
energies

Article

A Kriging Model Based Optimization of Active
Distribution Networks Considering Loss Reduction
and Voltage Profile Improvement

Dan Wang 1,*, Qing’e Hu 1, Jia Tang 1, Hongjie Jia 1, Yun Li 2, Shuang Gao 1 and Menghua Fan 3

1 Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China;
huqingekuaile@163.com (Q.H.); tangjia1992@126.com (J.T.); hjjia@tju.edu.cn (H.J.); sgao@tju.edu.cn (S.G.)

2 State Grid Beijing Electric Power Company, Xicheng District, Beijing 100031, China; liyun@bj.sgcc.com.cn
3 State Grid Energy Research Institute, Changping District, Beijing 102249, China;

fanmenghua@sgeri.sgcc.com.cn
* Correspondence: wangdantjuee@tju.edu.cn; Tel.: +86-185-2263-6418

Received: 21 October 2017; Accepted: 12 December 2017; Published: 18 December 2017

Abstract: Optimal operation of the active distribution networks (ADN) is essential to keep its safety,
reliability and economy. With the integration of multiple controllable resources, the distribution
networks are facing more challenges in which the optimization strategy is the key. This paper
establishes the optimal operation model of the ADN considering a diversity of controllable
resources including energy storage devices, distributed generators, voltage regulators and switchable
capacitor banks. The objective functions contain reducing the power losses and improving the
voltage profiles. To solve the optimization problem, the Kriging model based Improved Surrogate
Optimization-Mixed-Integer (ISO-MI) algorithm is proposed in this paper. The Kriging model is
applied to approximate the complicated distribution networks, which speeds up the solving process.
Finally, the accuracy of the Kriging model is validated and the efficiency among the proposed
method, genetic algorithm (GA) and particle swarm optimization (PSO) is compared in an unbalanced
IEEE-123 nodes test feeder. The results demonstrate that the proposed method has better performance
than GA and PSO.

Keywords: optimal operation; active distribution network; power loss reduction; voltage profile
improvement; Kriging model

1. Introduction

Nowadays, the increasingly prominent environmental pollution contributes the development of
renewable energy resources, such as wind and photovoltaic. However, it is known that the renewable
energy sources are intermittent and volatile. Hence, how to effectively deal with the power and voltage
fluctuation caused by large scale integration of distributed generations (DGs) is a very difficult task [1,2].
Although in recent years, with the development of distributed generation technologies, energy storage
technologies and power electronics, the problem of DGs accessing to the grid has been resolved to
a certain degree [3], the lack of efficient optimization methods, low degree of automation as well as
lack of the participation of demand side all limit the further development of the clean and renewable
energy resources [4]. Under these circumstances, active distribution network (ADN) technology came
into being, the core of which is based on advanced information and communication, power electronics
and automation technology, making full use of controllable resources (distributed generation unit,
energy storage, controllable load, etc.). Through coordinated control of “source-network-load”, ADN
can achieve the goal of large-scale renewable energy access, thus improving the distribution network
operation economy, ensuring the quality of electricity users and power supply reliability [5–7].
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Optimization strategy of ADN is the key, and a hot spot of active distribution network related
technology research [8,9]. The traditional optimal operation and schedule of distribution network is
often seen as a Volt/Var control problem with the goal of minimizing the operation cost or reducing the
power losses. The controllable resources include the on-load tape changer (OLTC), voltage regulator
and switchable capacitor banks [10–12]. In recent years, with the rapid development of information
and communication technology (ICT) as well as power electronics, more controllable resources can
be utilized to serve the optimization problem, which brings opportunities for the development of
optimization algorithm. For instance, in [10], considering the penetration of electric vehicles (EVs),
Advanced Metering Infrastructure (AMI)-based quasi real-time Volt-VAR Optimization (VVO) is
introduced, aimed at minimizing the grid loss and Volt-VAR control assets operating costs. In [13],
considering operation cost and pollutant treatment cost, an improved particle swarm optimization
(PSO) algorithm combined with Monte Carlo simulation is used to solve the objective function which is
maximizing the comprehensive benefits. In [14,15], considering switchable capacitor banks, DGs and
energy storages, the NSGA-II multi-objective optimization algorithm is used to minimize the power
losses, the electricity generation cost and carbon emissions. In [16], the day-ahead scheduling of
distribution network is simulated, which considers different kinds of resources including DGs and
demand response, etc. In [17], a tractable min–max–min cost model is proposed to find a robust optimal
day-ahead scheduling of ADN considering demand response as one of the important resources.

