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Abstract: This paper deals with the design of sliding mode control and neural network compensation
for a sensorless permanent magnet synchronous motor (PMSM) controlled system that is able to
improve both power consumption and speed response performance. The position sensor of PMSM is
unreliable in harsh environments. Therefore, the sensorless control technique is widely proposed
in industry. A sliding mode observer can estimate the rotor angle and has the robustness to load
disturbance and parameter variations. However, the sliding mode observer is not conducive to
standstill and low speed conditions because the amplitude of the back EMF is almost zero. As a
result, this paper combines an iterative sliding mode observer (ISMO) and neural networks (NNs) as
an angle compensator to improve the above problems. A dsPIC30F6010A-based PMSM sensorless
drive system is implemented to validate the proposed algorithm. The simulation and experimental
results prove its effectiveness.

Keywords: sensorless control; sliding mode observer; permanent magnet synchronous motor;
neural networks

1. Introduction

It is well-known that electric motors are the single biggest consumer of electricity in modern
society and their consumption of industrial and domestic electric motors per year occupy 46.2% of
the global electrical demand [1]. In addition, it is estimated that about 20% to 30% of the total global
electric motor demand may be saved if the more efficient electric motors and drives are designed and
used. The permanent magnet synchronous motor (PMSM) provides some eminent properties, such as
high power density/reliability and easy controllability/maintenance, such that it has been widely used
in servo motors, robotics, and electric vehicles of industry applications. The excellent performance
of PMSM drive systems comes from the information of rotor position that is measured by position
sensors (encoders or resolvers) of the motors. However, the disadvantages of shaft sensors result into
larger machine volume, expense, and noise problems, and limit the applications because of the harsh
environment of high humidity and temperature. As a result, extensive research of sensorless control
strategies has been conducted on overcoming these problems [2,3].

For standstill and low speed conditions, signal injection methods [4–7], which inject the
high-frequency voltage and current signals to detect or estimate the rotor position, are the popular
candidates of sensorless control schemes. Control methods based on carrier signal injection [6]
are proposed for sensorless motor control. An innovative self-sensing control scheme based on
test current instead of voltage injection [7] is used to deal with problems on sensorless control of
PMSM. A two-degree-of-freedom control scheme plays the main role, which needs the information of
model dynamics.
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At medium- and high-speed ranges, the fundamental excitation methods [3,8–10], which are
based on the motor model and use the fundamental signals of voltages and currents for the rotor
position and speed detection, are adopted by most researchers. An online identification method by
affine projection algorithms in the estimated synchronously rotating frame that is able to estimate its
stator resistance and inductances accurately for the model-based sensorless control of interior PMSMs
is proposed in [3]. An extended Kalman filter (EKF) [8] is usually used to an obtain good performance
of sensorless control, however it is complex and difficult to implement. By feeding back stator currents
and voltages, a sixth order nonlinear adaptive controller is designed to address the tracking problem
with unknown constant load torque for the sensorless PMSM system [9]. However, the proposed
control algorithm is just simulated without experimentation. A high-speed sliding-mode observer [9]
for estimating the rotor position and the velocity of PMSM from the back electromotive force (EMF)
is proposed.

Considering the rotor position error during motor starting to lower speeds, this paper proposes
an iterative sliding mode observer (ISMO) [11,12], combined with an artificial neural network (ANN)
to fix the problem. The ISMO will make the sensorless control system robust against disturbance and
parameter variations. Similar to the concept of multi-loop servo control systems, the ISMO internally
estimates the back EMF several times within a speed control cycle to reduce the ripples of the estimated
back EMF, and then externally calculates the position and velocity of the rotor once to obtain accurate
estimations. In order to reduce the chattering effect in the sliding mode behavior, a sigmoid function
replaces a traditional switching function. In addition, because of their good characteristics of having
parallel distributed architecture and the ability to identify nonlinear system dynamics and to learn,
generalize, and adapt to a new environment, ANNs have attracted much attention to more engineering
applications recently [13–16]. Sensorless motor control is one of excellent example.

The rest of the paper is organized as follows. Section 2 consists of PMSM modeling, iterative
sliding mode observer, and compensation for rotor angle estimation by neural networks to form
the servo system design. Section 3 is composed of results of simulation by Matlab/Simulink and
experiments. Finally, Section 4 gives conclusions.

