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Abstract: Fault diagnosis is crucial for the operation of energy systems such as nuclear plants,
and heavily relies on various types of sensors for temperature, pressure, concentration, etc. Due to the
redundancy of sensors in each energy system, the sensor selection scheme can deeply influence the
diagnostic efficiency. In this paper, a Boolean network (BN) with its linear representation is proposed
for describing the fault propagation among sensors. Both the sufficient condition of fault detectability
and that of fault discriminability are given. Then, a sensor selection method for fault detection
and discrimination is proposed. Finally, the theoretic result is applied to realize the diagnosis
oriented sensor selection for a nuclear steam supply system based on a modular high temperature
gas-cooled reactor (MHTGR). The computation and simulation results verify the correctness of the
theoretical results.

Keywords: fault diagnosis; nuclear plant; sensor selection; semi-tensor product

1. Introduction

Process behavior is inferred by using sensors measuring the important variables in processes
such as those of nuclear and fossil thermal plants. When a process encounters a fault, the effect of
this fault is propagated to all or some of the process variables. The main objective of fault diagnosis
is to observe these fault symptoms and determine the root cause for the behavior, and the efficiency
of fault diagnosis depends critically on the selection of sensors monitoring the process variables.
Directed graph (DG) is one such qualitative model that can be used to infer the fault propagation
or cause-effect behavior in a process system. Sensor selection was treated as different DG-based
optimization problems in most early studies. Bagajewicz et al. summarized the sensor selection in
a process as mix integer linear programming (MILP) problems focusing on optimizing cost or (and)
reliability [1–4]. Bhushan, Narasimhan, and Rengaswamy added the criteria of robustness to the MILP
problems [5]. Genetic algorithms (GAs) were also applied to solve the optimization problems for
sensor selection [6,7]. The MILP approach has been applied to the sensor selection problem of the fault
diagnosis for integral pressurized water reactors (iPWRs) and helical coil steam generators [8,9].

Boolean network (BN), first introduced by Kauffman [10], has been a powerful tool in modeling
and analyzing cellular networks. A BN is a network with nodes and directed edges, where the state of
a node is quantized to the values of True or False, and is determined through logical rules by the states
of other nodes with edges directed to this node. It was shown that BN plays a crucial role in modeling
cell regulation [10]. BN can be also applied to other fields such as system sciences as a powerful tool.
Cheng and Qi gave the state-space model of BN based on its linear representation, and then revealed
some features such as fix points, cycles, and controllability [11–14].

In this paper, by regarding both the sensors and faults in a process as the nodes in a BN, and by
further regarding the cause effect behaviors as the directed edges, the BN is utilized as a qualitatively
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modeling the fault propagation of a process system. Then, the sensor selection problem for fault
diagnosis is solved by analyzing the steady state-space structure of this BN model, and the sufficient
conditions for both fault detection and fault discrimination are proposed. The implementation strategy
of this BN-based sensor selection method for fault diagnosis are also given. Finally, this BN-based
sensor selection method is applied to realize fault detection and discrimination of a Modular
High Temperature Gas-cooled Reactor (MHTGR)-based nuclear steam supplying system, and the
corresponding computation and simulation results show the feasibility of this new approach.

2. BN-Based Sensor Selection Method

2.1. Semi-Tensor Product and Logics

In this section, some definitions and lemmas about the semi-tensor product and logical function
are introduced or given as follows with some necessary remarks.

Definition 1 [11,12]. Suppose A ∈Mm×n and B ∈Mp×q, and let t be the lowest common multiple (LCM) of
positive integers n and p. The semi-tensor product (STP) of A and B is defined by:

A B< B = (A⊗ It/n)
(

B⊗ It/p
)

(1)

where ⊗ is the Kronecker product, and I is the identity matrix.

Remark 1. The semi-tensor product is the generalization of traditional matrix multiplication. In the following
parts of this paper, symbol “B<” is omitted.

Definition 2 [13]. Matrix A ∈Mm×n is called a logical matrix if the columns of A, denoted by Col(A), satisfy
Col(A) ⊂ ∆m, where ∆m = {δk

m| k = 1, . . . , m}, and δk
m is the kth column of Im. The set of m × n logical

matrices is denoted by Lm×n, and ∆2 is usually denoted by ∆.