However, the diversity of controllable resources also deepens the difficulties of the optimization
problem. In ADN, the control variables include both continuous variables (DGs’ output, storage
charge, discharge power, etc.), and discrete variables (regulator tap positions, switching status of
switchable capacitor banks, etc.). In terms of constraints, not only linear constraints (upper and
lower bounds of power output, etc.), but also nonlinear constraints (power flow equality constraints,
node voltage constraints, etc.) are considered. Therefore, the optimal operation of the ADN is a
complex mixed integer nonlinear programming (MINP) problem. Because the solution based on the
traditional interior point method is not ideal, the intelligent algorithms with wider adaptability are
widely used [18–21]. In the literature [18], the optimal scheduling of OLTC and capacitor banks is
achieved by using genetic algorithm (GA). In [19], the optimal scheduling model of ADN is established,
and the intelligent single particle optimization algorithm (IPSO) is used to reduce the running cost of
the system. In [20], the hybridized genetic algorithm and the ant colony algorithm (ACO) are used to
realize the economic operation of the distribution system. In [22], a new optimization framework is
presented to optimize the bidding strategy of a distribution company in a day-ahead energy market
and Benders decomposition technique (BDT) is employed to simplify the optimization procedure.
A receding horizon optimization strategy is presented in [23] to solve the objective functions of meeting
the electricity demand while minimizing the overall operating and environmental costs considering
both generation side and demand side. In [24], the PSO combined with fuzzification technique is
applied as Volt-VAR Optimization (VVO) algorithm, aiming at minimizing distribution network loss
and the operating cost of reactive power injection, improving voltage profile of the system. A chaotic
improved honey bee mating optimization is proposed to solve the optimal dispatch of ADN in [25].

Although the intelligent algorithm has been widely researched and applied in the optimization of
ADN, there are still the following problems: (1) the lack of effective constraint processing mechanism,
resulting in reduced efficiency of the solution; and (2) the speed of the solution is reduced due to the
large number of data needed for intelligent algorithms and the simulation of the power flow, especially
for three-phase modeling of the complex distribution network. Recently, using surrogate based
optimization techniques to solve optimization problems with computationally black-box objective
functions have attracted attention of researchers, considering the interrupt load, the economic operation
model of ADN is established with the goal of minimizing the operation cost. A modified fuzzy adaptive
PSO assisted by Kriging model (KMA-MFAPSO) is developed to solve the optimization problem.
Based on the above research background, considering the stability and reliability of ADN, this paper
establishes the optimal operation model of AND with two objectives including minimizing the power
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losses and improving the voltage profile. The resources contain distributed power generation units,
energy storage equipment, voltage regulators and switchable capacitor banks. A hybrid algorithm
based on Kriging model named ISO-MI (Improved Surrogate Optimization-Mixed-Integer) is proposed.
Finally, the validity of the Kriging model and the efficiency of the proposed algorithm are verified by
comparison and analysis of the traditional algorithm.

The main contributions of this paper are as follows.

(1) The optimal operation and schedule model of ADN is proposed considering multiple controllable
resources such as battery storage, DGs, etc. The objectives include reducing the power losses and
improving the voltage profile.

(2) The Kriging model is used to approximate the complex active distribution network, speeding up
the solving process.

(3) The Kriging model based optimization method named ISO-MI is proposed to solve the
optimization problem, which improves the solving efficiency.

This paper is organized as follows. Section 2 formulates the optimization problem of distribution
system. The principle of Kriging model and the basis of the proposed algorithm ISO-MI are discussed
in Section 3. The simulation results of the proposed method are included in Section 4. Concluding
remarks are given in Section 5.

2. Problem Formulation

This paper focuses on the optimal scheduling and operation of ADN. The diagram of optimal
dispatch for ADN is shown in Figure 1. As can be observed, there is a diversity of controllable resources
in both supply and demand side in ADN, such as regulators, battery storages, DGs, and thermostat
controlled loads (TCLs), etc. The distribution network operator (DNO) [26], which is the control
center of ADN, gathers the information from both supply and demand side as well as predicts
the scheduling information containing customers’ load profiles and DGs’ outputs. In recent years,
with the development of communication and measurement technologies such as advanced metering
infrastructure (AMI), the DNO has had the access to acquiring all kinds of necessary information
in terms of climate data, market data, and load data. A local database therefore can be constructed,
providing data support for the follow-up research. Based on the acquired data and physical model
of ADN, the power flow analysis can be accomplished, whose function is to coordinate with the
optimization program. Moreover, the scheduling information including the users’ load profiles,
output of DGs and so on can be also predicted by using forecast algorithms. Then, based on these
information, the optimal dispatch can be achieved by applying the efficient solving algorithm. Finally,
the optimal results of ADN for the following scheduling times containing charge/discharge of the
battery storages, tap position of regulators and so on can be determined and return to the ADN.

