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Abstract: In this paper, we propose a new proxy for the unobserved volatility process that will
allow us to better understand and hence model a rough or persistent volatility. Starting with a
stochastic volatility model with minimal assumptions on the volatility process, we calibrate the
model to options’ data and their sensitivities to obtain an implied volatility process. Starting with
this new proxy, we then study the roughness/persistence of the volatility using S&P 500 European
put option daily data. We then estimate the Hurst index, i.e., roughness/smoothness parameter, of
the volatility with various techniques to find that the volatility does exhibit a rough behavior, even in
a low-frequency framework.

Keywords: stochastic volatility; rough volatility; Hurst index; volatility proxy

1. Introduction

The modeling of stochastic volatility in continuous time traditionally falls in the
semi-martingale domain, where the dynamics of the stock follow a diffusion driven by
a Brownian motion and the dynamics of the volatility are described by a mean-reverting
stochastic differential equation driven by another Brownian motion. Since the introduction
of stochastic volatility models (Cox et al. 1985; Garman 1976; Hull and White 1987), practi-
tioners have been able to better understand stylized facts that emerge in derivative pricing,
such as the volatility clustering or the skewness of volatility smiles (Fouque et al. 2000), e.g.,
Ait-Sahalia et al. (2001), Avallaneda et al. (1997), Szczygielski and Chipeta (2023), Aggarwal
et al. (1999), Coleman et al. (1999), Dumas et al. (1997), Gatheral (2006).

However, there are still certain aspects of the volatility that cannot be captured by
these more traditional models. For example, the momentum observed in the conditional
variance as well as the high correlation of past lags of the volatility with the present, the
so-called volatility persistence, have been documented in the literature by Andersen and
Bollerslev (1997) and Breidt et al. (1998). Specifically, Andersen and Bollerslev (1997) and
Andersen et al. (2001) analyzed the autocorrelation of the returns of Deutschemark–U.S.
dollar, Yen–U.S. dollar foreign exchange rates as well as the returns of the S&P 500 index
using high-frequency intraday data to discover a slow persistence in the decay rate, while
Breidt et al. (1998) focused on several market indexes’ daily returns to also discover a slow
decay in the autocorrelation structure. Even before these studies, the presence of long-range
dependence in the volatility has been observed in Ding et al. (1993), where the authors
analyzed the autocorrelation structure of the S&P 500 returns.

In order to better describe volatility persistence, Comte and Renault (1998) introduced
the long-memory stochastic volatility model (LMSV), according to which the stock follows
the same diffusion as in the traditional framework, while the volatility is described by a
stochastic differential equation driven by a fractional Brownian motion with H > 1/2,
a process that captures persistence (for the mathematical definition, refer to Section 1.1).
Since then, significant progress has been made regarding LMSV models. Comte et al. (2012)
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proposed a long-memory Heston model for which they introduced related simulation
methods and Alòs and Yang (2017) introduced a pricing method and an implied volatility
formula for a fractional Heston model. The implied volatility term structure has also
been studied by Garnier and Sølna (2017) and lattice-based pricing algorithms as well as
calibration methods have been proposed in Chronopoulou and Viens (2012).

From a different point of view, the trajectories of the volatility estimated using high-
frequency data are not as smooth as those of a fractional Brownian motion with H > 1/2.
In order to explain this rough behavior of the volatility process, Gatheral et al. (2018)
introduced a rough volatility model, according to which the log-volatility behaves similarly
to a fractional Brownian motion with H < 1/2. In this context, Gatheral et al. (2018)
and Fukasawa et al. (2019) analyzed ultra-high-frequency data of DAX and Bund future
contracts, and high-frequency data from S&P and NASDAQ indices. Also, Da Fonseca
and Zhang (2019) conducted an analysis on the realized variance of VIX, using 5 min
high-frequency VIX data, with the result showing that volatility of volatility is also rough.
Furthermore, a similar behavior is documented in Livieri et al. (2018) using high-frequency
bid-ask data of options on S&P 500 via the Medvedev–Scaillet corrected implied volatility
(Medvedev and Scaillet 2007).

Although more sophisticated volatility models better describe empirical stylized facts,
the estimation of their parameters and their calibration to real data is a highly complicated
task, due to the hidden nature of the volatility process. In the traditional framework,
filtering methods have been introduced for such purposes (Kristensen 2010). However,
similar statistical techniques for long-range dependent or rough models are still an active
research area. Therefore, when it comes to financial applications, in order to assess the
validity of these models, one needs to use calibration techniques in conjunction with
the use of volatility proxies, i.e., observable quantities from the market that mimic the
volatility behavior.