2. Servo System Design

The proposed sensorless servo control system design includes PMSM modeling, iterative sliding
mode observer, and rotor angle that is compensated by neural networks.

2.1. PMSM Modeling

The voltage equation of PMSM by Clarke transformation from the three-phase stationary a-b-c
frame to the two-phase fixed α− β frame is given as [2–6],[

vα

vβ

]
=

[
Rs +

d
dt Ls 0

0 Rs +
d
dt Ls

][
iα

iβ

]
+

[
eα

eβ

]
(1)

where vα, vβ, iα, iβ are α- and β-axis voltages and currents respectively; Rs and Ls are the resistance
and inductance; and the back EMFs are given as:

eα = −λ f ωr sin θ (2)

eβ = λ f ωr cos θ (3)

where λ f is flux linkage by the permanent magnets, ωr is the electric speed and θ is rotor angle.
The actual rotor position is absent in a sensorless application and will be estimated by methods.
The block diagram of the proposed sensorless PMSM control system is shown in Figure 1. We will first
conduct simulation by Matlab/Simulink and experiments to verify the design.
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Figure 1. The block diagram of the proposed sensorless permanent magnet synchronous motor 
(PMSM) control system. 

2.2. Iterative Sliding Mode Observer 

From (1), we have the stator current differential equation, 
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A sliding-mode observer (SMO) has not only better performance of sliding-mode control (SMC), 
like robustness to disturbances and parameter variations [17–29], but also provides estimation 
information of rotor position and speed for the sensorless control system. The dynamic equations of 
SMO are given based on (4), 
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where ""∧  stands for estimation, k is observer gain, and the sigmoid function: 
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Figure 1. The block diagram of the proposed sensorless permanent magnet synchronous motor (PMSM)
control system.

2.2. Iterative Sliding Mode Observer

From (1), we have the stator current differential equation,

d
dt iα = − Rs

Ls
iα − 1

Ls
eα +

1
Ls

να
d
dt iβ = − Rs

Ls
iβ − 1

Ls
eβ +

1
Ls

νβ
(4)

A sliding-mode observer (SMO) has not only better performance of sliding-mode control (SMC),
like robustness to disturbances and parameter variations [17–29], but also provides estimation
information of rotor position and speed for the sensorless control system. The dynamic equations of
SMO are given based on (4),

d
dt îα = − Rs

Ls
îα +

1
Ls

vα − 1
Ls

k · H
(
îα − iα

)
d
dt îβ = − Rs

Ls
îβ +

1
Ls

vβ − 1
Ls

k · H
(
îβ − iβ

) (5)

where “∧ ” stands for estimation, k is observer gain, and the sigmoid function:

[
H
(
îα − iα

)
H
(
îβ − iβ

) ] =


(

2
1+exp(−a(îα−iα))

)
− 1(

2

1+exp
(−a(îβ−iβ))

)
− 1

 (6)

is used to improve the chattering phenomenon in the sliding mode operation and a is a positive
constant, shown in Figure 2 [11,12].
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Figure 2. The block diagram of iterative sliding mode observer. 
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The sliding vector for the system is:

Sn = [sα sβ]
T = [îα − iα îβ − iβ]

T
= [iα iβ]

T
(7)

and the defined Lyapunov function is:

V =
1
2

ST
n Sn =

1
2
(sα

2 + sβ
2) (8)

By Lyapunov’s stability theorem, k will be designed to satisfy the inequality,
.

V < 0, when the
system trajectory approaches to the sliding surface, Sn = 0. The error equations of estimated
currents are: .
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.
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1
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Rearranging (10), we have:

ST
n

.
Sn = −Rs

Ls
(i2α + i2β) +

1
Ls

[(eα − k)iα H(iα) + (eβ − k)iβ H(iβ)] < 0

The product of iα H(iα) (and iβ H(iβ)) is always positive. As a result, if

k ≥ max(
∣∣eα

∣∣, ∣∣eβ

∣∣) (11)

the inequality of (10) will be satisfied. The sliding mode may then exist on the sliding surface as follows:[ .
sα

.
sβ

] T
=
[
sα sβ

] T ≈ [0 0] (12)

With (11) to satisfy (10), the following conditions are obtained:

êα = k · H(iα) = −λ f ω̂r sin θ̂

êβ = k · H(iβ) = λ f ω̂r cos θ̂
(13)

As a result, and the estimated rotor angle and motor speed are given as:

θ̂ = − tan−1(êα/êβ) (14)
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ω̂ =
d
dt

θ̂ (15)

The designed SMO (5) will internally estimate the back EMF (13) several times within a speed
control cycle to reduce the ripples of the estimated back EMF, and then externally calculate the position
and the velocity of the rotor (14) and (15) once to obtain accurate estimations.

