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Abstract: In this paper we formulate the Risk Management Control problem in the interest
rate area as a constrained stochastic portfolio optimization problem. The utility that we use
can be any continuous function and based on the viscosity theory, the unique solution of
the problem is guaranteed. The numerical approximation scheme is presented and applied
using a single factor interest rate model. It is shown how the whole methodology works in
practice, with the implementation of the algorithm for a specific interest rate portfolio. The
recent financial crisis showed that risk management of derivatives portfolios especially in
the interest rate market is crucial for the stability of the financial system. Modern Value
at Risk (VAR) and Conditional Value at Risk (CVAR) techniques, although very useful
and easy to understand, fail to grasp the need for on-line controlling and monitoring of
derivatives portfolio. The portfolios should be designed in a way that risk and return
be quantified and controlled in every possible state of the world. We hope that this
methodology contributes towards this direction.
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1. Introduction

Risk Management Control (RMC) is a valuable function of modern risk management. It deals with
the systematic monitoring and control of the various risks associated with a financial institution. Market
risk, credit risk and operational risk are the main risk categories where a financial institution is exposed
to and risk management should control these risks in a way consistent not only to the return objectives
of the institution but also to constraints imposed by the regulator. One of the most sensitive areas,
due to high volatility and leverage, is the risk management of derivative portfolios. Derivatives risk
management is very intricate and differs according to the use of the derivatives involved [1].

Various examples of failure to assess and control the risks involved in derivative dealing [2–4]
indicate that “on-line” measurement and control of these risks is not only important for profitability
reasons, but it can sometimes avert situations that potentially lead to the demise of the whole institution
itself. The recent financial crisis showed that well-entrenched beliefs like the belief that credit rating
reflects accurately the risk of an investment or the belief that derivatives only transfer risk but they do
not create it, are under review. Well accepted pricing models are revised and the role of correlation
and tail risk is crucial in determining the potential risks that derivative operations might expose any
financial institution.It became apparent that irrespective of what motivates a financial institution to enter
into derivative deals [5],it must be able at any time to measure the overall risk it bears and to compare
it with the available resources it has through various key indicators (capital adequacy ratios, liquidity
ratios, etc.). RMC is particularly important in the area of Fixed Income Markets where every trading
instrument is a derivative product (even the plain vanilla bonds are interest rate derivative securities
which bear also a credit risk element, that of the isssuer).

In this paper we confine ourselves to portfolios of interest rate derivatives although the method
developed is generally enough so that other investment classes could be included as well. We define
the Fixed Income Market (FIM) as that market in which the basic underlying variable are interest
rates. So by “fixed income trading” we do not only mean trading in bonds, swaps, futures, FRAS,
caps, floors and swaptions but also trading in more sophisticated products such as constant maturity
swaps, overnight indexed swaps, etc. The financial institution should have the appropriate technological
means to consolidate and control on-line the various interest rate risks from the various trading desks
and from places where primary or residual risks exist (for instance loan desks, securitisation desks,
etc). Trading is performed according to the financial institution’s clear objectives (expressed through
its utility function) and many contradicting activities (such as hedging on a single instrument basis
using different trading desks) are cancelled out.

Methods for Risk Management Control that deal only with first order sensitivities like the Present
Value Basis Point method (PVBP) [6] or bucket-hedging method [7] are inadequate for the highly
non-linear structure of derivative products. Modern sophisticated approaches like those of VAR and
CVAR [8,9] although provide aggregate measures for derivatives risk, have difficulties in capturing the
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dynamic nature of a derivatives portfolio and the need for on-line monitoring and control.The need
for on-line risk monintoring under restricted information is addressed in [10]. Moreover, substantial
work has been made in the area of portfolio maximization, either under stochastic interest rate with no
constraints imposed on portfolio value [11] or with constraints imposed as expressed on value at risk
but with no explicit reference to the nature of the assets in the portfolio [12–14].

We adopt the usual control methodology [15] and we envisage the FIM portfolio as a control system
that is monitored and controlled by risk management. Taking as given the market situation, i.e., general
economic conditions, supply and demand factors for various derivative products, etc., the input to this
control system is twofold. On one hand, we must specify the underlying interest rate model that
is used to price the various deals. On the other hand, we must specify the financial institution’s
objectives (usually expressed as a real function, known as the utility, over the whole FIM portfolio)
and the risk limits imposed by risk management. These risk limits are in turn functions of the general
position of the financial institution in the market place, of the its attitude towards risk and of various
regulatory constraints. The outputs of this system are the various positions (controls) in each derivative
so that the it meets its objectives. Risk is quantified using the sensitivity approach, i.e., through the
various portfolio parameter sensitivities (delta, gamma, vega, theta, etc.).