One common quantity that has been proven useful in high-frequency data is the
integrated volatility, which is calculated via the quadratic variations of the log-returns, also
called realized volatility (Barndorff-Nielsen and Shephard 2002). However, this proxy is
subject to micro-structure effects and turns out to be a noisy approximation (Zhang et al.
2005; Zhou 1996). Other non-parametric, kernel-based techniques (Jacod 2019; Kristensen
2010; Xiu 2010) have also been proposed, but are in general unreliable due to the ad hoc
choices of the hyper-parameters involved.

The realized volatility or the output of a non-parametric algorithm both limit approxi-
mations of the volatility process, and thus in order to be accurate in practice, they require
high- or ultra-high-frequency observations. In a low-frequency setting, such approxima-
tions are neither reliable nor feasible; therefore, one has to resort to other methods. The most
popular approach is to consider the implied volatility or a proxy of the implied volatility. A
common proxy in this context is the VIX, which is the volatility index from the Chicago
Board Options Exchange (CBOE) representing the market expectation of volatility in the
future. This is also considered to be the implied volatility of a fictitious at-the-money option
with 30-day maturity. However, there is empirical evidence (Aı et al. 2007; Chow et al. 2018)
suggesting that the VIX tends to overestimate when volatility is low and underestimate
when volatility is high, which implies that the resulted sample path is always smoother,
making it unreliable in the study of rough volatility.

In this paper, our first contribution is the introduction of a new volatility proxy for
the study of rough or persistent volatility that works well in a low-frequency framework.
Specifically, instead of estimating the volatility via filtering algorithms, we use daily ob-
servations of cumulative option trading entries and their Greeks to calibrate a stochastic
volatility model (with minimal assumptions on the volatility process) to the data by solving
a quadratic optimization problem for a range of strike prices and maturities. The solution to
this problem provides us with a proxy for the unobserved volatility process. This volatility
value is in principle static (for a fixed time t), but when the algorithm is repeated for
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consecutive days, we can extract a time series of implied volatilities that approximates the
true volatility process.

Starting with this new proxy, our second goal is to use various methods for estimat-
ing the persistence/roughness of the volatility process to better understand its behavior.
Specifically, we use estimation techniques in the literature to study the robustness of the
estimators of the Hurst index, which is the parameter that describes the “memory” of the
volatility. When we apply our techniques to European put options on the S&P 500, we
uncover a rough behavior of the volatility, i.e., H < 1/2, even in a low-frequency setting.
We also investigate empirically whether the Hurst parameter can be considered a constant
and we observe that the Hurst index varies largely, suggesting that it is a local parameter
that is not to be considered a constant in the long run.

The structure of the paper is as follows: In Section 1, we give a short introduction to
the models considered along with the relevant mathematical background. In Section 2, we
introduce the proposed methodology for the volatility estimation, and we discuss existing
Hurst index estimation methods. In Section 3, we compute the implied volatility process
using S&P 500 daily options data. We compare our method with the VIX index and we
study changes in the roughness of the volatility over different time horizons. Finally, in
Section 4, we conclude and discuss the implications of our results.

1.1. Mathematical Background and Assumptions

In this section, we introduce the underlying model for fractional volatility and we
briefly discuss the necessary mathematical background. Throughout this paper, we assume
that there exists a filtered probability space (Ω,F ,Ft, P), and all the processes that follow
are adapted to the given filtration.

The cornerstone of our model is the fractional Brownian motion (fBm), which can be
thought of as an extension of a standard Brownian motion with dependent increments.
Rigorously, a fractional Brownian motion {BH

t ; t ≥ 0} with H ∈ (0, 1) is a centered Gaussian
process with covariance function given by

E
(

BH
t BH

s

)
=

1
2

(
t2H + s2H − |t − s|2H

)
and a.s. continuous sample paths Mandelbrot and Van Ness (1968).