2.3. Neural Networks Compensation

As the problem mentioned previously, a neural network (NN) with error back propagation
structure, as shown in Figure 3, is adopted to compensate the rotor position estimation error, which
consists of input layer with two inputs, hidden layer with two neurons, and output layer. In Figure 3,

θ̂, and
.
θ̂ are input variables, wn

ij is the weight between the jth neuron of the nth layer and the ith neuron
of the (n−1)th layer, bn

j is the bias of the jth neuron of the nth layer, vn
j is sum of the product sum of

outputs and weights and biases of the (n−1)th layer, yn
j is output value of jth neuron of the nth layer,

yk is sum of the NN, f n is activation function of the nth layer, and dk is the reference rotor angle from
the speed command, respectively. The relationships are described in the following two equations:
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The error function is defined as:

e(k) =
1
2 ∑

k=1
(dk − yk)

2 (18)

and the reference angle is given as:

dk = θm(k + 1) =
k

∑
i=1

Tsω∗(i) + θ0 (19)

where ω∗(k) is the reference speed, Ts is the sampling period, and θ0 is the initial rotor angle.
The gradient method is adopted to search the minimum value of (18) by the following equations:

∆wn
ij(k) = −u

∂e(k)
∂wn

ij
= −u

∂e(k)
∂vn

j

∂vn
j

∂wn
ij

(20)
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∆bn
j (k) = −u

∂e(k)
∂bn

j
= −u

∂e(k)
∂vn

j

∂vn
j

∂bn
j

(21)

wn
ij(k + 1) = wn

ij(k) + ∆wn
ij(k) (22)

bn
j (k + 1) = bn

j (k) + ∆bn
j (k) (23)

where u is the learning rate.

3. Simulation and Experimental Results

The simulation system with the parameters of PMSM 8CB75 listed in Table 1 is programmed by
Matlab/Simulink. The activation functions with hyperbolic tangent sigmoid type in the hidden layers
and linear transfer function in the output layer of the neural network are used. The neural network is
trained by 100 rpm speed response and an encoder attached on the motor shaft. The values of these
weights and biases are depicted as,{

w1
11, w1

12, w1
21, w1

22, w2
11, w2

12, w2
21, w2

22
}

= {0.840252, 0.690252, 0.0799998, 0.200000, 0.042868, 0.19287, 0.040042, −0.029958}{
b1

1, b1
2, b2

1, b2
2
}
= {−1.049934, −1.054758, 0.033902, 0.033902}

(24)

The final absolute error of 1× 10−3 is reached after 125 training epochs with learning rate of
0.5 for the neural network. The popular proportional-integral (PI) control is used in the speed and
current control loops,

Gx(s) = Kxp(1 +
Kxi
s
), (25)

where the index x is s for speed or i for current loop. Based on the rule of thumb [30], the gains of
speed control loop are Ksp = 0.03 and Ksi = 3, and those for current control loop are Kip = 150 and
Kii = 200, respectively. These parameters are used in the simulations and experiments.

Table 1. Parameters of PMSM Sinano 8CB75.