Definition 3 [13]. W[m,n] ∈ Mmn×mn is called a swap matrix if its column labels are given by (11, . . . , 1n,
. . . , m1, . . . , mn), its row labels are given by (11, . . . , m1, . . . , 1n, . . . , mn), and its element in position (IJ, ij)
is given by:

wI J,ij =

{
1, I = i, J = j,

0, otherwise.
(2)

Moreover, W[n,n] is briefly denoted as W[n].

Lemma 1 [13,14]. Let x ∈ Rm, y ∈ Rn, and A ∈Mp×q. Then:

W[m,n]xy = yx (3)

xA = (Im ⊗ A)x (4)

Definition 4 [13]. A 2 × 2n matrix Mσ is called structure matrix of a logical function σ: ∆n→∆, if

σ(a1, a2, . . . , an) = Mσ a1a2 · · · an (5)

where ai ∈ ∆, i = 1, 2, . . . , n.

For example, the power-reducing matrix Mr is defined by:

a2 = aa = Mra (6)
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where
Mr =

[
δ1

4 δ4
4

]
:= δ4

[
1 4

]
(7)

Based on the power-reducing matrix and swap matrices, the following lemma can be obtained.

Lemma 2 [13]. Every logical function σ: ∆n→∆ has a structure matrix Mσ ∈ L2×2
n satisfying Equation (5).

Remark 2. The structure matrices of logical functions negation “¬”, disjunction “∨” and conjunction “∧” are
given by:

M¬ = δ2

[
2 1

]
(8)

M∨ = δ2

[
1 1 1 2

]
(9)

M∧ = δ2

[
1 2 2 2

]
(10)

respectively. Moreover, the logical functions of identity “I” and constant “F” have the structure matrices
given by:

MI = δ2

[
1 2

]
= I2 (11)

MF = δ2

[
2 2

]
(12)

respectively.
Let An = a1, a2, . . . , an, where ai ∈ ∆ and i = 1, . . . , n. The following lemma gives the relationship

between A2
n and An, which is newly proposed in this paper.

Lemma 3. For An = a1, a2, . . . , an, where ai ∈ ∆, i = 1, . . . , n. Then:

A2
n = Φn An (13)

where
Φn = diag

(
δ1

2n , · · · , δ2n

2n

)
(14)

and δk
2n ∈ ∆2n , k = 1, · · · , 2n.

Proof. Since ai ∈ ∆, i.e., ai = [10]T or [01]T (i = 1, . . . , n), from Definition 1, it can be seen that:

An = a1a2 . . . an = δk
2n (15)

Also from Definition 1,

A2
n = (An ⊗ I2n)An =

(
δk

2n ⊗ I2n

)
δk

2n =

 O(k−1)2n×2n

I2n

O(2n−k)2n×2n

δk
2n =

 O(k−1)2n×1
δk

2n

O(2n−k)2n×1

 (16)

Moreover, it can be directly derived that:

[
diag

(
δ1

2n , · · · , δ2n

2n

)]
δk

2n =



δ1
2n O2n×1 · · · O2n×1 O2n×1 O2n×1 · · · O2n×1 O2n×1

O2n×1 δ2
2n · · · O2n×1 O2n×1 O2n×1 · · · O2n×1 O2n×1

...
...

...
...

...
...

...
...

...
O2n×1 O2n×1 · · · δk−1

2n O2n×1 O2n×1 · · · O2n×1 O2n×1

O2n×1 O2n×1 · · · O2n×1 δk
2n O2n×1 · · · O2n×1 O2n×1

O2n×1 O2n×1 · · · O2n×1 O2n×1 δk+1
2n · · · O2n×1 O2n×1

...
...

...
...

...
...

...
...

...
O2n×1 O2n×1 · · · O2n×1 O2n×1 O2n×1 · · · δ2n−1

2n O2n×1

O2n×1 O2n×1 · · · O2n×1 O2n×1 O2n×1 · · · O2n×1 δ2n

2n





0
0
...
0
1
0
...
0
0


=

 O(k−1)2n×1
δk

2n

O(2n−k)2n×1

 (17)
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From Equations (15)–(17):

A2
n =

[
diag

(
δ1

2n , · · · , δ2n

2n

)]
δk

2n (18)

which means that Equation (14) is well satisfied, which proves Lemma 3. �

Remark. 3. For n = 1, from Equations (6), (7) and (14), it can be seen that:

Φ1 = diag
(

δ1
2 δ2

2

)
=
[

δ1
4 δ4

4

]
= Mr (19)

From Equation (19), Φn given by Equation (14) can be regarded as an extension of matrix Mr defined
by Equation (7).