RMC problem can be embedded into the larger problem of maximizing the expected utility of
terminal portfolio wealth. Extensions for inter temporal consumption to cover the insurance market
are not difficult to include. Additional constraints such as short-sale, frictions, etc. may be imposed as
well. Using viscosity solutions we are in a position to guarantee solutions and to develop approximation
schemes in situations of a more general nature than those tackled by martingale methods alone.Viscosity
methods have become an essential tool in the control problems that arise in Finance because the value
functions of these problems do not enjoy the smoothness properties usually found in the stochastic
control literature. This happens for example in the area of transaction costs [16] or when in the
usual investment/consumption model, non-continuous cumulative consumption (even of singular type)
is allowed [17]. Numerical schemes for tackling the investment/consumption model and viscosity
methods for proving convergence of these schemes can be found, among others, in [18]. With these
methods, the utility function need not be of the restrictive form usually found in the literature, and it
can be any continuous function.

We formulate the RMC task in the usual way. However, in our case the control space is stochastic.
That is to say, decisions are made on the basis of the current time and state of the world. Furthermore,
at each time and at each state of the world, the portfolio positions must satisfy the various constraints
imposed. These constraints can be constant and/or time and state dependent. In this paper we confine
ourselves only to the continuous case, i.e., when the underlying dynamics of the interest rate and of
the derivatives are continuous but discontinuities can easily be accommodated as long the markovian
structure is maintained.

This paper is organised as follows: In Section 2 we present some mathematical
preliminaries. In Section 3 the RMC problem is formulated with the associated control sets, the
Hamilton-Jacobi-Bellman equation is presented, and the general numerical approximation scheme is
developed. In Section 4 the numerical approximation scheme is specialised to the case of a one factor
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interest rate model. Finally the numerical results for a specific interest rate portfolio are presented.
Conclusions may be found in Section 5.

2. Preliminaries

We assume that the horizon over which we plan to manage the fixed-income portfolio is T > 0. In
Fixed Income Markets, the basic underlying variable is the interest rate. A benefit of the technique is
that it is general and can be applied as long as the dynamics of the interest rate maintain a Markovian
structure. A detailed treatment of these type of models exists in [19]. The yield curve is an input to our
method and we do not care from where it is derived. Our only concern is that we have some means by
which to parametrise the yield curve. For example, we could assume that the market is spanned by a
specific number of zero coupon bonds which last at least until T .
We denote the short rate by r(t),and the cash account by D(t),where D(t) = exp(

∫ t
0
r(s)ds). We

assume that the fixed income portfolio consists of N interest rate derivative securities. The vector of
the derivatives is denoted by

F (t,R(t)) = [F1(t,R(t)), F2(t,R(t), · · · , FN(t,R(t))]>

Derivative securities Fi(t,R(t), i = 1 . . . N may represent bonds (with at least maturity T ), or any
other contingent claim that depends on R(t) (such as bonds, swaps, swaoptions, caps, floors, bond
indices, futures on the rate,constant maturity swaps, etc.). Fi are assumed to be C1,2 and bounded
(C1,2 means continuously differentiable in the first argument and twice continuously differentiable in
the second argument).The presence of R(t) does not indicate any specific functional relation. It merely
indicates the interest rate history and all the available market information up to time t. The payoff
vector per unit of time and the terminal pay-off vector are denoted by f(t) and g(t) respectively. We
assume that the dynamics of the vector F follow the diffusion:

dF (t,R(t)) = ∆F (t)[M(t, F (t),R(t))dt+ Σ(t, F (t),R(t))dw(t)], (1)

where the drift and the variance term:

M(t) =


M1(t, F (t),R(t))

...
MN (t, F (t),R(t))

 ,Σ(t) =


Σ11(t, F (t),R(t)) · · · Σ1n(t, F (t),R(t))

...
...

...
ΣN1(t, F (t),R(t)) · · · ΣNn(t, F (t),R(t))


are continuous functions belonging to RN and RN×n respectively and the Brownian motion w is a
n-dimensional Brownian motion which generates the augmented right continuous filtration Ft, ∀t ∈
[0, T ] in the complete probability space (Ω,F ,P). The N ×N diagonal matrix ∆F (t) is defined to be:
∆F (t) = diag(F1(t,R(t)), · · · , FN(t,R(t))).