Parameters Unit Value

P W 750
V V 149.4
T N·m 2.931
I A 3.4
N Rpm 3000
K N·m/A 0.776
J Kg·cm2 2.449

Rs Ω 3.27
Ls mH 10.2

On simulation results, Figure 4a,b display the encoder output (θ) and rotor angle estimation (θ̂) by
ISMO, and the estimation error at the motor speed of 100 rpm, respectively. It is easy to find that the
estimation lags encoder signal by almost 180 degrees. Similarly, Figure 5a,b display the encoder output
and rotor angle estimation (θ̂′) by proposed ISMO and neural network (NN-ISMO), and the estimation
error at the motor speed of 100 rpm, respectively. The maximum error is 0.007 radians and there is
almost no lagging. The step speed responses of 100 rpm by ISMO and NN-ISMO are shown in Figure 6.
Even with small overshoot and ringing, the response by NN-ISMO depicts the better performance.
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The experimental setup is shown in Figures 7 and 8. The setup in Figure 7 consists of the
microcontroller dsPIC30F6010A and its programmer ICD3, PMSM, drive, current sensing circuit,
and encoder signals for comparison. The dynamometer is shown in Figure 8. Figures 9–12 display
the results corresponding to simulations at speeds of 100 and 500 rpm and show the similar results.
Figure 13 depicts the speed step responses of 500 rpm without loading by encoder (upper), ISMO,
and NN-ISMO (bottom), respectively. With load of 2 Nm, slightly worse step responses of 500 rpm by
encoder (upper), ISMO, and NN-ISMO (bottom), respectively, in Figure 14 are compared with those
of Figure 13. Figure 15 shows the 0-100-300-500-300-100 step responses by encoder (upper), ISMO,
and NN-ISMO (bottom), respectively. From the figures, it is easily proven that the proposed control
algorithm show its validation and effectiveness.
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results corresponding to simulations at speeds of 100 and 500 rpm and show the similar results. 
Figure 13 depicts the speed step responses of 500 rpm without loading by encoder (upper), ISMO, 
and NN-ISMO (bottom), respectively. With load of 2 Nm, slightly worse step responses of 500 rpm 
by encoder (upper), ISMO, and NN-ISMO (bottom), respectively, in Figure 14 are compared with 
those of Figure 13. Figure 15 shows the 0-100-300-500-300-100 step responses by encoder (upper), 
ISMO, and NN-ISMO (bottom), respectively. From the figures, it is easily proven that the proposed 
control algorithm show its validation and effectiveness. 
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Figure 13. The step speed responses of 500 rpm without loading by (a) encoder, (b) ISMO, and (c) 
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Figure 15. The speed step responses of 0-100-300-500-300-100 rpm with loading of 2 Nm by (a) encoder, 
(b) ISMO, and (c) NN-ISMO, respectively. 

4. Conclusions 

This paper proposes an approach based on ISMO to first estimate the rotor position and neural 
networks to compensate the estimated position error due to small amplitudes of estimated back EMF 
for a sensorless PMSM control system that is able to improve both power consumption and speed 
response performance. The suggested ISMO adopts the concept of a multi-loop servo control system, 
and is applicable to many fields. The results of simulations and experiments show that the proposed 
control system is capable of estimating rotor angle to synchronize the original sensor outputs within 
acceptable limits and to improve motor speed responses for many applications.  
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4. Conclusions

This paper proposes an approach based on ISMO to first estimate the rotor position and neural
networks to compensate the estimated position error due to small amplitudes of estimated back EMF
for a sensorless PMSM control system that is able to improve both power consumption and speed
response performance. The suggested ISMO adopts the concept of a multi-loop servo control system,
and is applicable to many fields. The results of simulations and experiments show that the proposed
control system is capable of estimating rotor angle to synchronize the original sensor outputs within
acceptable limits and to improve motor speed responses for many applications.

Acknowledgments: The authors would like to thank Ministry of Science and Technology, Taiwan under contract
Nos. of MOST 105-2221-E-218-017- and MOST 105-2218-E-218-002- for financial support.

Author Contributions: Ming-Shyan Wang conceived and designed the experiments; Tse-Ming Tsai performed the
experiments; Ming-Shyan Wang and Tse-Ming Tsai analyzed the data; Ming-Shyan Wang contributed reagents,
materials, and analytical tools; Ming-Shyan Wang wrote the paper.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of
this article.

References

1. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. Available online: http://www.iea.
org/publications/freepublications/publication/ee_for_electricsystems.pdf (accessed on 15 February 2017).

2. Wu, R.; Slemon, G. A permanent magnet motor drive without a shaft sensor. IEEE Trans. Ind. Appl. 1991, 27,
1005–1011. [CrossRef]

3. Rafaq, M.S.; Mwasilu, F.; Kim, J.; Choi, H.H.; Jung, J.-W. Online Parameter Identification for Model-Based
Sensorless Control of Interior Permanent Magnet Synchronous Machine. IEEE Trans. Power Electron. 2017,
32, 4631–4643. [CrossRef]

4. Piippo, A.; Hinkkanen, M.; Luomi, J. Sensorless control of PMSM drives using a combination of voltage model
and HF signal injection. In Proceedings of the Conference Record of the 2004 IEEE Industry Applications
Conference, 39th IAS Annual Meeting, Seattle, WA, USA, 3–7 October 2004; pp. 964–970.