2.2. BN Model of Fault Propagation and Its Linear Representation

The nodes of a directed graph (DG) describing fault propagation is composed of faults f i ∈ ∆
and sensors sj ∈ ∆, i = 1, . . . , m, j = 1, . . . , n. The edge from fault f i to sensor sj denotes that f i can
be detected by sj. The edge from sensors sj to sk reveals the fault-propagation between the process
variables measured by these two sensors. It is assumed that there are no edges between any two faults.
There may be several edges toward a sensor node, whose logical operation among the start nodes of
these edges should be disjunction.

For convenience of discussion, define matrices ESF = {eSF,ji} ∈ Mn×m and ESS = {eSS,kl} ∈ Mn×n,
where i = 1, . . . , m and j, k, l = 1, . . . , n. Here, eSF,ji = 1 if there exists an edge from fault f i to sensor sj,
eSS,kl = 1 if there is an edge from sl to sk, otherwise eSF,ji = 0 and eSS,kl = 0. It is worth noting that matrices
are determined by the physical and thermal-hydraulic features of the under-considered processes.

Based on the above assumption and analysis about the features of the DG for process fault
propagation, the BN model for fault propagation can be written as:

sk(t + 1) = Mm+n−1
∨

(
m

∏
i=1

MF,i fi

)[
n

∏
j=1

MS,jsj(t)

]
, (20)

where k = 1, . . . , n, t is the times of logic computation,

MF,i =

{
MI, eSF,ki 6= 0,

MF, eSF,ki = 0,
(21)

MS,j =

{
MI, eSS,kj 6= 0,

MF, eSS,kj = 0,
(22)

matrices M∨, MI, and MF are defined by Equations (9), (11), and (12), respectively, f i, sj ∈ ∆, and here
eSF,ki and eSS,kj (i = 1, . . . , m; j, k = 1, . . . , n) are respectively the entries of matrices ESF and ESS.

Based on Equations (4) and (20):

sk(t + 1) = Lk

m

∏
i=1

fi

n

∏
j=1

sj(t), (23)

where

Lk = Mm+n−1
∨

{[
m

∏
i=1

(I2i−1 ⊗MF,i)

][
n

∏
j=1

(
I2m+j−1 ⊗MS,j

)]}
(24)
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Define

S(t) =
n

∏
j=1

sj(t) = s1(t)s2(t) · · · sn(t) (25)

And

F =
m

∏
i=1

f = f1 f2 · · · fm (26)

The state-space model of BN describing process fault propagation is proposed by the following
theorem, which is the first main result of this paper.

Theorem 1. The state-space model of the BN for process fault propagation given by Equation (23) is:

S(t + 1) = LFS(t) (27)

where
LF = LF (28)

L = L1

n

∏
k=2

[(I2m+n ⊗ Lk)Φm+n] (29)

Lk and φm+n are given by Equations (24) and (14), respectively.

Proof. From Lemma 3:
[FS(t)]2 = Φm+nFS(t) (30)

Based on Equations (23) and (25):

S(t + 1) = L1FS(t)L2FS(t)
n
∏

k=3
LkFS(t)

= L1[(I2m+n ⊗ L2)Φm+n]FS(t)
n
∏

k=3
LkFS(t)

= · · ·
= L1

n
∏

k=2
[(I2m+n ⊗ Lk)Φm+n]FS(t),

(31)

which completes the proof of this theorem. �

Remark 4. From Equation (27), it is easy to see that LF = LF is a 2n × 2n matrix which is called sensor network
state transition matrix. Fault F is regarded as a constant vector which is the parameter of state transition matrix.

Remark 5. For fi, sj ∈ ∆ (i = 1, . . . , m; j = 1, . . . , n), it can be seen directly from Equations (25) and (26)
that F ∈ ∆2m and S ∈ ∆2n .

2.3. Sufficient Conditions of Fault Detectability and Discriminability

Based on the definition of semi-tensor product, the following lemma can be obtained directly.