Generally, there are two types of decision variables in distribution network: continuous variables
and discrete variables. Continuous variables include power of electric components and node voltage,
while discrete variables are characterized by states of devices, such as the operation state of capacitor
banks and tap position of voltage regulator or OLTC, etc. Hence, the optimization problem should be
formulated as a mixed-integer nonlinear programing (MINP) problem. The objective in this paper is to
minimize the power loss of ADN while reducing the fluctuation of nodal voltage profile around the
nominal value. The details about the distribution network will be discussed in the fifth part.



Energies 2017, 10, 2162 4 of 19

Energies 2017, 10, 2162 4 of 19 

 

...

Optimization

algorithm

Output of 

DG

Charging state  

of storage

Capacitor 

bank switch

Tap position 

of OLTC/ 

regulator

ADN physical model

Forecast algorithm

Demand side 

management

...

Residential loads

Industrial Loads

Load dataMarket data

Climate data

 Database

Distribution network operator (DNO)

Data

DR ResourcesDay-ahead 

Scheduling

Distribution

 system

Battery storage

Transmission 

system
DC network

P2G

Commercial district Industrial district Residential districthospital

Commercial loads

Rectification

AC 

network

Distributed generations

EVs

Air conditionings Heat pumps

Water 

heatersElctrolyzers

...

Measurements

Powerflow analysis

DG data

ADN

Measurements

Control signals

...

 

Figure 1. Diagram of optimal scheduling and operation of active distribution network (ADN). 
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Figure 1. Diagram of optimal scheduling and operation of active distribution network (ADN).

2.1. Objective Function

One of the advantages of ADN is that a lot of controllable resources, including DGs, battery
storages, voltage regulators as well as switchable capacitor banks can be utilized to achieve the goal of
optimal dispatch. In this paper, considering the above resources, the first objective is to minimize the
total transmission lines energy losses during the whole schedule time. The first objective function is
formulated as follows:

fI =
T

∑
t=1

Plosses(t)∆t (1)

where ∆t is the time interval and in this paper, its value is 1 h; the variable T represents the scheduling
period, which is set to 24 h. Plosses(t) is the total transmission lines active power losses in kW at
time t of ADN. Taking into account the mutual impedance between phases, Plosses(t) can be precisely
calculated by Equation (2) [27]:

Plosses(t) = 1
2 ∑

ij∈Nl

∑
γ=a,b,c

∑
β=a,b,c

{
−Gγβ

ij

[(
eγ

i (t)− eγ
j (t)

)(
eβ

i (t)− eβ
j (t)

)
+
(

f γ
i (t)− f γ

j (t)
)(

f β
i (t)− f β

j (t)
)]

−Bγβ
ij

[(
eγ

i (t)− eγ
j (t)

)(
f β
j (t)− f β

i (t)
)
+
(

f γ
i (t)− f γ

j (t)
)(

eβ
i (t)− eβ

j (t)
)]} (2)

In the above equation, eγ
i (t) and f γ

i (t) are the real and imaginary part of the voltage at node

i of phase γ at time t, respectively. Gγβ
ij and Bγβ

ij are the real and imaginary part of the element
corresponding to the γ phase of node i and β phase of node j in the node admittance matrix
(γ, β ∈ (a, b, c)). Nl is the collection of all branches.
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The second objective function of improving the voltage profiles can be represented by the
following equation:

fII =
N

∑
i=1

∑
p∈(a,b,c)

∣∣∣Vp
i (t)−VN

∣∣∣
VN

(3)

where VN is the nominal voltage; Vp
i (t) means the voltage magnitude at node i of phase p (p ∈ (a, b, c))

at time t; and N is the total node number.
Because the units between the two objectives are inconsistent, it is necessary to normalize fI and

fII. The normalization of the two objective functions can be calculated by:
−
f 1 =

T
∑

t=1
Ploss(t)∆t

f1,B
= f1

f1,B

−
f II =

N
∑

i=1
∑

p∈(a,b,c)

|Vp
i (t)−VN|

VN

f1I,B
= fII

f1I,B

(4)

where f1,B and f1I,B is the basic value of normalization and, in this paper, the value of f1,B is the
maximum power loss during the day before optimization, while f1I,B means the maximum voltage
offset during the day before optimization.