5. Liu, J.M.; Zhu, Z.Q. Novel sensorless control strategy with injection of high frequency pulsating carrier
signal into stationary reference frame. IEEE Trans. Ind. Appl. 2013, 50, 2574–2583. [CrossRef]

6. Zhu, Z.Q.; Gong, L.M. Investigation of effectiveness of sensorless operation in carrier-signal-injection-based
sensorless-control methods. IEEE Trans. Ind. Electron. 2011, 58, 3431–3439. [CrossRef]

7. Seilmeier, M.; Ebersberger, S.; Piepenbreier, B. HF Test Current Injection-Based Self-Sensing Control of PMSM
for Low- and Zero-Speed Range Using Two-Degree-of-Freedom Current Control. IEEE Trans. Ind. Appl.
2015, 51, 2268–2278. [CrossRef]

http://www.iea.org/publications/freepublications/publication/ee_for_electricsystems.pdf
http://www.iea.org/publications/freepublications/publication/ee_for_electricsystems.pdf
http://dx.doi.org/10.1109/28.90359
http://dx.doi.org/10.1109/TPEL.2016.2598731
http://dx.doi.org/10.1109/TIA.2013.2293000
http://dx.doi.org/10.1109/TIE.2010.2081960
http://dx.doi.org/10.1109/TIA.2014.2369828


Energies 2017, 10, 1780 14 of 15

8. Moon, C.; Kwon, Y.A. Sensorless speed control of permanent magnet synchronous motor by unscented
Kalman filter using various scaling parameters. J. Electr. Eng. Technol. 2016, 11, 347–352. [CrossRef]

9. Tomei, P.; Verrelli, C.M. Observer-based speed tracking control for sensorless permanent magnet synchronous
motors with unknown load torque. IEEE Trans. Autom. Control 2011, 56, 1484–1488. [CrossRef]

10. Kim, H.; Son, J.; Lee, J. A high-speed sliding-mode observer for the sensorless speed control of a PMSM.
IEEE Trans. Ind. Electron. 2011, 58, 4069–4077.

11. Lee, H.; Lee, J. Design of Iterative Sliding Mode Observer for Sensorless PMSM Control. IEEE Trans. Control
Syst. Technol. 2013, 21, 1394–1399. [CrossRef]

12. Qiao, Z.; Shi, T.; Wang, Y.; Yan, Y.; Xia, C.; He, X. New Sliding-Mode Observer for Position Sensorless Control
of Permanent-Magnet Synchronous Motor. IEEE Trans. Ind. Electron. 2013, 60, 710–719. [CrossRef]

13. Chen, S.Y.; Liu, T.S. Intelligent tracking control of a PMLSM using self-evolving probabilistic fuzzy neural
network. IET Electr. Power Appl. 2017, 11, 1043–1054. [CrossRef]

14. Lin, F.J.; Sun, I.F.; Yang, K.J.; Chang, J.K. Recurrent Fuzzy Neural Cerebellar Model Articulation Network
Fault-Tolerant Control of Six-Phase Permanent Magnet Synchronous Motor Position Servo Drive. IEEE Trans.
Fuzzy Syst. 2016, 24, 153–167. [CrossRef]

15. Sun, X.; Chen, L.; Jiang, H.; Yang, Z.; Chen, J.; Zhang, W. High-Performance Control for a Bearingless
Permanent-Magnet Synchronous Motor Using Neural Network Inverse Scheme Plus Internal Model
Controllers. IEEE Trans. Ind. Electron. 2016, 63, 3479–3488. [CrossRef]

16. Liu, S.; Guo, X.; Zhang, L. Robust Adaptive Backstepping Sliding Mode Control for Six-Phase Permanent
Magnet Synchronous Motor Using Recurrent Wavelet Fuzzy Neural Network. IEEE Access. 2017, 5,
14502–14515.