Lemma 4 [13]. Consider An = a1, a2, . . . , an, where ai = [Qi 1 − Qi]T ∈ ∆, Qi ∈ {0, 1}, and i = 1, 2, . . . , n.
If An = δk

2n (k = 1, . . . , 2n), then:

k = 2n −
n

∑
i=1

Qi2n−i (32)

Then, the fault detectability and discriminability of a BN is given by Theorem 2, which is the
second main result of this paper.
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Theorem 2. Consider BN model Equation (27) for process fault propagation. Suppose that only one fault occurs
at a time. For each i = 1, 2, . . . , m, it is assumed that there is a positive integer qi such that:(

Lδ
ki
2m

)qi+1
=
(

Lδ
ki
2m

)qi
(33)

where
ki = 2m − 2m−i (34)

Define
P =

[
p1 p2 · · · pm

]
(35)

where
pi =

(
Lδ

ki
2m

)qi
S0 (36)

i = 1, . . . , m, and S0 ∈ ∆2n . For initial sensor state S(0) = S0, fault f i (i ∈ {1, . . . , m}) is detectable if

pi 6= δ2n

2n (37)

Furthermore, all the faults are discriminable if both conditions Equation (37) and

Rank(P) = m (38)

are satisfied, where the value of function Rank(P) is the rank of matrix P defined by Equation (35) .

Proof. For a given i ∈ {1, 2, . . . , m}, i.e., F = δ
ki
2m with ki given by Equation (34). Then, from BN model

Equation (27):

S(t) = (LF)tS0 =
(

Lδ
ki
2m

)t
S0 (39)

If there exists a positive integer qi so that Equation (33) is well satisfied, then the steady response
of the BN to fault i corresponding to initial sensor state S0 is:

S(qi) =
(

Lδ
ki
2m

)qi
S0 (40)

If there is no sensor response to fault f i, the steady response of the BN should be δ2n

2n . Thus, if(
Lδ

ki
2m

)qi
S0 6= δ2m

2m (41)

holds for each i ∈ {1, 2, . . . , m}, i.e., condition Equation (37) is satisfied, then the faults are detectable. �

Moreover, suppose
pr 6= ps (42)

for r 6= s and r, s ∈ {1, 2, . . . , m}, i.e., the condition Equation (38) is satisfied. It is easy to see from
Inequality (42) that the steady responses of the sensor state to different faults are different from each
other, which means that the faults are discriminable, i.e., the faults can be identified, which proves
Theorem 2.

Remark 6. For i ∈ {1, 2, . . . , m}, there is an integer li ∈ {1, . . . , 2n}, so that:

δ
li
2n =

(
Lδ

ki
2m

)qi
S0 (43)
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Define

Πi =

{
r ∈ N| 2n − li =

n
∑

r=1
Qr2n−r, Qr 6= 0

}
(44)

which is the collection of sensors having respond to fault i. Let

Θ1 =
m⋂

i=1

Πi (45)

If Θ1 is not empty, then we can use sensor sλ with λ ∈ Θ1 for fault detection, and use sensors in
the set

Θ2 =
m⋃

i=1

Πi −Θ1 (46)

for fault discrimination.

Remark 7. The practical implementation steps of the BN-based sensor selection method for process fault
detection and discrimination are summarized in Figure 1. After the measurement system design, the sensor
network is given. For diagnosing a set of process faults, an initial sensor selection can be given. Then, it should
be verified whether this sensor selection is proper for fault detection and discrimination. Based upon the physical
and thermal-hydraulic features of the process, the DG for fault propagation can be determined. Then, the linear
representation of the BN model of fault propagation (Equation (27)) can be obtained. By verifying both the
conditions of fault detection (Equation (37)) and discrimination (Equation (38)), it can be seen that the sensor
network is reasonable for fault diagnosis. If either conditions of Equations (37) or (38) are not satisfied,
then the measurement system should be redesigned. Otherwise, we can use a sensor contained in set Θ1

given by Equation (45) for fault detection, and further use the sensors in set Θ2 given by Equation (46) for
fault discrimination.
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Figure 1. Implementation steps of the Boolean network (BN)-based sensor selection method.

3. Application to a High Temperature Gas-Cooled Reactor Nuclear Plant

The BN model and its linear representation for process fault propagation given by Theorem 1,
the sufficient conditions for fault detectability and discriminability given by Theorem 2, and the
sensor selection method proposed in Remark 6 are applied to realize a fault diagnosis-oriented sensor
selection of a nuclear steam supply system (NSSS) based on a modular high temperature gas-cooled
reactor (MHTGR).