Then, a comprehensive objective function F can be generated after the normalization, reflecting
the combined effects of the abovementioned objectives, as Equation (5):

Min F = ω1 fI + ω2 fII , ω1 + ω2 = 1 (5)

where ω1 and ω2 are the weight coefficients of f1 and f2, respectively. In this paper, the two objectives
are considered of equal importance and their value are both 0.5.

2.2. Constraints

The minimization of Problem (5) is subjected to the following constraints (Equations (6)–(20)):

(1) Unbalanced three-phase power flow constraints:
PG,p

i,t − PL,p
i,t = Vp

i,t

Nbus
∑

j=1
∑

m∈(a,b,c)
Vm

j,t

(
Gpm

ij cos θ
pm
ij,t + Bpm

ij sin θ
pm
ij,t

)
QG,p

i,t −QL,p
i,t = Vp

i,t

Nbus
∑

j=1
∑

m∈(a,b,c)
Vm

j,t

(
Gpm

ij sin θ
pm
ij,t − Bpm

ij cos θ
pm
ij,t

) (6)

In the following equation, PG,p
i,t and QG,p

i,t are the active and reactive generation power injected

into node i of phase p, respectively, while PL,p
i,t and QL,p

i,t are the corresponding load power at node i
of phase p at time t; Vp

i,t is the voltage magnitude of phase p at node i and Vm
j,t is that of phase m at

node j; θ
pm
ij means the phase angle difference of phase p and m between node i and j; and Gpm

ij and Bpm
ij

represent the real and imaginary parts of admittance matrix, respectively.

(2) Nodal voltage magnitude constraint:

Vmin ≤ Vp
i (t) ≤ Vmax (7)

In this paper, the minimum and maximum voltage magnitude are set to 0.95 p.u and
1.05 p.u, respectively.
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(3) Constraints of active and reactive power outputs of DGs:

Pmin
DG,n ≤ PDG,n(t) ≤ Pmax

DG,n (8)

Qmin
DG,n ≤ QDG,n(t) ≤ Qmax

DG,n (9)

where Pmin
DG,n and Qmin

DG,n are the minimum active and reactive power output of DG n, respectively; Pmax
DG,n

and Qmax
DG,n are the maximum active and reactive power output of DG n, respectively; and PDG,n(t) and

QDG,n(t) are the actual active and reactive output of DG n, respectively. The power generated by DGs
is supposed to be assigned to three phases equally.

(4) Thermal limits of transmission lines constraints:

Sl(t) =
√

Pl(t)2 + Ql(t)2

s.t


Pl(t) =

n
∑

p∈(a,b,c)
PG,p

i,t − PL,p
i,t

Ql(t) =
n
∑

p∈(a,b,c)
QG,p

i,t −QL,p
i,t

(10)

Sl(t) ≤ Smax
l (11)

where Sl(t) is the apparent power of line l at time interval t and Smax
l represents the maximum

transmission power of line l. Pl(t) and Ql(t) are the active and reactive power of line l at time t.

(5) Tap change constraints of voltage regulator or OLTC:

tapmin
k ≤ tapk(t) ≤ tapmax

k , tapk(t) ∈ Z (12)

T

∑
t=2

TapChangek(t) ≤ TapChangemax
k (13)

s.t

{
Tapk(t)− Tapk(t− 1) = 0, TapChangek(t) = 0
Tapk(t)− Tapk(t− 1) 6= 0, TapChangek(t) = 1

(14)

where tapmin
k and tapmax

k are the lower and upper limit of tap position of regulator k; tapk(t) is the
actual position at time t. Equation (12) constraints the actual tap position between tapmin

k and tapmax
k .

To avoid increasing cost of maintenance caused by changing the tap position frequently, the maximum
tap change number constraint, expressed as Equation (13), is introduced during the whole scheduling
period, and TapChangek(t) means the tap change status at time interval t.

(6) Switchable capacitor bank switch constrains:

T

∑
t=2

CapChangen(t) ≤ CapChangemax
n (15)

s.t

{
CapChangen(t) = 0, Capn(t)− Capn(t− 1) = 0
CapChangen(t) = 1, Capn(t)− Capn(t− 1) 6= 0

(16)

where Capn(t) is the switch status of capacitor bank n at time t, for which 0 represents open and
1 means closed. In addition, CapChangen(t) is a logic variable reflecting whether the switch state
is changed.