17. Wang, M.S.; Syamsiana, I.N.; Lin, F.C. Sensorless Speed Control of Permanent Magnet Synchronous Motors
by Neural Network Algorithm. Math. Probl. Eng. 2014. [CrossRef]

18. Schimmack, M.; Feistauer, E.E.; Amancio-Filhoand, S.T.; Mercorelli, P. Hysteresis Analysis and Control of a
Metal-Polymer Hybrid Soft Actuator. Energies 2017, 10, 508. [CrossRef]

19. Ginoya, D.; Shendge, P.D.; Phadke, S.B. Sliding Mode Control for Mismatched Uncertain Systems Using an
Extended Disturbance Observer. IEEE Trans. Ind. Electron. 2014, 61, 1983–1992. [CrossRef]

20. Chaudhari, P.; Sharma, V.; Shendge, P.D.; Phadke, S.B. Disturbance observer based sliding mode control
for anti-lock braking system. In Proceedings of the IEEE International Conference on Power Electronics,
Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–5.

21. Haus, B.; Mercorelli, P.; Werner, N. A Robust Adaptive Self-tuning Sliding Mode Control for a Hybrid
Actuator in Camless Internal Combustion Engines. In Advances and Applications in Sliding Mode Control
Systems; Azar, A.T., Zhu, Q., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 107–136.

22. Veluvolu, K.C.; Soh, Y.C. High-Gain Observers with Sliding Mode for State and Unknown Input Estimations.
IEEE Trans. Ind. Electron. 2009, 56, 3386–3393. [CrossRef]

23. Mercorelli, P. An Anti-Saturating Adaptive Pre-action and a Slide Surface to Achieve Soft Landing Control
for Electromagnetic Actuators. IEEE/ASME Trans. Mechatron. 2012, 17, 76–85. [CrossRef]

24. Mercorelli, P. A Two-Stage Sliding-Mode High-Gain Observer to Reduce Uncertainties and Disturbances
Effects for Sensorless Control in Automotive Applications. IEEE Trans. Ind. Electron. 2015, 62, 5929–5940.
[CrossRef]

25. Su, Y.; Zheng, C.; Mercorelli, P. Global Finite-Time Stabilization of Planar Linear Systems with Actuator
Saturation. IEEE Trans. Circuits Syst. II Express Briefs 2017, 8, 947–951. [CrossRef]

26. Antonio, L.M.; Hugo, V.B.; Josep, M.B.-M.; Javier, M.-A.; Luis, M.-S. Sliding-mode-control-based boost
converter for high-voltage-low-power applications. IEEE Trans. Ind. Electron. 2015, 62, 229–237.

27. Biricik, S.; Komurcugil, H. Optimized sliding mode control to maximize existence region for single-phase
dynamic voltage restorers. IEEE Trans. Ind. Inform. 2016, 12, 1486–1497. [CrossRef]

28. Pisano, A.; Tanelli, M.; Ferrara, A. Switched/time-based adaptation for second-order sliding mode control.
Automatica 2016, 64, 126–132. [CrossRef]

http://dx.doi.org/10.5370/JEET.2016.11.2.347
http://dx.doi.org/10.1109/TAC.2011.2121330
http://dx.doi.org/10.1109/TCST.2012.2199493
http://dx.doi.org/10.1109/TIE.2012.2206359
http://dx.doi.org/10.1049/iet-epa.2016.0819
http://dx.doi.org/10.1109/TFUZZ.2015.2446535
http://dx.doi.org/10.1109/TIE.2016.2530040
http://dx.doi.org/10.1155/2014/321892
http://dx.doi.org/10.3390/en10040508
http://dx.doi.org/10.1109/TIE.2013.2271597
http://dx.doi.org/10.1109/TIE.2009.2023636
http://dx.doi.org/10.1109/TMECH.2010.2089467
http://dx.doi.org/10.1109/TIE.2015.2450725
http://dx.doi.org/10.1109/TCSII.2016.2626199
http://dx.doi.org/10.1109/TII.2016.2587769
http://dx.doi.org/10.1016/j.automatica.2015.11.006


Energies 2017, 10, 1780 15 of 15

29. Precup, R.E.; Radac, M.B.; Roman, R.C.; Petriu, E.M. Model-free sliding mode control of nonlinear systems:
Algorithms and experiments. Inf. Sci. 2017, 381, 176–192. [CrossRef]

30. Ellis, G. Control System Design Guide, 2nd ed.; Academic Press: San Diego, CA, USA, 2000; pp. 105–106,
ISBN 2-12-237465-7.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ins.2016.11.026
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Servo System Design 
	PMSM Modeling 
	Iterative Sliding Mode Observer 
	Neural Networks Compensation 

	Simulation and Experimental Results 
	Conclusions 