We note that when we consider single factor models such as the [20] model, [21,22] model or a
one-dimensional Markovian version of the Heath-Jarrow-Morton model [23] in which the entire yield
curve is dictated by the short rate r(t), then n = 1. The number of independent Brownian motions
that govern the evolution of the R(t) determine the dimensionality of w(t). We keep the exposition
abstract, in order to accommodate all possible scenarios.
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We assume that the drift and the variance satisfy the appropriate boundedness and Lipschitz
conditions [24], Theorem 14.6. so that the Stochastic Differential Equations (S.D.E.) (1) has a unique
strong solution for every initial condition F (0), where F (0) is assumed to be an RN -valued non-random
vector. We define as a portfolio process any RN -valued process π(t) = (π1(t), · · · , πN(t))>, t ∈ [0, T ]

which is progressively measurable with respect to Ft such that
∫ T

0
‖π(t)‖2 < ∞, almost surely. The

components of the vector π(t) express the portfolio positions in each of the N derivatives, in units of
money. Negative components indicate sales. The actual positions (long or short) in the derivatives are
denoted by the (progressively measurable) process θ(t) = (θ1(t), · · · , θN(t))>. Since the values of the
derivatives are assumed to be always positive, we have the relation θ(t) = ∆−1

F (t)π(t).
The value process of the portfolio for an initial investment v is defined to be the process given by the
strong solution of the linear stochastic differential equation

dV (v,θ)(t) = θ>(t)dF (t) +

{
(V (v,θ)(t)− θ>(t)F (t))

D(t)

}
dD(t) + θ>(t)g(t)dt

or in terms of the portfolio process:

dV (v,π)(t) =
[
π>(t)[M(t, F (t),R(t)) + ∆−1

F (t)g(t)− r(t)1N ] + V (v,π)(t)r(t)
]
dt+

π>(t)Σ(t, F (t),R(t))dw(t).
(2)

The initial condition of the above S.D.E. is V (v,θ)(0) = V (v,π)(0) = v ≥ 0. The value process
consists of positions in the securities and in the “locally riskless” bond D(t). From the above S.D.E. we
deduce that the trading strategies (or equivalently the portfolio positions) are self-financing. Throughout
this paper we impose the condition that V (v,π)(t) ≥ 0, ∀t ∈ [0, T ], in order arbitrage be ruled out. The
set of all strategies that satisfies both the above initial condition and the non-negativity of the portfolio
value, almost surely, is called admissible for the portfolio F and is denoted by A(T, v).Throughout
this paper we use the portfolio process concept or the equivalent trading positions concept according to
our needs.

3. The Risk Management Control Problem

RMC problem is formulated within the stochastic control framework. We discover that the
advantages of this approach are manifold and that the technique affords us with great flexibility and
power. We now define the state space and the state space dynamics. In order to maintain the Markovian
structure, we define the state dynamics of the problem as the RN+1 process:

dx(t) = f(t, x(t), π(t))dt+ σ(t, x(t), π(t))dw(t)

for t ∈ [0, T ], where:

f(t, x(t), π) =


π>(t)[M(t, F (t),R(t)) + ∆−1

F (t)g(t)− r(t)1N ] + V (v,π)(t)r(t)

F1(t)M1(t, F (t),R(t))
...

FN(t)MN(t, F (t),R(t))


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σ(t, x(t), π) =


π>(t)Σ(t, F (t),R(t))

F1(t)Σ11(t, F (t),R(t)) · · · F1(t)Σ1n(t, F (t),R(t))
...

...
...

FN (t)ΣN1(t, F (t),R(t)) · · · FN (t)ΣNn(t, F (t),R(t))


The drift is an RN+1 -valued vector and the variance is an R(N+1)×n matrix. The state space is

Q = [0, T )× O, where O = (0, b0)× (0, b1)×, · · · ,×(0, bN), where the bi, i = 0, · · ·N are chosen to
be suitably large numbers in computer applications. We stop the process as soon as the portfolio value
reaches zero (since the interest rate derivatives are always positive). We have Q = [0, T ] × O and the
lateral boundary is ∂∗Q = ([0, T ]× ∂O)

⋃
({T} ×O).

3.1. The Control Sets

We denote the family of control sets concisely by U and the control set at a particular time t and
state x by U(t, x). So U = {U(t, x), (t, x) ∈ Q}. Hence, we do not have one control set but a class
of control sets. Formally, we define the set-valued map with compact, convex, non-empty images.
U : Q  K, where K is a compact convex subset of RN . Our control sets are the images of
the set-valued map U . By the measurable selection theorem [25] (p. 308). there is a measurable
selection, i.e., there is a measurable map π : Q → U such that π(t, x) ∈ U(t, x), a.s.. We confine
ourselves to these types of controls. We impose that the sets U(t, x) have a particular structure. They
describe various constraints on the portfolio positions imposed by the risk (or senior) management
in order that the portfolio sensitivities and the portfolio appreciation rates be within tolerance bands.
Additionally, various short sale and friction constraints can be accommodated. The sets U(t, x) have the
following form:

U(F, t) =


θ(t) ∈ RN ,

|∆(F,B, θ)(t)| ≤ fδ(t)

|Γ(F,B, θ)(t)| ≤ fγ(t)

Θ(F,B, θ)(t) ≥ fθ(t)

A(F, r, θ)(t) ≥ fA(t)

G(t, F (t), Z(t), θ(t)) = 0

L(t, F (t), Z(t), θ(t)) ≤ 0


(3)

where ∆(F,B, θ), Γ(F,B, θ), Θ(F,B, θ) are the portfolio delta, portfolio gamma and portfolio theta
respectively, A(F, r, θ) is the portfolio appreciation rate and G(t, F (t), Z(t), θ(t)), L(t, F (t), Z(t), θ(t))

represent various market constraints. Z(t) represents the Arrow-Debreu price process. The sensitivities
of the derivatives are calculated with respect to bond price rather than with respect to the underlying
short rate. This is more intuitively appealing since a bond is a traded instrument. Also fδ(t), fγ(t),
fθ(t), fA(t) are continuous functions that represent the various trading limits imposed by the risk
management. Other constraints that represent restrictions associated with capital adequacy ratios can
be added as well. As a result, the overall performance of the trading books can be monitored “on-line”.
It should be apparent that we have complete flexibility to impose “on-line” constraints provided that the
U(t, x) are non-empty. We confine ourselves to the case of Markov controllers since the structure of
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our problem is Markovian. We denote by A(t, x) the set of feedback (Markov) controllers in the time
interval [t, T ] with initial condition x(t) = x.

3.2. Problem Formulation

For the present, we assume merely that the utility of the terminal wealth is the function U ′, which
is a real continuous function from [0, b0] that satisfies the polynomial growth condition |U ′(x)| ≤
C(1 + ‖x‖k), where C is a constant and k is a positive integer. The rather restrictive assumptions
frequently encountered in the finance literature (such as monotonicity or concavity) can be relaxed.
This is important since the overall objective function has to reflect all the various relevant factors (profit
maximization,capital preservation, regulatory demands, etc.).
We define the stopping time τ = T ∧ inf{t ∈ [0, T ) : (t, x(t)) /∈ Q}. The criterion to be maximised is
the following:

J ′(t, x(t); π) = Et,x[U
′(x(τ))] = Et,x[U

′(V (v,π)(τ))]

where the Et,x denotes the conditional expectation given that the time is t and the state is x(t) =

x ∈ O. The maximization has to be performed over all “reference probability systems” i.e., over all
4-tuples ρ = (Ω,F ,P , w), where each 4-tuple represents a complete probability space, an increasing
right continuous filtration, a probability measure, and a Brownian motion adapted to that filtration.
Let us denote by At,ρ the set of all K- valued admissible controls with respect to that reference
probability system. We proceed by initially considering the supremum V ′ρ(t, x) = supπ∈At,ρ J

′(t, x; π)

and subsequently by considering the supremum of this over all the reference probability systems
ρ : V ′PM(t, x) = supρ V

′
ρ(t, x). Concisely we have the following stochastic control problem:

V ′(t, x) = sup
ρ

sup
π∈At,ρ

J ′(t, x; π).

Because of the asymmetry in the solutions in the case of viscosity solutions [26], we convert the above
problem into a minimisation one. In the case of classical solutions, the two solutions coincide. So
we define:

V (t, x) = −V ′(t, x)

J(t, x) = −J ′(t, x)

U(·) = −U ′(·).

We have the following minimisation problem

V (t, x) = inf
ρ

inf
π∈At,ρ

J(t, x; π).

The assumptions that we make ensure that the value function is the same for all the reference probability
systems ρ. (This is intuitively clear since the Hamilton-Jacobi-Bellman equation does not relate
specifically to any reference probability system). So we assume that V (t, x) = Vρ(t, x) = VPM(t, x).
We shall give conditions to ensure that the above stochastic control problem has a solution (classical or
in some generalised sense). The only assumption that we are going to make is that the value function
V (t, x) be continuous.
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We set a(t, x, π) = σ(t, x, π)σ(t, x, π)>. For (t, x) ∈ Q0, for any p ∈ RN+1 and for any (N + 1) ×
(N + 1) symmetric matrix A, we define the usual Hamiltonian operator H

H(t, x, p, A) = sup
π(t,x)∈U(t,x)

[
−f(t, x, π)>p− 1

2
tr[a(t, x, π)>A]

]
where ∇ is the gradient operator. Since U(t, x) is compact, supremum is always be attainable.
If we proceed formally, we take the Hamilton Jacobi Bellman equation

−∂V
∂t

+H(t, x,∇xV,∇2
xV ) = 0 (t, x) ∈ Q (4)

V (t, x) = U(x) (t, x) ∈ ∂∗Q

A verification theorem can be proved in this case by proceeding in manner exactly analogous to
theorem 3.1 of Fleming & Soner [15] (p. 163).