3.1. Background

The modular high temperature gas-cooled reactor (MHTGR) adopts helium as a coolant and
graphite as both a moderator and structural material. Due to its inherent safety feature that is given
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by low power density, strong temperature-induced reactivity feedback, and large surface-to-volume
ratio, the MHTGR has already been accepted as one of the best candidates for the next generation
of nuclear plants. Figure 2 shows a schematic diagram of an MHTGR-based NSSS module of the
under-constructed two modular High Temperature gas-cooled Reactor Pebble-bed Module (HTR-PM)
plant [15]. This NSSS module is composed of an MHTGR, a helical-coil once-through steam generator
(OTSG), a helium blower, and some necessary vessels and pipes. It can be seen from Figure 2 that the
cold helium enters the helium blower mounted on top of the OTSG, and is then pressurized before
flowing into the cold gas duct. The cold helium enters into the channels in the side-reflector from
bottom to top for cooling the reflector, and then passes through the pebble-bed from top to bottom,
where it is heated to a high temperature of about 750 ◦C. The hot helium leaves the hot gas chamber
inside the bottom reflector and flows into the OTSG primary side, where it is cooled by the secondary
water/steam flow.
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Figure 2. Schematic diagram of the Nuclear Steam Supply System (NSSS) of High Temperature
Gas-cooled Reactor Pebble-bed Module (HTR-PM) plant.

Fault diagnosis of the NSSS is necessary to improve the operation reliability of an MHTGR-based
nuclear plant. Sensor selection is necessary for satisfactory diagnosis. The sensors to be selected are
those measuring the reactor neutron flux, primary helium flowrate, secondary feedwater flowrate,
and average coolant temperatures of the primary and secondary sides, which are all given in Table 1
with the measurement range and precision as well as the type of sensor output signal. The measurement
range of each sensor corresponds with the output range of 4~20 mA. The faults to be detected or
discriminated are given in Table 2, which include the abnormal reactivity injection, malfunction of the
primary helium blower, and heat transfer degradation between the two sides of the OTSG.

Table 1. Available sensor nodes for selection.

Nodes Description Unit Range Precision Output Signal

s1 reactor neutron flux % 0~200 2 4~20 mA
s2 primary helium flowrate kg/s 0~200 2 4~20 mA
s3 average temperature of the primary flow ◦C 300~700 1 4~20 mA
s4 average temperature of the secondary flow ◦C 330~430 0.5 4~20 mA
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Table 2. Fault nodes to be detected or discriminated.

Nodes Description

f 1 abnormal reactivity injection to the reactor
f 2 malfunction of the primary helium blower
f 3 heat transfer degradation of OTSG two sides

3.2. Directed Graph for Fault Propagation

From the physical and thermal-hydraulic features of the MHTGR-based NSSS, the following
relationships between fault f i (i = 1, 2, 3) and sensor sj (j = 1, 2, 3, 4) can be observed:

(1) If fault f 1 occurs, i.e., there is an abnormal positive or negative reactivity injection, then the
neutron flux is abnormal, which further leads to abnormality in the acquired signal by s1. Since the
variation of neutron flux can directly result in the variations of primary coolant temperature,
fault f 1 can also lead to abnormality in the acquired signal by s3. As the variation of the primary
helium temperature can result in that of secondary coolant temperature, abnormality in the
acquired signal by s3 can further lead to that of sensor s4.

(2) If fault f 2 occurs, i.e., the primary helium blower malfunctions, then there must be abnormality in
the primary helium flowrate, which induces abnormality in the acquired signal by s2. Since the
steam temperature is very sensitive to the helium flowrate, abnormality in the acquired signal by
s2 can further lead to that of sensor s4. Because the temperature of the secondary steam/water
flow can influence the primary helium temperature, abnormality in the acquired signal by s4 can
induce that of s3.

(3) If fault f 3 occurs, i.e., the heat transfer between the two sides the OTSG will be degraded, then the
thermal resistance of the OTSG becomes abnormal, which immediately leads to abnormalities of
sensors s3 and s4. Here, fault f 3 may be induced by the limescale inside the tubes of the OTSG.

(4) Since helium is transparent to the nuclear fission reaction, i.e., it has no temperature feedback
effect to neutron flux, abnormality in the signal acquired by s3 cannot directly induce that of s1.