(7) Battery storage constraints:

Pmax
b,n,discharge ≤ Pb,n(t) ≤ Pmax

b,n,charge (17)

SOCmin
n ≤ SOCn(t) ≤ SOCmax

n (18)
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s.t

{
SOCn(t) = SOCn(t− 1) + Pb,n(t− 1) · ηn/Bn, Pb,n(t− 1) ≥ 0
SOCn(t) = SOCn(t− 1) + Pb,n(t− 1)/ηnBn, Pb,n(t− 1) < 0

(19)

0 ≤ times(t) ≤ timesmax (20)

where Pb,n(t) is the charging/discharging power of battery storage n at time interval t, for which
Pb,n(t) > 0 means charging and Pb,n(t) < 0 means discharging; Pmax

b,n,discharge and Pmax
b,n,charge represent

the maximum rate for discharge and charge, respectively; SOCmin
n and SOCmax

n mean the allowable
range of state-of-charge (SOC), which are 0.2 and 0.95 in this paper; and ηn represents the
charging/discharging efficiency of battery n. Considering the times of charging/discharging affect the
battery life, the charge and discharge times constraint is set in Equation (20), where timesmax means
the limit of charge and discharge times and its value is 50 in this paper [28,29].

3. Model Solution

In this section, a Kriging model based improved Surrogate Optimization-Mixture-Integer (ISO-MI)
algorithm is proposed to solve the optimization problem. The brief introduction of Kriging model
is illustrated first. Then, the procedure of the proposed algorithm is explained in detail and, finally,
the flowchart of the proposed method is presented.

3.1. Kriging Model

Kriging model is one type of surrogate model; a surrogate model is essentially an approximate
model of the complicated physical system, which expresses the relationship between the inputs and the
corresponding outputs with simple equation [30]. Nowadays, there are four kinds of commonly used
surrogate models including Response Surface Model (RSM), Kriging models, Radial Basis Function
(RBF), and Artificial Neural Network (ANN) [31]. Every model has its own characteristics and there
is no specific criteria to measure which is the best. Many comparative studies have been done and
insights have been gained through a number of experiments [32].

Among these abovementioned models, the Kriging model, combined with a random process,
is more accurate for highly nonlinear problems. Besides, Kriging model is also flexible in either
interpolating the sample points or filtering noisy data. On the contrary, a polynomial model is easy to
construct, clear on parameter sensitivity, and cheap to work with but is less accurate than the Kriging
model [33]. In practical engineering application, Kriging model has been successfully applied in many
practical projects, such as structural optimization, airfoil aerodynamic design, missile aerodynamic
design, multidisciplinary design optimization and so on. In this paper, considering approximation
accuracy and the software tools, the Kriging model is selected to approximate the ADN.

Assume that the sampled points can be expressed by X = [x1, x2 . . . , xn]
T , and the corresponding

response values are Y = [y1, y2 . . . , yn]
T , where X and Y can be obtained through history data of ADN.

Kriging function combines linear regression model and random process model to predict the real
function of the relationship between input and output [34]. The general form of the Kriging model can
be expressed as Equation (21):

ŷ(x) =
p

∑
j=1

β j f j(x) + z(x) (21)

where ŷ(x) represents the predictive value of function at point x; f j(x) is the polynomial regression

function of the sampled points; β̂ =
[
β1, . . . , βp

]T denotes the least square estimator of regression
coefficients; and z(x) is a Gaussian random process. The detailed calculation process of these variables
can be found in [35] and, in this paper, a MATLAB tool box called DACE [36] is used to construct the
Kriging model.
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3.2. Kriging Model Based Optimization

As mentioned above, Kriging model is an approximate model for complex black-box system such
as complicated distribution system, it is easy to calculate without losing the approximation accuracy.

The general framework of Kriging model based optimization algorithm is shown in Figure 2.
To construct Kriging, first, some test points in the decision space should be generated. It is essential
to select the design points properly to capture the characteristics of a complicated system. There are
two categories of sampling techniques which are the classical techniques and the space filling
techniques [37]. Between the two categories, the latter is widely used to construct Kriging models.
The space filling designs include three methods namely Orthogonal arrays, uniform designs and
various Latin Hypercube Designs (LHD). Among all of these, LHS is selected because of its good
properties of uniformly and flexibility on the size of sampling [38]. Then the simulation software can
be called to compute the actual response of the inputs and outputs. After that, a Kriging model can be
constructed by using these experimental data. Finally, the Kriging models can be applied to the solving
process of the optimization algorithm under the premise of meeting the approximation accuracy.