The value of H ∈ (0, 1) (also called Hurst index) determines both pathwise and
probabilistic properties of fBm. When H = 1/2, we recover the standard Brownian motion.
As in the classical case, for the fBm, the initial value BH

0 = 0 a.s. and its increments
are stationary, i.e., BH

t − BH
s =d BH

t−s. Unlike the standard Brownian motion, fBm has
increments that exhibit long-range dependence (also called long memory or persistence)
when H > 1/2 and anti-persistence (or roughness) when H < 1/2. The covariance
of the increments of fBm, BH

t+h − BH
t and BH

s+h − BH
s with t − s = nh can be computed

as ρn(h) = 1/2h2H[(n + 1)2H + (n − 1)2H − 2n2H]. The sample paths of the fractional
Brownian motion are almost surely Hölder continuous of order strictly less than H. Also,
the fBm is self-similar, which means that the distribution of BH

at and the distribution of
a−H BH

t are the same for any a > 0. For more details, we refer the reader to Mandelbrot and
Van Ness (1968) and Beran et al. (2016).

The model we consider in this paper is a stochastic volatility model, in which the asset
price at time t, denoted by {St; t ≥ 0}, is described by

dSt = rStdt + StσtdBt (1)

under the risk-neutral measure, where r is the risk-free rate, which we assume to be constant.
This assumption can be relaxed and r can be locally constant or random. {Bt; t ≥ 0} is
a Brownian motion and {σt; t ≥ 0} is the volatility process. For the volatility process
{σt; t ≥ 0}, we assume that the logarithm of the volatility, namely Yt = log(σt), is an
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adapted square integrable stochastic process. We also assume that {Yt; t ≥ 0} is a Gaussian
process with stationary increments.

The fractional stochastic volatility model has an autocorrelation structure similar to
that of fBm, and is described as follows: If we define the pth order variogram of {Yt}, for
any p > 0, we have

γp(h; Y) = E[|Yt+h − Yt|p]

Then, we assume that γp(h; Y) satisfies the following properties:

(a) For some H ∈ (0, 1), we have:

γ2(h; Y) = h2H L(h)

with L(h) continuously differentiable and bounded away from 0 in a neighborhood of
h = 0. L(h) is also assumed to be slowly varying at 0, i.e.,

lim
h→0

L(th)
L(h)

= 1 for any t > 0

(b)
d2

dh2 γ2(h; Y) = h2H−2L2(h)

where L2(·) is another slowly varying function,
(c) There exists b ∈ (0, 1) with

lim sup
x→0

sup
h∈[x,xb ]

∣∣∣ L2(h)
L(h)

∣∣∣ < ∞

It is easy to check that if {Yt} is a fractional Brownian motion all the properties above
will be satisfied. Thus, fractional Brownian motion is a special case of processes satisfying
all the above and the processes satisfying all the above properties can be thought of as an
extension to the fractional Brownian motion Beran et al. (2016).

2. Estimation of Implied Volatilities via Calibration

In this section, we develop a framework for estimating the unobserved volatility
process using low-frequency option data. We also discuss the most popular methods in the
literature to estimate the Hurst index of the volatility process.

2.1. A New Volatility Proxy

Assume that the asset follows the geometric Brownian motion defined in (1), in which
the volatility σt is an adapted stochastic process. At this stage, we do not need to further
specify the dynamics of σt. Instead, following the approach in Carr and Wu (2016), for each
vanilla option, we define the dynamics of the implied volatility to be:

dIt(K, T) = µtdt + ωtdZt, (2)

where K is the strike price of the option and T is the maturity time of the option. {µt; t ≥ 0}
and {ωt; t ≥ 0} are two adapted processes and Zt is another Brownian motion, correlated
with Bt in (1) with correlation ρt. The dynamics of It are not dependent on K and T, but the
initial value of It is. Using the Black–Merton–Scholes pricing formula, the put option price,
P(t, K, T), can be expressed as

P(t, K, T) = BS(St, It, t),

where BS(St, It, t) stands for the Black–Scholes formula, with arguments for the instant
price St, the implied volatility It and time t. Assume there is a basis call option at (K0, T0)
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and no dynamic arbitrage is allowed on any put option at (K, T) relative to the portfolio of
basis option, stock and cash. Then, according to Proposition 1 (Carr and Wu 2016), after
applying Itô’s formula to the risk-neutral portfolio of a put option at (K, T), the basis call
option at (K0, T0), and the underlying stock, we have

−Pt + r − rPSSt = µt Pσ +
1
2

σ2
t S2

t PSS + ρt ωt σtStPSσ +
1
2

ω2
t Pσσ (3)

where the subscripts denote the corresponding derivatives of the option price P. Namely,

PS :=
∂BS(St, It, t)

∂St
(the Delta), Pt :=

∂BS(St, It, t)
∂t

(the Theta),

Pσ :=
∂BS(St, It, t)

∂It
(the Vega), PSS :=

∂2BS(St, It, t)
∂S2

t
(the Gamma),

PSσ :=
∂2BS(St, It, t)

∂St∂It
(the Vanna), Pσσ :=

∂2BS(St, It, t)
∂(It)2 (the Vomma).