Based on the above four observations, the DG for fault propagation of the MHTGR-based NSSS
can be shown by Figure 3.
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3.3. BN Model of Fault Propagation and Its Linear Representation

The BN model for the fault propagation is:
s1(t + 1) = f1,
s2(t + 1) = f2,
s3(t + 1) = f3 ∨ s1(t) ∨ s4(t),
s4(t + 1) = f3 ∨ s2(t) ∨ s3(t).

(47)
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From Theorem 1, the linear representation of model Equation (47) can be rewritten as:

S(t + 1) = LFS(t) (48)

where

L = δ16[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 2 1 3 1 3 1 3 2 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 6 6 5 7 5 7 5 7 6 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 10 10 9 11 9 11 9 11 10 12

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
13 13 13 13 13 13 14 14 13 15 13 15 13 15 13 15 ].

(49)

3.4. Verification of Fault Detectability and Discriminability

From Equation (34), k1 = 4, k2 = 6, and k3 = 7.
Furthermore, since

LF1 = LF1 = Lδ4
8 = δ16 [ 5 5 5 5 5 5 6 6 5 7 5 7 5 7 6 8 ] (50)

LF2 = LF2 = Lδ6
8 = δ16 [ 9 9 9 9 9 9 10 10 9 11 9 11 9 11 10 12 ] (51)

and

LF3 = LF3 = Lδ7
8 = δ16 [ 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 ], (52)

it can be verified that q1 = q2 = 3 and q3 = 1, i.e.,

L4
F1 = L3

F1, L4
F2 = L3

F2, L2
F3 = LF3 (53)

Consider initial state S0 = δ16
16 , which means that all the sensor states are δ2

2 . Then,

P = δ16

[
5 9 13

]
(54)

From Equation (54), it can be seen that the matrix P satisfies the conditions of Equations (37) and
(38), which certainly leads to both fault detectability and discriminability. Thus, the sensor network
given by Table 1 is reasonable for fault diagnosis.

3.5. Sensor Selection

From Equation (43), l1 = 5, l2 = 9, and l3 = 13. Then, from Equation (44):
Π1 = {1, 3, 4},
Π2 = {2, 3, 4},
Π3 = {3, 4}.

(55)

Based upon Equation (50), sensor s4 can be utilized to detect whether a fault belongs to the set
SF = {f 1, f 2, f 3} that occurs. Also from Equation (50), we obtain a reasonable fault discrimination
strategy, i.e., sensor s1 can be used to identify fault f 1, sensor s2 can be used to identify fault
f 2, and sensor s3 can be used to identify fault f 3. Therefore, a rational sensor selection strategy,
which satisfies the conditions of fault detection and discrimination given in Theorem 2, is obtained
from Equation (50).
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Moreover, it is worth noting here that the conditions given in Theorem 2 are sufficient conditions
for fault detection and discrimination, which may thus provide a choice of multiple candidate fault
diagnosis-oriented sensor selection strategies.

3.6. Numerical Simulation

The above sensor selection strategy for the fault diagnosis of the MHTGR-based NSSS module
of an HTR-PM plant is verified by numerical simulation in full-scale simulation programs [16,17].
The power control of the NSSS adopts the model-free adaptive controller proposed in Reference [18],
and the plant coordination control adopts the result given in References [19–21].

In this simulation, fault f 1 is simulated by injecting a negative step of reactivity with an amplitude
of 0.1 $. Fault f 2 is simulated by a negative step decrease of a primary helium flowrate of 5 kg/s. Fault
f 3 is simulated by stepping down the heat transfer coefficient between two sides of OTSG to 90% of its
current value. Initially, the NSSS operates at full power, and a fault occurs at 5000 s. The responses
of the normalized nuclear power nr, primary helium flowrate Gh, average helium temperature of
the MHTGR Tcav, and average temperature of the OTSG secondary coolant Tsav under faults f 1, f 2,
and f 3 are all shown in Figure 4. Here, the responses of nr, Gh, Tcav, and Tsav correspond to sensors
s1, s2, s3, and s4, respectively. Since the output of sensor si (i = 1, 2, 3, 4) is the analogous signal of
4–20 mA, which is widely adopted in practical engineering, the responses of sensor outputs are shown
in Figure 5. Here, the white noises added to the simulation are based on the measurement precision of
the sensors given in Table 1.
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Figure 4. Dynamic responses of the MHTGR-based NSSS under faults f i (i = 1, 2, 3); nr: normalized
nuclear power, Gh: primary helium flowrate, Tcav: average helium temperature, Tsav: average
temperature of the OTSG secondary coolant.
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Figure 5. Responses of sensor outputs under faults f i (i = 1, 2, 3); s1: normalized nuclear power nr,
s2: primary helium flowrate Gh, s3: average helium temperature Tcav, s4: average temperature of the
OTSG secondary coolant Tsav.

