knee of equipment sensitivity),
for example in sub-region III (Figure 2a).

• Uniform sensitivity: If it is assumed that any location of equipment voltage–tolerance curve is
within the area of uncertainty with equal probability, it can be represented by uniform probability
functions for V and T within their threshold ranges.

In order to assess the influence of difference fault distributions on voltage sags, these probability
distributions can be extended with additional variations at each type of sensitivity. For example,
at normal distribution probability, it is possible to consider the same mean value and different standard
deviation or different mean value and the same standard deviation [5].

3. Determination of the Number of Equipment Malfunctions

The determination of the number of equipment malfunctions in the red area is easy (Figure 2,
area where equipment certainly will trip). However, the calculation is problematic in the area of
uncertainty (shaded area), where it is necessary to calculate with probability of equipment trips.
Distribution of probability with considering different sensitivities can be used with one equipment and
with one type of sensitivity (mentioned above) at the time. For this purpose, two probability methods
are presented. The first probability method uses cumulative probability approach and second one uses
general probability approach. The duration and magnitude of the voltage sags are two statistically
independent discrete random variables [26,35].
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3.1. Cumulative Probability Method

This approach calculates with occurrence of voltage sag and consequence of voltage
sag. According to the characteristic of the voltage sag and type of sensitivity of equipment,
whether equipment will ride-through or trip due to voltage sag is decided. The variation in equipment
sensitivity can be used by terms of univariate random variable (V) in sub-region II (Figure 2a),
univariate random variable (T) in sub-region I (Figure 2a), and also bivariate random variable (T, V) in
sub-region III (Figure 2a). T and V are assumed to be independent discrete random variables (V is the
voltage magnitude-threshold changing between Vmin and Vmax and T is voltage duration-threshold
changing between Tmin and Tmax). Probability distribution function for bivariate random variable
(T, V) is determined by joint probability distribution functions of univariate random variables FX(T)
and FY(V) (2). Total equipment trips for bivariate variable TET (T, V) can be determined as follows [3]:

FXY(T, V) = FX(T) FY(V), (2)

TET(T, V) = FXY(T, V) · N(T, V), (3)

where FXY (T, V) is probability of trip of the particular equipment according to Equation (2) within
range intervals of sag magnitude and sag duration. N (T, V) is the number of voltage sags expected at
the specified site over specified interval of time.

Finite number of total equipment trips TET for individual sensitive equipment at the specified
site over specified period of time is define as follows:

TET = ∑
T

∑
V

TET(T, V) (4)

3.2. General Probability Method

This method uses ordinary (or general) probabilities instead of cumulative probability methods
as mentioned in Section 3.1. It is assumed that all the trip contributions are produced by various
sensitivity curves of the equipment. Considering one sensitivity curve at one time, trip contributions
are summed up and multiplied by specific probability of voltage sag occurence [3].

Ranges of intervals are the same as in the method mentioned above (Tmin ≤ T ≤ Tmax and Vmin

≤ V ≤ Vmax). It is possible to determine univariate probability density functions f Y (V) and f X (T)
for both random variables. Probability density function for bivariate random variable (T, V) can be
obtained by joining these probability functions and it is given by Bayes rule [36] as:

fXY(T, V) = fX(T) fY(V) (5)

where f XY (T, V) is the join of probability density function for a voltage–tolerance curves situated
within the area of uncertainty. Total sum of probabilities f XY (T, V) of sub-region III is equal to unit for
the knee of the equipment having rectangular voltage–tolerance curves situated inside sub-region III.
The expected number of trips (ENT) for particular equipment is calculated using joined probability
function (Equation (5)) and number of expected equipment trips. This can be defined as follows:

ENT(T, V) = fXY(T, V) · N(T, V) (6)

ENT = ∑
T

∑
V

ENT(T, V) (7)

where N (T, V) is the number of expected equipment trips (with corresponding voltage–tolerance
curves). Voltage sag magnitude V and voltage sag duration T have to be within the ranges of intervals
(Tmin ≤ T ≤ Tmax and Vmin ≤ V ≤ Vmax). Total expected number of trips of individual sensitive
equipment at a given bus (PCC) is obtained using summation (Equation (7)) within whole range of
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intervals of sag magnitudes and durations (defined by threshold values of voltage magnitude and
duration of area of uncertainty, Figure 2).