For the same asset S, but different strike prices Ki and maturity times Ti, we will have
different options, which we denote by

Pi(t, Ki, Ti) := BS(St, It(Ki, Ti), t)

After reorganizing Equation (3), we have the following:

Pt − r + rPSSt + µtPσ +
1
2

σ2
t S2

t PSS + ρt ωt σt StPSσ +
1
2

ω2
t Pσσ = 0 (4)

If we treat µt, 1
2 σ2

t S2
t , ρt ωt σt St, 1

2 ω2
t as unknown values and Pt, PS, Pσ, PSS, PSσ and Pσσ

as known values, we can relax (4) and reform it into an optimization problem with respect
to the coefficients µt, 1

2 σ2
t S2

t , ρt ωt σt St, 1
2 ω2

t . The quadratic problem is as follows:

min
at , bt , ct , dt

∥∥∥Pt − r + r · PS · St + at · Pσ + bt · PSS + ct · PSσ + dt · Pσσ

∥∥∥
where ∥ · ∥ denotes the 2-norm and the coefficients are defined as

at := µt, bt :=
1
2

σ2
t S2

t , ct := ρt ωt σt St, dt :=
1
2

ω2
t .

Observe that the coefficients at, bt, ct, dt are free of Ki and Ti. Thus, we can minimize the
aggregate quadratic loss for different options Pi with respect to the coefficients

min
at , bt , ct , dt

∑
i

∥∥∥Pi
t − r + r · Pi

S · St + at · Pi
σ + bt · Pi

SS + ct · Pi
Sσ + dt · Pi

σσ

∥∥∥ (5)

Recall that the option’s sensitivities can be obtained (explicitly or implicitly) from the
market data. Therefore, after we obtain the estimates ât, b̂t, ĉt, d̂t for the coefficients, we can
solve, with respect to the desired model parameters, µt, σ2

t , ρt, and ωt. In particular, we
focus on the volatility σt which can be directly obtained by b̂ as follows:

σ̂t =

√
2b̂t

S2
t

. (6)

2.2. Hurst Index Estimation

In this section, we briefly review the main methods in the literature used to estimate
the Hurst index, starting with the variogram-based regression method (Bennedsen 2020).
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Recall the property of the pth order variogram in Section 1.1. It is easy to deduce that the
p-th order variogram, γp(h; Y), has the following property:

γp(h; Y) = Cp|h|HpLp(h),

where Cp is a constant and Lp(h) is a slowly varying function at 0. After taking the
logarithm on both sides, we have the following:

logγp(h; Y) = cp + (Hp)logh + ϵh (7)

with cp = log(Cp) being another constant and ϵh = log(Lp(h)). We can estimate the
variogram of the implied volatility process, {σ̂t; t = 1, . . . , N}, extracted in the previous
section via

γ̂p(k∆h; Y) =
1

n − k

n−k

∑
i=1

|log(σ̂i+k)− log(σ̂i)|p.

If we add log(γ̂p(k∆h; Y)) to both sides of Equation (7) and change the argument of γp(h; Y)
from h to k∆h, after re-arranging the terms, we obtain

logγ̂p(k∆h; Y) = cp + (Hp)log(k∆h) + Uk∆h + ϵk∆h (8)

where Uk∆h = log
(
γ̂p(k∆h; Y)/γp(k∆h; Y)

)
and ϵk∆h = logLp(k∆h). If we choose different

values of k from 1 to m, where m is a predetermined threshold, then we can perform the
following regression for multiple values of k:

γ̂p(k∆h; Y) ∼ alog(k∆h) + b, k = 1, . . . , m

The least-squares estimator â, related to k, leads to k corresponding estimators of the Hurst
index via

Ĥk =
âk
p

. (9)

The consistency of the variations-based estimator of H estimator is proved in Bennedsen (2020).
If we further assume that the log volatility Yt = log(σt) is a fractional Brownian

motion, then we also obtain other estimators of H, such as those employed in Mandelbrot
and Van Ness (1968) or Lo (1991). For example, since the fractional Brownian motion is a
Gaussian process, we can use the maximum likelihood method. The main disadvantage in
this framework is the computational cost required to compute the MLE, since the variance–
covariance matrix, Σ, in such a non-Markovian framework is no longer diagonal. Therefore,
one needs to result in approximations of the determinant or of the inverse of Σ using
Whittle’s method, Beran et al. (2016).