In the process of optimization, the Kriging model can be kept constant or dynamically
updated. If the model remains unchanged, the initial constructed model is required to meet certain
approximation accuracy requirements. However, in the optimization process, the approximation error
of the Kriging model is likely to result in an erroneous solution. Therefore, an effective method is
to update the constructed model in the process of optimization, so as to improve the approximation
accuracy with the model. In this work, the developed optimization algorithm is inspired by the
concept of dynamic Kriging model. As shown in Figure 2, the dynamic Kriging model adopts dynamic
adding design point algorithm (DADPA), in which new sample points will be iteratively selected to
do the expensive function simulation and update the model until the stopping criterion is met while
the whole search space will not be changed. According to [39], DADPA has good performance in
optimization problem.
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3.3. Improved Surrogate Optimization-Mixed-Integer Algorithm

Inspired by the optimization algorithm SO-MI (Surrogate Optimization-Mixed-Integer) [40]
developed to solve mixed-integer, no-convex and nonlinear programming problem and DYCORS
(Dynamic Coordinate Search Using Response Surface models) framework developed for bound
constrained optimization in black-box system [41], a modified SO-MI named ISO-MI is proposed in this
paper to solve the optimal operation and scheduling problem in ADN. Based on the SO-MI, the method
of coordinate perturbation is added to improve the efficiency of local search. At the same time,
adaptive adjustment strategy of disturbance range is introduced, which balances local and global
disturbances and improves the probability of finding better solutions.

The main procedure of ISO-MI can be divided into four steps and the flowchart of the algorithm
is shown in Figure 3.

Step 1—Construct Initial Kriging model. In this step, it is easy to construct the Kriging model
with high accuracy using the measured history operation data of distribution system. Sini

n (x) denotes
the initial surrogate model built by the set of sampled points Bini

n = {x1, . . . , xn};
Step 2—Initialize optimization parameters. In this step, first, a series of parameters need to be

set for the beginning of the optimization program, such as maximum evolution number M of expensive
simulation, initial coordinate perturbation range r0 and the minimum range rmin, etc. Second, the LHD
method is used to generate initial feasible design points. To construct a new Kriging model, it is
necessary to do the expensive simulations and get the responses from them. Finally, find the best point
x∗k , which represents the control variables of the distribution network, and the corresponding objective
function value f

(
x∗k
)

in the current design points.
Step 3—Iterate until the evolution number, m > M, maximum evolution number. In this

step, first, create four groups of candidate points by randomly perturbing coordinates around
x∗k . The purpose is to improve the efficiency of local search by adding the coordinate perturbation.
The generation of the four groups in the global range are shown as follows:

(1) Group 1: Uniformly and randomly perturb the continuous coordinates of x∗k at the range of rk,
xG1,i = x∗k + α · rk, where i is the index of points and α ∼ N(0, 1);

(2) Group 2: Uniformly and randomly perturb the discrete coordinates of x∗k at the range of rk,
xG2,i = x∗k + round(α · rk);

(3) Group 3: Uniformly and randomly perturb all coordinates of x∗k at the range of rk,
xG3,i = x∗k + α · rk and round the discrete coordinates to the closet integers;

(4) Group 4: Select candidate points xG4 in the whole design space using LHS.

Second, check the candidate points to ensure that they are in feasible domain and discard the
points that violate the constraints. Third, select the best candidate points from four groups of candidate
points. The specific method is illustrated as follows:

(1) Calculate the objective function using the initial Kriging model Sini
n (x) and current new Kriging

model Sn,k(x) of candidate points in four groups and compute the objective function score s1(xi)

and s2(xi) of all points, where s1 and s2 are the normalized objective functions. Their value can
be calculated by Euclidean distance in n dimensional space.

(2) Compute the distance score of all design points.
(3) Compute the weighted score S(xi) = ω1s1(xi) + ω2s2(xi), where S denotes the objective function

F in this paper, and select the point with minimum score S(xi) to add it into design points set
Bn,k+1 and do the expensive function evaluation, again.

Fourth, update the best point x∗k+1 and corresponding objective function value f
(

x∗k+1
)

in the
current design points set Bn,k, where f

(
x∗k+1

)
is the sub-objective function. Fifth, check if the objective

function value has an improvement (x∗k+1 < x∗k ). If this is true, the perturb range should be enlarged to
two times. Otherwise, it will be shrink for the purpose of balancing the local and global search. Finally,
update the current Kriging model.
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Step 4—Output the value of best solution x∗ and the corresponding objective functions found
so far.Energies 2017, 10, 2162 10 of 19 
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4. Simulation and Case Studies