Our problem always falls into the so called degenerate case since the rank of the matrix σ(t, x, π) is
equal to the rank of the matrix Σ. If V ∈ C(Q), then V is the unique viscosity solution of the above
equation that satisfies the boundary data.

3.3. The Numerical Approximation Scheme

In this section we construct the discretization/approximation scheme that converges to the theoretical
viscosity solution. We take the following steps:

a. We discretize the state-space Q taking the boundaries into consideration.
b. The state and the control at time l are denoted by xl, πl respectively. These are discrete-time

stochastic processes such that xl ∈ O and πl ∈ U(l, xl). The xl is a discrete-time Markov chain
(something that is natural given that the solution of the stochastic differential equation for the
state variable x is a Markov process). The state dynamics are governed by the one-step transition
probabilities pπll (x, y), which describe the probability of going from the state x at time l to the
state y at time l + 1 given that the information structure is Fl and the Markov control is πl.

c. We solve recursively (backwards) the discrete dynamic programming equation.

We assume that the transition probabilities are continuous functions with respect to the control, and
that from a state x there are only a finite number of states y that the system can go with positive
probability (in practice the neighbouring states in the discretization scheme). We consider the N + 1

dimensional lattice that discretizes the space RN+1: Σh
0 = {x = δ

∑N+1
i=1 jiei, ji ∈ Z, i = 1, · · ·N+1},

where {ei, i = 1, · · · , N + 1} is the usual orthonormal basis for RN+1 and ei is the Rn+1-valued vector
that has one in the ith-position and zero everywhere else. The δ and the h are the state and the time
step, respectively. Usually we take h = T/M where M is a very large number. The δ state space will
be specified later.

Let Σh ⊂ Σh
0 be a finite lattice that approximates the state space O. We call x ∈ Σh an interior

point of Σh if the nearest-neighbour points x ± δei ± δej, i, j = 1, · · ·N + 1 are in Σh. We denote
by ∂Σh the points in Σh that are not interior points. We assume that Σh approximates O in the sense
that limh↓0 dist(∂O, ∂Σh) = 0. The discrete approximation of Q is Qh = {(t, x) : t = kh, k =
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0, · · ·M, x ∈ Σh} and the approximation of the lateral boundary ∂∗Q is ∂∗Qh = {(t, x) ∈ Qh : t <

T, x ∈ ∂Σh or t = T, x ∈ Σh}. The objective is to find an admissible control system ρ which
minimises the cost functional Jhk (x, ρ) = Ekx[U(xµ(tµ))], where: tµ = µh and µ is the smaller of M
and the first step l for which xλ ∈ ∂Σh. We define at time k and state x the discrete value function
V h(t, x) = Vk(x) = inf ρJhk (x, ρ), (t, x) ∈ Qh \ ∂∗Qh and V h(t, x) = U(x), (t, x) ∈ ∂∗Qh. We
assume that:

aii(t, x, π)−
∑
j 6=i

‖aij(t, x, π)‖ ≥ 0, ∀(t, x, π) ∈ Qh ×K, i = 0, · · · , N (5)

If inequality (5) is not satisfied, as in the case of Section 4 below,we can find any other locally
approximating Markov chain that matches the drift and the variance of the S.D.E.. We choose the
state step δ to satisfy:

N∑
i=0

{aii(t, x, π)− (1/2)
∑
j 6=i

‖aij(t, x, π)‖+ δ‖fi(t, x, π)‖} ≤ δ2 (6)

Now we define the one-step transition probabilities:

a. Boundary points are absorbing: pπ(x, x) = 0, x ∈ ∂Σh

b. If the points are interior points, i.e., x ∈ Σh \ ∂Σh, then the one step transition probabilities are
defined as follows:

pπt (x, x± δei) = (h/2δ2)[aii(t, x, π)−
∑
j 6=i

‖aii(t, x, π)‖+ 2δf±i (t, x, π)]

pπt (x, x+ δei ± δej) = (h/2δ2)a±ij(t, x, π), i 6= j

pπt (x, x− δei ± δej) = (h/2δ2)a∓ij(t, x, π), i 6= j

pπt (x, x) = 1− (h/δ2)[aii(t, x, π)− 1

2

∑
j 6=i

‖aii(t, x, π)‖+ δfi(t, x, π)] (7)

where for a real number x, x+ = max{x, 0} and x− = max{−x, 0}
Also, pπt (x, y) = 0 for those values of y that are not included in (7). The dynamic programming

equation is
V h(t, x) = min

π∈U(t,x)
[
∑
y∈Σh

pπt (x, y)V h(t+ h, y)], (t, x) ∈ Qh \ ∂∗Qh (8)

with terminal condition V h(t, x) = U(x), (t, x) ∈ ∂∗Qh. This is the equation that we use in the
implementation that follows in the next section.
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4. Application in the Single Factor Interest Rate Market