Based on the comparison among the responses of nr, Gh, Tcav, and Tsav as well as the output
signal of sensor si (i = 1, 2, 3, 4) under faults f 1, f 2, and f 3, it can be seen that sensor si is sensitive to
fault f i (i = 1, 2, 3), and the sensitivity of s4 to faults f 1, f 2, and f 3 are nearly the same. Thus, the fault
diagnosis strategy of using s4 for fault detection and using si (i = 1, 2, 3) for fault discrimination is
reasonable, which verifies the correctness of the theoretic result. It is worth noting that, for fault
discrimination, the output signal of s1 is used to distinguish f 1 from f 2 and f 3, i.e., to identify f 1.
However, the output signal of s1 is not used to distinguish f 2 from f 3. This is the same for fault
identification based on the output signals of sensors s2 and s3.

4. Conclusions

Since there are hundreds of sensors for temperature, pressure, concentration, etc. in complex
process systems such as nuclear and chemical plants, and due to the fault propagation effect among
these sensors, a proper sensor selection scheme is the basis for efficient process fault diagnosis. Sensor
selection was treated as optimization problems under certain criteria. However, the precondition of
conducting optimization is fault detectability and discriminability. In this paper, a Boolean network
(BN) model in a linear representation is proposed for describing the fault propagation among sensors.
Based on the analysis of the steady state-space structure of the BN model, sufficient conditions for both
fault detectability and discriminability are given. According to these sufficient conditions, a sensor
selection method for fault detection and discrimination is also proposed. Finally, the above result is
applied to realize the fault diagnosis-oriented sensor selection for an MHTGR-based NSSS. Both the
computation and simulation results verify the theoretical results.

Acknowledgments: This work is jointly supported by the National S&T Major Project of China (Grant
No. ZX06901) and the Natural Science Foundation of China (NSFC) (Grant Nos. 61374045, 61773228).

Conflicts of Interest: The author declares no conflict of interest.



Energies 2017, 10, 2125 13 of 13

References

1. Bagajewicz, M. Design and retrofit of sensor networks in process plants. AIChE J. 1997, 43, 2300–2306.
[CrossRef]

2. Bagajewicz, M. A review of techniques for instrumentation and upgrade in process plants. Can. J. Chem. Eng.
2002, 80, 3–16. [CrossRef]

3. Bagajewicz, M.; Cabrera, E. New MILP formulation for instrumentation network design and upgrade.
AIChE J. 2000, 48, 2271–2282. [CrossRef]

4. Bagajewicz, M.; Fuxman, A.; Uribe, A. Instrumentation network design and upgrade for process monitoring
and fault detection. AIChE J. 2004, 50, 1870–1880. [CrossRef]

5. Bhushan, M.; Narasimhan, S.; Rengaswamy, R. Robust sensor network design for fault diagnosis.
Comput. Chem. Eng. 2008, 32, 1067–1084. [CrossRef]

6. Sen, S.; Narasimhan, S.; Deb, K. Sensor network design of linear processes using genetic algorithms.
Comput. Chem. Eng. 1998, 22, 385–390. [CrossRef]

7. Carballido, J.A.; Ponzoni, I.; Brignole, N.B. CGD-GA: A graph-based genetic algorithm for sensor network
design. Inf. Sci. 2007, 177, 5091–5102. [CrossRef]

8. Li, F.; Upadhyaya, B.R. Design of sensor placement for an integral pressurized water reactor using fault
diagnostic observability and reliability criteria. Nucl. Technol. 2011, 173, 17–25. [CrossRef]

9. Li, F.; Upadhyaya, B.R.; Perillo, S.R.P. Fault diagnosis of helical coil steam generator systems of an integral
pressurized water reactor using optimal sensor selection. IEEE Trans. Nucl. Sci. 2012, 59, 403–410. [CrossRef]