4. Study Case

Methodology for probability estimation of equipment malfunctions/trips due to disturbances in
power system is performed by reason of estimation of financial losses in the network. Every equipment
trip in consequence of disturbance is connected with direct economic losses (caused by malfunctions
themselves) and indirect/relative losses. Always, somebody has to bear these financial losses, either at
side of customer or at side of distribution system operator. According to proposed methods, it is easy
to know where the worst points of network are (points of network where the highest financial losses in
consequence of voltage sags are).

The proposed study was used for three types of sensitive equipment: PC, PLC and ASD. The real
conditions include more aspects as considered in this study. Some aspects are not considered for
purpose of simplifying the determination of trips. For instance, for more accurate determination of
the equipment trip, it is needed to specify the actual operating time of the equipment in the process.
Next aspect is the connection of the single-phase equipment to different phases (only one third of total
number of equipment trip at bus). For comprehensive result, asymmetrical sag will be considered the
voltage sag with magnitude of lowest voltage of all phases.

These probability methods were applied to the simple radial network of power system.
Measurements in the real Slovak distribution power network were used as input data for obtaining
voltage sag/swell performance in specific point (bus) (Figure 11). Measurement point was at first bus
of radial network. The duration of measurement was one year.

In the performed study, it is assumed that all three types of sensitive equipment are connected at
the specified bus. For all types of equipment, number of trips is determined with considering different
type of sensitivity (mentioned above in Section 2.4). Due to verification of the results of expected
number of equipment trips, it was calculated with both cumulative method and general method
(Section 3).Energies 2017, 10, 401 14 of 27 
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The calculated values that represent number of the given sensitive equipment trips are defined
for a specific time period. In this case, it is a period of one year, because data of voltage sags frequency
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are also for the time period of one year. For shorter time periods, prediction of equipment trips is more
accurate, e.g., with regard to the annual period. As it is a prediction, the result cannot be considered
as 100% value because most voltage sags are unpredictable and random (e.g., voltage sags occurred
due to weather conditions or disturbances in the system). In addition, network configuration change
affects the spread of voltage sags, and therefore this aspect should not be forgotten. The results have
increased informative value if voltage sags frequency data are used from a longer time period.

A program in MATLAB where all input data have been processed was created for calculating data
using the probabilistic methods. It was necessary to parameterize used probability functions properly
in order to achieve relevant results. The calculation procedure is the same for all considered devices,
except the contactors.

4.1. Number of PC Trips

Using probabilistic methods mentioned in Section 3, and with consideration of different types of
sensitivity (Section 2.4), it is possible to quantify the number of the equipment trips for a specific time
period; in this case, the period of one year. The measured critical thresholds for personal computer are
V (0.48–0.63 pu) and T (50–110 ms).

4.1.1. General Probability Method

The number of expected equipment trips N (T, V), within specified critical values, corresponding
to various voltage–tolerance curves for PCs in the considered node, is shown in Figure 12. At one time
point, there is only one voltage–tolerance curve considered.Energies 2017, 10, 401 15 of 27 
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Figure 12. Number of expected equipment malfunction for PC at specified bus.

Figure 13 shows the probability of voltage–tolerance curves occurrence for PC with consideration
of different types of sensitivity. These types of sensitivity are represented by various probability density
functions described in Section 2.4.

If these probabilities are multiplied with the number of expected equipment trips, then we get
expected number of equipment trips (in this case it is PC) for the corresponding voltage–tolerance
curve (Figure 14). By summing up individual contributions of trips number per year, we get a value
corresponding to the total estimated number of trips for a personal computer (connected to a given
node), provided that the network configuration, sags frequency, etc. are not changed. In the same
manner, we get the values for other types of sensitivity that use various probability density functions.
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4.1.2. Cumulative Probability Method

This method has a similar calculation procedure but uses the distribution function of the
probability distribution and N (T, V) is the number of expected voltage sags (Figure 15). N (T, V) in
this case represents the number of expected voltage sags in the point for a specified time period. It is
important to note that this method does not count only in the area of the equipment thresholds, but it is
necessary to compute three additions to this area. Probability distribution function for two-dimensional
variable is considered in thresholds area (sub-region III). However, two additions use probability
distribution functions for one-dimensional variable. In sub-region I, it is variable T and in sub-region
II it is variable V (Figure 2a). The last addition is in the “red” area of trip and this has probability of
voltage–tolerance curves occurrence equal to one in all its area.Energies 2017, 10, 401 17 of 27 
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Figure 15. The expected number of voltage sags in a specified time period.

N (T, V) number of expected voltage sags is determined from voltage sags frequency within the
thresholds (Figure 16). Its distribution is based on the consideration that it is considered with only one
voltage–tolerance curve at one time. It means that if voltage sags frequency is in the interval 0.4–0.5 pu
and 50–100 ms is 2, all values N (T, V) in this interval are equal to 2.