We specialize our problem to the case in which the market is spanned by the short rate r(t) that
obeys the following S.D.E.

dr = µr(r(t), t)dt+ σr(r(t), t)dw(t)

where r = r(t) is the short rate, µr(r(t), t) and σr(r(t), t) are the instantaneous drift and standard
deviation of the rate respectively and w(t) is a one-dimensional standard Brownian motion which
generates the augmented right continuous filtration Ft, ∀t ∈ [0, T ] in the complete probability space
(Ω,F ,P).

The interest rate market is assumed to be complete [27]. More precisely we assume the existence
of a generic pure discount Bond B(r(t), t) with maturity greater than T , that “spans” the derivative
market. At time t all the information for the vector F can be calculated from the information at the
node (t, r(t)) (Markovian character).

The state space need not be the portfolio value plus the values of all of the derivatives. Instead the
portfolio value plus the interest rate (or the zero coupon bond that spans the market) will suffice. We
denote the portfolio value by X(t) in order to avoid confusion with the value function. In this example
we use portfolio positions instead of portfolio values. We have:

x(t) =

[
r(t)

X(t)

]

f(t, x(t), θ) =

[
µr(r(t), t)

θ>(t)a(t)σF (t) +X(t)r(t)

]

σ(t, x(t), θ) =

[
σr(t, r(t))

θ>(t)σF (t, r(t))

]
The control sets U(t, x) have the form of (3). Also

a(t, x(t), θ) =

[
σr(t, r(t))

2 σr(t, r(t)){θ>(t)σF (t, r(t))}
σr(t, r(t)){θ>(t)σF (t, r(t))} {θ>(t)σF (t, r(t))}2

]

We cannot guarantee that condition [5] is satisfied. Actually this happens in the unlikely situation in
which |θ>(t)σF (t, r(t))| = σr(t, r(t)).According to [28], page 71, we have to find an approximating
Markov chain that matches locally the drift and the variance of the S.D.E that x(t) obeys. We denote

zθ(t) = θ>(t)σF (t, r(t))

yθ(t) = θ>(t)a(t)σF (t) +X(t)r(t)
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One possible set of probabilities are found to be:

p1 = (h/4δ2)σr(t, r(t))[z
θ(t) + |zθ(t)|]

p2 = (h/2δ2)[(zθ(t))2 + δyθ(t) + δ|yθ(t)|]
p3 = p7 = (h/4δ2)σr(t, r(t))[−zθ(t) + |zθ(t)|]
p4 = (h/2δ2)[σ2

r(t, r(t)) + 2δσr(t, r(t))]

p5 = 1− (h/δ2)[σ2
r(t, r(t)) + δσr(t, r(t)) + (zθ(t))2 + δ|yθ(t)|]

p6 = (h/2δ2)σ2
r(t, r(t))

p7 = p3

p8 = (h/2δ2)[(zθ(t))2 − δyθ(t) + δ|yθ(t)|]
p9 = p1

(9)

Since the f , a are non-linear with respect to the portfolio positions, and the control sets reflect, in
essence, linear constraints on the portfolio positions, in order to apply the dynamic programming
principle (8), we have to solve a non-linear problem at each point (t, r(t), X(t)) progressing backwards
in time. Thus, by referring to Figure 1 we have the following steps:

Step 1 We first calculate the value of the derivatives and the portfolio sensitivities at each point (t, r(t))

of the side OABF .

Step 2 Since we know the value function over the sides ABCD, OABF , DCEG, OADG, we opt
to calculate the value function starting from top to bottom (backwards in time). Taking a typical
“slice” in time between t− h and t (Figure 2), we see that the arrows starting from (t− h, x, r)
are the transition probabilities to time t. These are non-linear functions of the portfolio positions
at time t − h, and their values are given according to equation (9). The value function at time
t− h and at state (x, r) is given by the dynamic programming formula:

V (t− h, x, r) = min
θ(t−h)∈U(t−h,x,r)

9∑
i=1

piVi (10)

where pi, i = 1, · · · , 9 are the probabilities shown in the Figure 2, and Vi are the values of the
value functions at the nine points shown in the figure. This must be done for all the points
(x, r) at time t − h, before we move back to time t − 2h. The whole procedure is repeated
until we reach time zero. The optimization (10) is a non-convex problem. In fact the objective
function is only continuous (it contains absolute values) and not differentiable. By introducing
extra variables and transferring the absolute values to the set of algebraic constraints, we result
in an optimization problem with quadratic constraints where standard convexification techniques
can be applied ([29]).