Except for the likelihood-based approach, there also exist non-parametric estima-
tors, with the rescaled range statistic (R/S) being the most prominent among them. It
was initially introduced in Hurst (1951) to estimate the Hurst index of fractals, or frac-
tional Brownian motion. For a fractional Brownian motion observed at equidistant times,{

Yt = BH
t , t = 1, . . . , N

}
, the adjusted range is obtained by

S(N) =
[ 1

N

N

∑
t=1

(Yt − YN)
2
] 1

2

where YN = ∑t Yt
N and the re-scaled range is given by

RS(N) =
[max1≤i≤N −min1≤i≤N ]

(
Yi − i

N YN

)
S(N)

.
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The R/S estimator for the Hurst index is then defined as

Ĥ =
log RS(N)

log N
(10)

More details regarding this approach can be found in (Beran et al. 2016).
The last approach we consider in our paper is a discrete variation method that is

based on discrete power variations of the underlying process (Coeurjolly 2001). Specifi-
cally, assuming that we have equidistant observations of the fractional Brownian motion{

Yt = BH
t
N

, t = 1, . . . , N
}

, the discrete quadratic variation is defined as

S(N, 2) =
1
N

N

∑
i=1

(
Yi − Yi−1

)2

Equating the E(S(N, 2)) to the observed quadratic variation, one can solve with respect to
the Hurst index and obtain the following estimator:

ĤN =
logS(N, 2)
−2logN

(11)

It has been shown that for a fractional Brownian motion ĤN is a consistent estimator
(Coeurjolly 2001; Tudor and Viens 2008).

3. Application to S&P 500 Data

Although the results in Section 2.1 are in a continuous time setting, in practice, we only
have access to discrete-time observations. Therefore, we consider discrete option prices
and discrete time series of all the options’ sensitivities:{

Pt(i), PS(i), Pσ(i), PSS(i), PSσ(i)Pσσ(i)
}N

i=1

where N is the number of observations. The time difference between two consecutive
times t and t + 1 will be denoted as ∆h. Since we obtain daily observations, this is equal to
∆h = 1/N = 1/252 (years).

In our numerical illustrations, we use the daily European put option data for the SPX
Index from the Wharton Research Data Services (WRDS, https://wrds-www.wharton.
upenn.edu/pages/about/data-vendors/ (accessed on 1 March 2018)) data set. To avoid
the 2008 period, in which extreme volatilities were observed, we chose to work with
European put option data between 2 January 2009 to 31 December 2017, with a total length
of 2265 business days. The data consisted of the expiration date, strike price, trading
volume, implied volatility, and the following option sensitivities: Delta, Gamma, Theta
and Vega. A snapshot of the data is shown in Table 1. Note that although in Table 1 we see
options with expiration in a week, the data consisted of maturities up to a year. The annual
interest rate was considered to be constant at an annual rate of 0.03 which was the interest
rate of a 10-year T-Bond.

Before proceeding to our analysis, we clean the data by removing all option entries
with 0 in the volume of transactions as well as options with strikes exhibiting arbitrage
possibilities due to time discrepancies in the index and options. We then compute the
Vanna Pi

Sσ and the Vomma Pi
σσ. Specifically, we obtain the implied Vanna and Vomma of

option i from the corresponding Delta, Gamma and Vega quantities as follows:

https://wrds-www.wharton.upenn.edu/pages/about/data-vendors/
https://wrds-www.wharton.upenn.edu/pages/about/data-vendors/
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Vannai
t =

Vegai
t

St
·
(

1 −
di

1(t)
It ·

√
T − t

)
Vommai

t =
Vegai

t · di
1(t) · di

2(t)
It

Here, It is the implied volatility from the data set and St is the spot price, which in our case
is the daily closing SPX index. Also, di

1(t) and di
2(t) are implied parameters obtained based

on the given Greeks via:

di
2(t) =

√√√√−2 · log

(
Vegai

t

K ·
√

T − t
· exp(r · (T − t)) ·

√
2π

)

di
1(t) = di

2(t) + It ·
√

T − t

We also obtained daily closing VIX index data for the same period to use for comparison
purposes.