Similar to general probability method, by multiplying the number of expected voltage sags
(Figure 15) and probability of voltage–tolerance curves occurrence for equipment (Figure 16), it is
possible to calculate estimated number of equipment trips (Figure 17).

Summarization of the number of PC trips for both methods for a given node and time period
of one year is presented in Table 6. The table shows that the number of PC trips can vary from 23.77
to 54.894 depending on used sensitivity (probability function) and probability method. The biggest
difference between the compared methods is 1.24 at using low sensitivity (reverse exponential).

For other devices, only expected numbers of trips are presented in the next sections, since the
used methodology is the same as for the personal computers.
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Table 6. Comparison of estimated total number of PC trips per year.

Type of Distribution General Approach Cumulative Approach Difference in Absolute Values

Uniform 38.64 38.2 0.44
Normal 37.554 37.517 0.037

Exponential 54.59 54.894 0.304
Reverse exponential 25.01 23.77 1.24

4.2. Number of Fluorescent Lamp Trips

Fluorescent lamp trip occurs at critical value of voltage. After returning to original voltage value,
fluorescent lamp burn again, if it is connected in standard manner. On the one hand, such flicker
does not cause huge economic losses, but, on the other hand, it reduces comfort and safety at work,
which should be more important than economic losses.

In this case, the calculation procedure is the same as for PC. Measured critical thresholds for
fluorescent lamps are V (0.22 pu–0.62 pu) and T (10 ms–55 ms).

4.2.1. General Probability Method

Number of probabilistic trips of fluorescent lamps per year (Figure 18) were obtained by
combining the probability of voltage–tolerance curves occurrence and the number of expected trips for
fluorescent lamps within defined thresholds.
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4.2.2. Cumulative Probability Method

Likewise, the estimated number of FL trips (Figure 19) were obtained on the basis of theoretical
relationships described in the cumulative probability method for PC, i.e., by combining the number of
expected voltage sags and the probability of voltage–tolerance curves occurrence (using distribution
functions of probability distribution).
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Table 7 shows the number of FL trips per one year. The biggest difference in the results occurred
at high sensitivity, approximately 1.232 trips per year.

Table 7. Comparison of estimated total number of FL trips per year.

Type of Distribution General Approach Cumulative Approach Difference in Absolute Values

Uniform 23.725 23.515 0.21
Normal 21.146 21.289 0.143

Exponential 52.95 54.182 1.232
Reverse exponential 4.843 4.26 0.583

4.3. Number of Adjustable Speed Drive Trips

Representation of commonly used frequency converters for drive control in the industry is
approximately 90%. Voltage sags can cause change of the rotation speed or moment change (if we are
not talking about total failure of equipment). Critical applications are equipped with a flywheel or other
components that are more resistant to voltage sags. Currently, it is being solved with software “DC bus
ripple elimination”, which measures DC link voltage and adjusts the width of PWM signal for inverter,
thereby effective value of voltage at inverter output changes to keep it constant. Considered critical
thresholds for ASD drives are V (0.69–0.9 pu) and T (5–20 ms). Figure 20 shows number of expected
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trips per year for general probability method (Figure 20a–d) and for cumulative probability method
(Figure 20e–h) with different types of sensitivity.
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Figure 20. Number of expected trips per year of various voltage–tolerance characteristics for ASD:
General probability method (a) uniform; (b) normal; (c) exponential; and (d) reverse exponential.
Cumulative probability method (e) uniform; (f) normal; (g) exponential; and (h) reverse exponential.
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Measurements of voltage–tolerance curves and simulation results show that ASD devices
are highly sensitive to voltage sags. Voltage–tolerance curves measurement was for three-phase
symmetrical sag and the history of sags frequencies is constructed on the basis of all events, not only
for three-phase symmetrical sags. More detailed history of voltage sags frequency would significantly
improve this method. Therefore, it can be stated that the values in Table 8 are significantly lower than
in the reality. Differences in the results of used methods are caused by narrow area of sag duration.
This is caused by less precise probability distribution, especially for exponential functions.

Table 8. Comparison of estimated total number of ASD trips per year.