10. Kauffman, S.A. Metabolic stability and epigenesist in randomly constructed genetic nets. J. Theor. Biol. 1969,
22, 437–467. [CrossRef]

11. Cheng, D.; Zhang, L. On semi-tensor product of matrices and its applications. Acta Math. Appl. Sin. 2003, 19,
219–228. [CrossRef]

12. Cheng, D.; Qi, H. Controllability and observability of Boolean control networks. Automatica 2009, 45,
1659–1667. [CrossRef]

13. Cheng, D.; Qi, H. A linear representation of dynamics of Boolean networks. IEEE Trans. Autom. Control 2010,
55, 2251–2258. [CrossRef]

14. Cheng, D.; Qi, H. State-Space Analysis of Boolean networks. IEEE Trans. Neural Netw. 2010, 55, 2251–2258.
15. Zhang, Z.; Dong, Y.; Li, F.; Zhang, Z.; Wang, H.; Huang, X.; Li, H.; Liu, B.; Wu, X.; Wang, H.; et al.

The shandong shidao bay 200 MWe high-temperature-gas-cooled reactor pebble-bed module (HTR-PM)
demonstration power plant: An engineering and technological innovation. Engineering 2016, 2, 112–118.
[CrossRef]

16. Sui, Z.; Sun, J.; Wei, C.; Ma, Y. The engineering simulation system for HTR-PM. Nucl. Eng. Des. 2014, 271,
479–486. [CrossRef]

17. Dong, Z.; Pan, Y.; Song, M.; Huang, X.; Dong, Y.; Zhang, Z. Dynamic modeling and control characteristics of
the two-modular HTR-PM nuclear plant. Sci. Technol. Nucl. Install. 2017, 2017, 6298037. [CrossRef]

18. Dong, Z.; Pan, Y.; Zhang, Z.; Dong, Y.; Huang, X. Model-free adaptive control law for nuclear superheated-
steam supply systems. Energy 2017, 135, 53–67. [CrossRef]

19. Dong, Z.; Song, M.; Huang, X.; Zhang, Z.; Wu, Z. Coordination control of SMR-based NSSS modules
integrated by feedwater distribution. IEEE Trans. Nucl. Sci. 2016, 63, 2682–2690. [CrossRef]

20. Dong, Z.; Song, M.; Huang, X.; Zhang, Z.; Wu, Z. Module coordination control of MHTGR-based multi-
modular nuclear plants. IEEE Trans. Nucl. Sci. 2016, 63, 1889–1900. [CrossRef]

21. Dong, Z.; Pan, Y.; Zhang, Z.; Dong, Y.; Huang, X. Modeling and control of fluid flow networks with
application to a nuclear-solar hybrid plant. Energies 2017, 10, 1912. [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/aic.690430915
http://dx.doi.org/10.1002/cjce.5450800101
http://dx.doi.org/10.1002/aic.690481017
http://dx.doi.org/10.1002/aic.10279
http://dx.doi.org/10.1016/j.compchemeng.2007.06.020
http://dx.doi.org/10.1016/S0098-1354(97)00242-1
http://dx.doi.org/10.1016/j.ins.2007.05.036
http://dx.doi.org/10.13182/NT11-A11480
http://dx.doi.org/10.1109/TNS.2012.2185509
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1007/s10255-003-0097-z
http://dx.doi.org/10.1016/j.automatica.2009.03.006
http://dx.doi.org/10.1109/TAC.2010.2043294
http://dx.doi.org/10.1016/J.ENG.2016.01.020
http://dx.doi.org/10.1016/j.nucengdes.2013.12.019
http://dx.doi.org/10.1155/2017/6298037
http://dx.doi.org/10.1016/j.energy.2017.06.033
http://dx.doi.org/10.1109/TNS.2016.2601342
http://dx.doi.org/10.1109/TNS.2016.2560199
http://dx.doi.org/10.3390/en10111912
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	BN-Based Sensor Selection Method 
	Semi-Tensor Product and Logics 
	BN Model of Fault Propagation and Its Linear Representation 
	Sufficient Conditions of Fault Detectability and Discriminability 

	Application to a High Temperature Gas-Cooled Reactor Nuclear Plant 
	Background 
	Directed Graph for Fault Propagation 
	BN Model of Fault Propagation and Its Linear Representation 
	Verification of Fault Detectability and Discriminability 
	Sensor Selection 
	Numerical Simulation 

	Conclusions 