Table 1. Part of the WRDS data set used for the numerical studies. The data shown here are European
put option prices on 2 January 2009, with corresponding expiration dates, strike prices, trading
volumes, implied volatilities, and the following option sensitivities: Delta, Gamma, Theta and Vega.

Type Expiration Date Strike Volume Implied Vol Delta Gamma Theta Vega

P 9 January
2009

2 January
2009 700.0 0 0.853864 −0.003846 0.000112 −35.54137 1.366342

P 9 January
2009

2 January
2009 750.0 0 0.712517 −0.007784 0.000251 −55.51371 2.556339

P 9 January
2009

2 January
2009 800.0 689 0.64894 −0.030628 0.000893 −163.6618 8.269202

P 9 January
2009

2 January
2009 850.0 17 0.505463 −0.07403 0.002321 −258.4759 16.74286

P 9 January
2009

2 January
2009 900.0 191 0.395153 −0.240121 0.006586 −449.8958 37.14447

P 9 January
2009

2 January
2009 950.0 10 0.331869 −0.669584 0.009134 −446.2987 43.26295

P 9 January
2009

2 January
2009 1000.0 0 0.398932 −0.912875 0.003317 −242.125 18.88555

P 9 January
2009

2 January
2009 975.0 0 0.3433 −0.844309 0.005819 −309.7656 28.51135

P 9 January
2009

2 January
2009 775.0 1877 0.682099 −0.015864 0.000488 −98.71134 4.746845

P 9 January
2009

2 January
2009 825.0 12 0.5506 −0.039521 0.001297 −171.2918 10.19406

P 9 January
2009

2 January
2009 875.0 106 0.460578 −0.137752 0.004 −370.3762 26.2968

P 9 January
2009

2 January
2009 925.0 2 0.348065 −0.428158 0.009436 −502.4015 46.8744

3.1. Volatility Estimation

Using the options’ sensitivities extracted from the data, we solve the minimization
problem as defined in (5), i.e.,

min
at , bt , ct , dt

∑
i

∥∥∥Pi
t − r + r · Pi

S · St + at · Pi
σ + bt · Pi

SS + ct · Pi
Sσ + dt · Pi

σσ

∥∥∥
to obtain the estimator of the Hurst index (6), i.e.,
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σ̂t =

√
2b̂t

S2
t

.

The implied volatility time series σ̂t is shown in Figure 1 (blue line). In the same figure, we
also plot the corresponding values of the VIX index (orange line) as a check on whether
the σ̂t estimate is reliable. To be able to plot the VIX in the same graph, we had to bring it
the same scale as σ̂t, so we divided it by 100. As we observe in Figure 1, the two volatility
proxies fluctuate in a similar fashion exhibiting the same trends. However, the proposed
volatility estimate, σ̂t, has more rough behavior than the VIX, suggesting that it is a better
candidate to approximate the instantaneous volatility instead of the expected volatility or
an averaged volatility.

Figure 1. The implied volatility time series σ̂t =
√

2b̂t/S2
t (blue line) obtained after solving the

optimization problem in (5), for the period between 2 January 2009 and 31 December 2017. The VIX
for the same period (divided by 100) is superimposed for comparison purposes.

3.2. Hurst Index Estimation

Using the implied volatility process obtained in Section 3.1, we apply the Hurst index
estimation methods outlined in Section 2.2 to estimate the Hurst parameter. We start by
implementing the variogram approach for different orders of the variogram q ranging
between 0.5 and 3. For each q, we estimate the variogram, illustrated in Figure 2, and we
compute the corresponding Hurst index via Equation (9). From the plot, we observe that
the Hurst estimator does not fluctuate much for different values of q.