Type of Distribution General Approach Cumulative Approach Difference in Absolute Values

Uniform 147.158 145.675 1.483
Normal 135.347 136.925 1.578

Exponential 195.922 221.62 25.698
Reverse exponential 80.22 88.566 8.346

4.4. Number of Programmable Logic Controller Trips

The use of PLC devices includes a wide spectrum of equipment, e.g., for machine control,
technological processes, remote measurement and control, and diagnostics within specialized devices.
Therefore, any failure of this equipment has a great economic impact, not only on the device itself but
also on the processes controlled by the PLC. Considerable disadvantage of these devices is that error
impulse or actuator can occur at PLC output during voltage sag, which often has worse economic
impact than device restart. Critical thresholds for PLC devices are V (0.69–0.9 pu) and T (5–20 ms).
Figure 21 shows number of expected trips per year for general probability method with different types
of sensitivity.
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With both probabilistic methods, in the area in the interval from 300 to 380 ms, the value number
of trips per year was equal to zero because n voltage events were recorded in the interval from 300
to 350 ms (Figure 22) and duration interval 350 ms and above was not considered at all. Therefore,
the calculation is made only for duration interval to 350 ms or to 300 ms. Table 9 shows comparison of
estimated total number of PLC trips per year.
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Table 9. Comparison of estimated total number of PLC trips per year.

Type of Distribution General Approach Cumulative Approach Difference in Absolute Values

Uniform 34.365 33.916 0.449
Normal 38.034 37.583 0.451

Exponential 101.969 103.214 1.245
Reverse exponential 0.001 2.717 2.716

4.5. Number of Contactor Trips

4.5.1. General Probability Method

For determining the number of equipment trips, we considered two combinations of probability
distributions. One of them is the combination of uniform and/or exponential distribution (Figure 23)
and the other is the combination of uniform and/or normal distribution (Figure 24). The detailed
descriptions of individual probability distributions used are described in the Section 2.1.3.
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4.5.2. Cumulative Probability Method

Number of expected contactor trips for combinations of probability distributions are shown in
Figure 25. For cumulative method in sub-region 4 (Figure 8), not only one-dimensional variable along
the y-axis, but also variable along the x-axis is considered. Only one threshold is defined for sub-region
4 and therefore it is necessary to count up to the maximum duration in sub-region 4.
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The final comparison of the contactor trips number using two combinations of probability
distributions is specified in Table 10.

Table 10. Comparison of estimated total number of contactor trips per year.

Type of Distribution General Approach Cumulative Approach Difference in Absolute Values

Uniform and/or
exponential 10.54 10.609 0.069

Uniform and/or
normal 11.283 10.425 0.858

5. Conclusions

The article deals with the determination of the number of equipment trips due to voltage sags.
Based on comprehensive laboratory tests of sensitive equipment, voltage–tolerance characteristics
of particular equipment were measured. The generalization of these calculations was made by
joining voltage–tolerance characteristics of the same type of equipment to create area of uncertainty
(e.g., for PC). For each type of distribution of probability at area of uncertainty, four various types
of sensitivity (from low to high sensitivity) were considered. This was applied to all considered
sensitive equipment. Type of sensitivity depends on operating conditions, characteristics of voltage
sags and so on. For verification of correctness of the number of equipment trips at the specified
bus calculation, two probability methods (cumulative and general method) were used. The final
results of both methods were almost identical. It can be stated that these methods are suitable for
estimation of the number of equipment trips due to voltage sags. This study can be expanded by more
comprehensive measurement of sensitive equipment; for example, by changing the phase angle of
voltage (point-on-wave) at the time of initiate voltage sag.

Practically, every severe voltage disturbance ultimately means financial loss. Almost €400,000
fine was paid as the compensation due to breach of voltage quality in Slovakia in 2016. Voltage sags
are the most frequent disturbances from all voltage disturbances and therefore it is necessary to focus
on it. Arising financial losses must be paid by someone. Following the reciprocal contract about
quality of supply of power energy, financial losses have to be paid by distribution utility or customer.
These probability methods can also be used for establishing the point of the high financial losses due to
voltage sags, and focus on this point of distribution network in future investments. For more accurate
results, older historical data (not only annual) of performance of voltage sag/swell at the specified bus
are needed. This study is also usable for all busses at the network, if spread of the voltage sag at the
given network is known.

This methodology also has utilization for electricity customer who is not secured with agreement
on continuous operation with a specified power quality. With some probability, he knows to determine
how high financial losses he would expect for a given period (e.g., for one year). Using this information,
he would know whether it is more appropriate to invest in a compensation equipment (with a specified
payback period) or backup system, or if he would be willing to tolerate the number of equipment trips.
For example, if the number of equipment trips is sufficiently low, it is not worth investing in backup
systems (considering return on investment).
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