Step 3 For initial wealth v and for a particular level of the interest rate, we find the optimal portfolio
positions that we adopt in order to meet our objectives. The whole evolution of the state
dynamics can be found up to time T simply by following the tree created-by the state evolution
probabilities. In addition, the procedure gives us, for every initial wealth and for every level of
the interest rate, the evolution of the value function according to the state transition probabilities.
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Figure 1. The Dynamic programming procedure.
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As it is shown in Figure 2, the portfolio value is very large in comparison with the interest rate r. In
this case we rescale the portfolio axis, or we use different spatial steps δr, δX .

Figure 2. Time slice.
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The method is adaptive by its nature and various adaptive estimation methods can be accommodated.
In the case of a two factor model the whole analysis must be done in the Euclidean space R4. Various
amendments of the method [28,30] can improve the speed and the convergence of the algorithm.

Figure 3. Embedding the tree structure into the stochastic control algorithm.
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4.1. Numerical Implementation and Results

We have numerically implemented the above method using the generalised Hull and White
model [21]. Based on this model we have valued all the derivatives of our portfolio. In order to
optimize the algorithm and to reduce the number of non linear optimizations that have to be performed,
we have embedded the recombining trinomial tree into the algorithm. This averts the need to employ
the somewhat cumbersome numerical partial differential equation methods required for the valuation
of the derivatives. In Figure 1, on the side OABF , the only relevant points are those of the embedded
trinomial tree. In essence, the side OABF is not a parallelogram any more, but a two-dimensional
tree-structure (Figure 3). In order to reduce the number of non-linear optimizations, we opt not to
solve the problem for all possible interest rate levels but only for the initial interest rate r0. So at time
0 the optimization is performed only on the line r0b0 of the side OFEG (Figure 4). The same happens
in the previous steps, (i.e., the optimization is performed only for the relevant interest rate levels). In
this way the algorithm becomes steadily faster as we move from time T to time 0. Since we know
the maximum and minimum number of trading securities available for each time step, the maximum
portfolio value per time step can be calculated and scaled analogously. In this way we further reduce
the number of non-linear optimizations that have to be performed.

Figure 4. Optimization at time 0.
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We present now a numerical example. The volatility of the short rate is assumed to be σr(t, r(t)) =

σr(0, r(0))r(t)β . The model characteristics are given in Table 2. The portfolio includes the following
interest rate derivative securities: bonds, European and American calls on a bond, European and
American puts on a bond, swaps, European and American payer’s swaptions, European and American
receiver’s swaptions, caps and floors. Their characteristics are presented in Table 1. Deltas and gammas
of the derivatives are calculated with respect to the bond. Naturally the delta of the bond is 1 and the
gamma is 0. The portfolio theta is calculated as the local expected portfolio growth per time period.
That is why we observe the linear relationship between optimal portfolio theta and optimal portfolio
value Figure 5c. We feel that this definition of theta is more suitable to practical applications. Of
course the classical portfolio theta definition could have been applied as well. For reasons of simplicity
we do not have a cash account. We assume that the utility function is U ′(x) = x3 and the portfolio op-
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Table 1. Derivative Characteristics.

bond
Starting Period 0
Maturity Period 19
Coupon Period 2
Coupon Rate 0.10
Principal 100.0

swap
Starting Period 0
Maturity Period 19
Coupon Period 2
Coupon Rate 0.10
Notional Principal 100.

European bond call
Starting Period 0
Maturity Period 10
Exercise Price 80.5
Bond Staring Period 0
Bond Maturity Period 19
Bond Coupon Period 2
Bond Coupon Rate 0.1
Bond Principal 100

European bond put
Starting Period 0
Maturity Period 10
Exercise Price 80.5
Bond Staring Period 0
Bond Maturity Period 19
Bond Coupon Period 2
Bond Coupon Rate 0.1
Bond Principal 100

American bond call
Starting Period 0
Maturity Period 10
Exercise Price 80.5
Bond Staring Period 0
Bond Maturity Period 19
Bond Coupon Period 2
Bond Coupon Rate 0.1
Bond Principal 100

American bond put
Starting Period 0
Maturity Period 10
Exercise Price 80.5
Bond Staring Period 0
Bond Maturity Period 19
Bond Coupon Period 2
Bond Coupon Rate 0.1
Bond Principal 100