Detailed results are summarized in Table 2, where we also record the maximum likeli-
hood estimator, the rescaled range statistic (10) and the discrete variations estimator (11).
From this Table, we first observe that our intuition that the variogram estimator does
not change significantly based on q is confirmed, strengthening our belief that this is a
reasonable estimator for the roughness of the volatility process. The maximum likelihood
estimator is also very close. This is to be expected because the maximum likelihood method
can be seen as an extension of the variogram; both methods are based on a linear relation-
ship between the Hurst index and the logarithm of the variogram. On the other hand, the
rescaled range and the discrete variations estimators are very different. This difference can
be explained by the low frequency of the data we are working with. In fact, both the R/S
and the variation-based estimators are consistent when the sampling frequency goes to 0,
which means that they are asymptotically biased for low-frequency observations making
them better suited for high-frequency data.
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Figure 2. Plot of qth order variogram obtained based on the implied volatility process against the
logarithm of the lag. The Hurst index estimator is the slope of these lines, and based on this figure,
we observe that the Hurst estimator (slope of the lines) does not fluctuate much for different values
of q.

Table 2. Hurst index estimators of the implied volatility process using (a) the variogram method with
different orders q of the variogram, (b) the maximum likelihood approach, (c) the non-parametric
rescaled range statistic, and (d) the discrete variation estimator.

q Value Hurst Index Estimation

0.5 0.16436
1 0.16895

1.5 0.17433
2 0.18122

2.5 0.18983
3 0.20007

Method Hurst index estimation

MLE 0.21669
R/S 0.89243

Variation method 0.78144

Summarizing the results in this section, we observe that the implied volatility process
obtained from Section 3.1 exhibits a rough behavior, even when low-frequency options
data are used. We can also conclude that when low-frequency observations are available,
one should prefer either the variogram or the maximum likelihood method for estimating
the Hurst parameter, since the other two are consistent when the sampling frequency tends
to zero.

3.3. The Roughness of VIX

We also want to use the same approach to estimate the Hurst parameter based on the
VIX index, which is a volatility proxy quite frequently used in the literature. So, we repeat
the same process as before, focusing only on the variogram and the maximum likelihood
method. The q-order variograms for the same range of qs are plotted in Figure 3 and the
point estimators are summarized in Table 3.
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Figure 3. Plot of qth order variogram obtained based on the VIX index against the logarithm of the
lag. The Hurst index estimator is the slope of these lines, and based on this figure, we observe that
the Hurst estimator does not fluctuate much for different values of q.

Both methods yield very similar estimators of the Hurst index for the VIX, which are
around 0.42, a value significantly higher than 0.21, which is the estimated H obtained using
the implied volatility process. This suggests that the roughness of the underlying volatility
is better captured via our proposed implied volatility proxy. As expected, the VIX is much
less rough since it reflects people’s expectations of averaged future volatility.

Table 3. Hurst index estimators of the VIX using (a) the variogram method with different orders q of
the variogram, and (b) the maximum likelihood approach.

q Value/Method Hurst Index Estimation

0.5 0.44485
1 0.43217

1.5 0.42296
2 0.41633

2.5 0.41264
3 0.41254

MLE 0.40889

3.4. Is the Hurst Index Constant over Time?

In this last section of the results, we investigate whether the Hurst index can be assumed
to be constant over a long period of time. Therefore, we split the data into different years and
estimate the Hurst index for every year. The results are summarized in Table 4.

Table 4. Hurst index estimators based on the implied volatility process via the variogram and
maximum likelihood methods for each year between 2009 and 2017. For the variogram method, we
included the range of the estimators for the different qs.

Year Estimates by the
Variation-Based Method MLE

2009 0.08–0.14 0.1467
2010 0.17–0.19 0.2446
2011 0.088–0.107 0.1829
2012 0.02–0.036 0.1132
2013 0.135–0.15 0.1739
2014 0.22–0.30 0.3149
2015 0.20–0.30 0.2943
2016 0.218–0.255 0.25485
2017 0.194–0.203 0.21327
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From Table 4, we conclude that the Hurst index is always on the rougher end, fluctuat-
ing year-to-year between 0.02 and 0.30. This is a very wide range of Hurst index values
that leads to significant differences when it comes to pricing. To verify the validity of
these regression-based estimators, we also perform two tests: the Jarque–Bera test (abbr. JB
test) and the Breusch–Pagan test (abbr. BP test). These results are summarized in Table 5.
Since all p-values are not statistically significant, we conclude that the assumptions of
the variogram method are satisfied. In Tables 6–9, we summarize the detailed results
performed for each year separately. The conclusion remains the same that the variogram
method assumptions are satisfied.