To test the effectiveness of the proposed method, we establish a co-simulation platform combining
the two software packages GridLAB-D and MALAB. GridLAB-D is a new type of power system
simulation tool, which uses an agent-based approach to simulating smart grids [42]. It contains
different modules with specific functions, such as power flow module, residential module and so on.
The interaction between the two software is shown in Figure 4. In each time step, first, the GridLAB-D
software is called to do the expensive power flow simulations of distribution system. Then part of
the simulation data needed for optimization is recorded by GridLAB-D and sent to MATLAB through
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an external application link called matlab.link [43]. After that, the optimal scheduling of ADN is
achieved in MATLAB based on the data provided by GridLAB-D. Finally, some control variables in
GridLAB-D are changed according to the optimization results. The simulation is implemented on a PC
with 3.7 GHz CPU and 16 G RAM.Energies 2017, 10, 2162 11 of 19 
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4.1. Test System Specification

In this paper, a modified three phase unbalanced IEEE-123 distribution system [44], with detailed
data given in [45], is utilized to test the proposed method. The topology of the distribution system is
shown in Figure 5.
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Four regulators and four capacitor banks are installed in this system and their parameters are
listed in Tables 1 and 2. All the control of taps and switches are on the banked level. Besides, seven DGs,
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whose characteristics are given in Table 3, are located at different nodes of the system in Figure 5.
For the purpose of maximizing the use of renewable energy, the outputs of PVs and wind turbines
are assumed to be uncontrolled with generating electricity at their maximum power. The forecast
outputs of PVs and wind turbines are shown in Figure 6. In terms of loads, they are modeled as
ZIP loads, which are comprised of constant impedance Z, constant current I and constant power
P loads. The ZIP coefficients is calculated according to [46], which are given in Table 4. If all nodal
voltages are maintained at the rated values, the total load profiles of three phases is shown in Figure 7.
The parameters of battery storage are listed in Table 5.

Table 1. Parameters of voltage regulators.

Name Installed Location Phases Tap Range Voltage
Regulation Range

Maximum
Operating Times

Reg1 150–149 A-B-C [−16, +16] [0.95, 1.05] 10
Reg1 25–26 A-C [−16, +16] [0.95, 1.05] 10
Reg1 9–14 A [−16, +16] [0.95, 1.05] 10
Reg1 160–67 A-B-C [−16, +16] [0.95, 1.05] 10

Table 2. Parameters of capacitor banks.

Name Installed Location
Installed Capacity (kVar) Maximum

Operating TimesPhase A Phase B Phase C

Cap1 83 100 100 100 10
Cap2 88 50 0 0 10
Cap3 90 0 50 0 10
Cap4 92 0 0 50 10

Table 3. Characteristics of DGs.

Name Installed Location Type Rated Power (kW) Power Factor

DG1 66 WT 150 0.9
DG1 51 PV 100 0.9
DG1 30 MT 150 0.9
DG1 18 MT 200 0.9–1.0
DG1 60 MT 150 0.9–1.0
DG1 108 MT 200 0.9–1.0
DG1 77 MT 150 0.9–1.0

Table 4. ZIP coefficients of the loads [46].

ZIP Coefficients Z I P

Active load 0.418 0.135 0.447
Reactive load 0.515 0.023 0.462

Table 5. Characteristics of battery storage.

Name Installed Location Power (kW) Capacity (kWh)
Efficiency

Charging Discharging

BAT1 86 [–150, 150] 750 0.9 0.9
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4.2. Accuracy of Kriging Model in Distribution System

The accuracy of Kriging model can be estimated by statistic validation methods [47]. In this
section, the following indexes are formulated to test the accuracy of the proposed model.

(1) Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (22)

(2) Relative Maximum Absolute Error (RMAX):

RMAX = max|(yi − ŷi)/yi| (23)

(3) Relative Average Absolute Error (RAAE):

RAAE =
1
N

N

∑
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∣∣∣∣∣ (24)

(4) R-Square:
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(
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−
y
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where yi is the actual response of black-box system which means distribution system in this paper;

ŷi is the predicted value; and
−
y is the mean of actual response value. In the above indexes, RMSE and

RAAE are used to measure the overall accuracy of the model, while RMAX is used to gauge the local
accuracy. In addition, MSE (Mean Square Error) represents the departure of the Kriging model from
the real simulation model and the Variance captures how irregular the problem is. Lower values of
RMSE, RMAX and RAAE or closer value of R-Square to 1 lead to a more accurate Kriging model [48].

The control variables at each scheduled time in this paper contain tap positions of the
four regulators, switching status of the four capacitor banks and the output of the battery storage.
The Kriging model is developed with the designed points generated by LHS. One hundred randomly
sampled test points are used to validate the accuracy of the model and the test results are given in the
following table in which N represents the number of designed points.

As shown in Table 6, the Kriging model has high accuracy to approximate the characteristics of the
active distribution system and the accuracy is improved with the increase in the number of designed
points. In the case of 50 designed points, the average relative absolute error of voltage fluctuation and
power loss is less than 1%. Trading off between the approximation accuracy and the time required to
construct the model, this paper selects 50 initial points to build the initial Kriging model.