European receiver’s Swaoption
Starting Period 0
Maturity Period 10
Exercise Price 6.5
Swap Staring Period 0
Swap Maturity Period 19
Swap Reset Period 2
Swap Fixed Rate 0.1
Swap Notional Principal 100

European payer’s put
Starting Period 0
Maturity Period 10
Exercise Price 80.5
Bond Staring Period 0
Bond Maturity Period 19
Bond Coupon Period 2
Bond Coupon Rate 0.1
Bond Principal 100

American receiver’s Swaoption
Starting Period 0
Maturity Period 10
Exercise Price 6.5
Swap Staring Period 0
Swap Maturity Period 19
Swap Reset Period 2
Swap Fixed Rate 0.1
Swap Notional Principal 100

American payer’s put
Starting Period 0
Maturity Period 10
Exercise Price 80.5
Bond Staring Period 0
Bond Maturity Period 19
Bond Coupon Period 2
Bond Coupon Rate 0.1
Bond Principal 100

cap
Starting Period 0
Maturity Period 10
Reset Period 2
Cap rate 0.1
Cap Notional Principal 100

floor
Starting Period 0
Maturity Period 10
Reset Period 2
Floor rate 0.1
Floor Notional Principal 100
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timization horizon is 7 time steps (7∆t). For scaling purposes we assume that the number of available
derivative securities is any number in the interval [−10, 10]. This constraint can be relaxed so that at
each time step (or even at each state as well) it is feasible to have different maximum and minimum
levels of available derivatives. We impose the risk limits given in Table 3 for every time step.

The number of non linear optimization problems of the form (10) that have been solved is 5237.
The value function at time 0 is depicted in Figure 5d. As we can see it is negative, something that it is
expected since our objective is the minimisation of minus the utility function of terminal wealth.

Table 2. Yield curve characteristics.

Declining Initial Term Structure and Initial Volatility Structure

Time Horizon (N) 20
Time Step (∆t) 1

β 1
Initial Volatility (V (0)) 0.14

Initial Term Structure at time i∆t 0.1(1 + (i∆t)/70)

Initial Volatility Structure at at time i∆t 0.14(1 + (i∆t)/110)

Figure 5. Optimal Portfolio sensitivities and value function at time 0.
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Figure 6. Optimal Positions at time 0.



J. Risk Financial Manag. 2014, 7 146

Figure 7. Optimal Positions at time 0.
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Table 3. Portfolio risk profile.

Risk Limits

Delta limit (δ) 0.009211
Gamma limit (γ) 0.021584
Theta limit (θ) 1.696839

Optimal portfolio positions at time zero are given in Figures 6 and 7. Figures 5a–c show the sensitivities
of the optimal portfolio at time 0, all within the boundaries defined in Table 3. Moreover, we see
that the optimal portfolio is exposed often to the maximum permitted level of risk(graphics for the
optimal portfolio positions, optimal portfolio delta, gamma, theta and for the Hamilton-Jacobi-Bellman
equation for the times i∆t, i = 1, 2, 3, 4, 5, 6, 7 are available from the authors upon request). By design
the algorithm is eager to construct portfolios with the maximum permitted level of risk as expressed in
Table 3. This is natural since the risk limits are the maximum allowable limits that can be taken in order
to achieve the maximum possible portfolio value, given risk preferences, that are expressed through the
utility function.

5. Conclusions

In this paper, we address the risk management control problem of derivatives in the interest rate
market. By formulating the problem as a stochastic portfolio optimization one with constraints,
techniques from the stochastic control theory can be used so that the financial institution meets the
various objectives being set internally or externally, through the control of the evolution of portfolio
positions. The main advantage of this approach is that we do not have to assume anything about the
utility function except for continuity. From our computer implementation, we have observed that the
method is sensitive to different initial values (initial term structure and volatility structure) and different
boundary conditions (utility functions). Finally we note the flexibility of the proposed discretization
scheme. As in Section 4, the probabilities do not have to be of the form (7). The locally approximating
Markov chain is not unique. There is freedom for the choice of the chain in order to improve the
convergence of the algorithm.

The method quantifies the risk return characteristics of the derivatives portfolio through portfolio
sensitivities in a specific way by allowing the creation of optimal portfolios with desired risk/return
characteristics. The fact that control sets can be time and state dependent gives us a great flexibility in
incorporating limits in case of tail risks. Incorporation of VAR or CVAR limits (possibly time and state
dependent) as additional constraints in the control sets are possible.

In light of the recent financial crisis where unwanted or miscalculated risks in the derivatives area
caused many financial institutions to go bankrupt and endangered the whole economy by triggering
systemic risks, this type of approach, that gives emphasis on the on-line monitoring and control of
derivatives portfolio, could be useful in the future either to avoid similar situations or at least to mitigate
their consequences.
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