Table 5. Validity of variogram-based estimators: Jarque–Bera and Breusch–Pagan tests for the time
series from 2 January 2009 to 31 December 2017. All p-values are statistically insignificant validating
that the assumptions are satisfied.

q Value Jarque–Bera Test
Statistics

Jarque–Bera Test
p-Value

Breusch–Pagan Test
Statistics

Breusch–Pagan Test
p-Value

0.5 0.55682 0.75699 0.30500 0.58076
1 0.56691 0.75318 0.22542 0.63493

1.5 0.56931 0.75227 0.12210 0.72677
2 0.56657 0.75330 0.04690 0.82855

2.5 0.56097 0.75541 0.00891 0.92480
3 0.55721 0.75684 0.00019 0.98900

Table 6. Validity of variogram-based estimators: Jarque–Bera and Breusch–Pagan tests for the time
series in 2014. All p-values are statistically insignificant validating that the assumptions are satisfied.

q Value Jarque–Bera Test
Statistics

Jarque–Bera Test
p-Value

Breusch–Pagan Test
Statistics

Breusch–Pagan Test
p-Value

0.5 0.60818 0.73780 0.14610 0.70228
1 0.64770 0.72336 0.32433 0.56902

1.5 0.60814 0.73781 0.69309 0.40512
2 0.48607 0.78424 1.15858 0.28176

2.5 0.34879 0.83996 1.50670 0.21964
3 0.48800 0.78349 1.66475 0.19696

Table 7. Validity of variogram-based estimators: Jarque–Bera and Breusch–Pagan tests for the time
series in 2015. All p-values are statistically insignificant validating that the assumptions are satisfied.

q Value Jarque–Bera Test
Statistics

Jarque–Bera Test
p-Value

Breusch–Pagan Test
Statistics

Breusch–Pagan Test
p-Value

0.5 0.54700 0.76071 0.91249 0.33946
1 0.53990 0.76342 0.76327 0.38231

1.5 0.53987 0.76343 0.61092 0.43444
2 0.53987 0.76342 0.55604 0.45585

2.5 0.53724 0.76443 0.67565 0.41108
3 0.56444 0.75411 1.00119 0.31702

Table 8. Validity of variogram-based estimators: Jarque–Bera and Breusch–Pagan tests for the time
series 2016. All p-values are statistically insignificant validating that the assumptions are satisfied.

q Value Jarque–Bera Test
Statistics

Jarque–Bera Test
p-Value

Breusch–Pagan Test
Statistics

Breusch–Pagan Test
p-Value

0.5 0.59922 0.74111 0.17432 0.67630
1 0.61319 0.73595 0.16395 0.68554

1.5 0.53098 0.76683 0.84132 0.35902
2 0.49933 0.77906 1.25441 0.26271

2.5 0.73162 0.69363 1.3733 0.24124
3 1.24946 0.53540 1.37195 0.24148
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Table 9. Validity of variogram-based estimators: Jarque–Bera and Breusch–Pagan tests for the time
series 2017. All p-values are statistically insignificant validating that the assumptions are satisfied.

q Value Jarque–Bera Test
Statistics

Jarque–Bera Test
p-Value

Breusch–Pagan Test
Statistics

Breusch–Pagan Test
p-Value

0.5 0.25395 0.88075 0.34714 0.55573
1 0.48277 0.78554 0.27510 0.59993

1.5 0.59027 0.74443 0.06219 0.80307
2 0.61923 0.73373 0.00923 0.92345

2.5 0.57036 0.75187 0.18706 0.66538
3 0.45779 0.79541 0.42340 0.51524

4. Discussion and Conclusions

In this paper, our main contribution is the use of a new framework to extract an
implied volatility process to be used as a proxy for estimating the roughness of the under-
lying volatility. As we discussed in Section 2.1, the new proxy is obtained by solving an
optimization problem, (5), using aggregated option trading data and their corresponding
sensitivities. When applied to S&P 500 data, the implied volatility process is reliable,
exhibiting similar trends to the VIX index.

Furthermore, we study various methods for estimating the Hurst index, which is a
parameter that characterizes the roughness/smoothness of the underlying process. When
applied to our new implied volatility proxy, we observe a rough behavior, even when using
low-frequency observations, adding value to a common finding in the literature that rough
volatility is typically observed in the context of high-frequency trading. This observation
shows that it is important to incorporate the roughness of the volatility into the pricing
model, even when the trading happens at lower frequencies. Finally, when investigating
different ranges of data to estimate the Hurst index, we observe that H is a piecewise
constant, which implies that it should be modeled locally.
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