Table 6. Test results of accuracy of Kriging model.

Index
N 50 100 200

Voltage
fluctuation

RMSE 9.4 × 10−5 9.0 × 10−5 9.1 × 10−5

RMAE 7.5 × 10−4 7.2 × 10−4 6.2 × 10−4

RAAE 6.3 × 10−5 5.9 × 10−5 5.2 × 10−5

R2 1.0000 1.0000 1.0000

Power loss

RMSE 2.3 × 10−3 1.9 × 10−3 1.3 × 10−3

RMAE 3.4 × 10−3 2.5 × 10−3 1.9 × 10−3

RAAE 1.1 × 10−3 0.9 × 10−3 0.7 × 10−3

R2 0.9954 0.9973 0.9988

4.3. Solving Efficiency of ISO-MI

In this section, the solving efficiency of the proposed method is illustrated compared with GA
and PSO. The maximum expensive function evaluation number is set to 200. Besides, the initial
SOC of the battery storage is 0.5. The upper and lower limits of SOC are 0.95 and 0.2, respectively.
The schedule period is 24 h, while the time interval is ∆t = 1 h. The weights, ω1 and ω2, are both
0.5. The simulation results are displayed as follows. The comparisons among ISO-MI, GA and PSO
are shown in Figures 8–10. The optimization results of tap positions of Reg1–Reg4 are displayed in
Figure 11 and the charge power and SOC of BAT1 are shown in Figure 12.

As shown in Figure 8, ISO-MI has a better convergence performance compared with GA and
PSO. Using ISO-MI, the smallest objective function value of 0.35 is obtained. In contrast, the objective
function values of GA and PSO are more than that of ISO-MI with the same evaluation number
of 200, about 0.5 and 0.55. Moreover, the simulation time of ISO-MI is about 360 s, shorter than
that of GA and PSO, about 720 s and 540 s, on the condition that the objective function value
is around 0.35. As shown in Figure 9, the smallest power loss is obtained when ISO-MI is used,
indicating that ISO-MI has better effect on reducing the overall power loss than GA and PSO. It can be
calculated that the total power loss is about 1077 kW per day in the case of ISO-MI while the value is
1441 kW and 1550 kW per day when using GA and PSO. As shown in Figure 10, all the nodal voltages
are within the allowable range of 0.95–1.05. It can also be observed that the optimal result obtained by
ISO-MI has smallest voltage fluctuation, demonstrating that the proposed method is more efficient
than the other two. The phenomenon above all demonstrate that the proposed method has better
convergence characteristics and is more efficient in the optimization problem.
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As shown in Figure 11, it is found out that the taps of voltage regulators, Reg1, Reg2 and Reg3,
change more frequently than Reg4. The tap position of Reg4 is kept in the lower positions all the time.
This is because the downstream area of Reg4 is small and its effect on the whole active distribution
system is little. Considering the ZIP load, the tap position should not be set too high to reduce the
power consumptions.

The charging and discharging power as well as the SOC profile of the battery storage BAT1 is
demonstrated in Figure 12. It can be observed in Figure 12b that the SOC of the battery storage is
kept within the range of 0.2–0.85, satisfying the upper and lower limits. As shown in Figure 12a,
to reduce the fluctuation of the voltage and power loss, the battery storage tends to charge when the
renewable energy outputs are in their peak and discharge during the time that the renewable energy
outputs are low. For example, during 06:00–07:00 and 21:00–24:00, the battery storage is in discharging
state, while during 11:00–15:00, the BAT1 is in the state of charging. In addition, similar to Figure 12a,
the SOC of the battery storage is also large when the renewable energy outputs are high in Figure 12b.

5. Conclusions

In this paper, the optimal operation model of the ADN is established. The model considers the
controllable resources, such as distributed generation units, energy storages, voltage regulators and
switchable capacitor banks. Aiming at solving the optimal mathematical model, a Kriging model
based optimization algorithm named ISO-MI is proposed to improve the efficiency of the optimization
algorithm. Finally, this paper validates the model and the solution method by IEEE-123 test system.
The simulation results indicate that ISO-MI yields a better solution than GA and PSO within the
predefined expensive evaluation time limit. However, the optimization results of this paper are
based on the prediction accuracy of 100% and, due to the existence of errors, the prediction error will
inevitably have an adverse impact on the optimization results. Therefore, the optimal operation model
of the ADN with multiple time scales should be established, which further improves the economy and
reliability of the active distribution network and will be the focus of our future research.
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