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Abstract: This paper delves into the dynamics of asset pricing within Bachelier’s market model
(BMM), elucidating the representation of risky asset price dynamics and the definition of riskless
assets. It highlights the fundamental differences between BMM and the Black–Scholes–Merton market
model (BSMMM), including the extension of BMM to handle assets yielding a simple dividend. Our
investigation further explores Bachelier’s term structure of interest rates (BTSIR), introducing a novel
version of Bachelier’s Heath–Jarrow–Morton model and adapting the Hull–White interest rate model
to fit BMM. This study concludes by examining the applicability of BMM in real-world scenarios,
such as those involving environmental, social, and governance (ESG)-adjusted stock prices and
commodity spreads.

Keywords: Bachelier’s market model; Bachelier’s partial differential equation and option pricing;
Bachelier’s term structure of interest rates

1. Introduction

Louis Bachelier’s groundbreaking option pricing model, presented in his Ph.D. thesis
(Bachelier 1900), marked a significant milestone in the emergence of mathematical finance
(Courtault et al. 2000; Davis and Etheridge 2006; Sullivan and Weithers 1991). Bachelier’s
model employed arithmetic Brownian motion to describe the price dynamics, and although
it faced initial skepticism as a suitable asset price model, there were a few exceptional cases
in which it proved to be applicable. Bachelier’s market model necessitated the inclusion of
a riskless bank account with a simple riskless interest rate, expanding upon Shiryaev’s prior
work on Bachelier’s model with zero interest rates (Shiryaev 2003). However, we assert
that combining Bachelier’s asset dynamics, governed by arithmetic Brownian motion, with
a riskless bank account employing compound interest rates, as explored by Terakado (2019)
and Brooks and Brooks (2017), is not appropriate. The criticism regarding the fact that
Bachelier’s market model allows negative riskless rates has become irrelevant, given the
existence of such instances in real financial markets (Neufeld 2022).

Presently, the primary challenge in utilizing Bachelier’s market model arises from
the requirement of non-negative asset prices. While stock prices inherently meet this
criterion, the environmental, social, and governance (ESG)-adjusted price may exhibit
negative values. In Rachev et al. (2023), we define the ESG-adjusted stock price SESG

t , t ≥ 0,
as follows:

SESG
t = S(X)

t

(
1 + γESGZ(X;I)

t

)
∈ R,

where S(X)
t > 0 represents the stock price of company X, Z(X;I)

t ∈ R represents the relative
ESG score of X, and γESG ∈ R denotes the ESG affinity of the financial market. The
ESG-adjusted stock price introduces a crucial third dimension (ESG) into the traditional
two-dimensional (risk-return) investment framework, as discussed by Lauria et al. (2022)
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and Hu et al. (2022). Some experts in the financial industry and financial regulators
currently consider the ESG performance as an independent factor alongside the risk and
return, which are the other two factors (Hale 2023).

Further instances of price dynamics that have positive and negative values encompass
various scenarios. These include the disparity between two stock prices, the distinction
between a stock price and a tradable benchmark security (such as a stock index or US
Treasury securities), the variances in currency pairs and futures and option contracts, and
the variations in the yield differentials of stocks or bonds (Schaefer 2002; Vaidya 2023).
Additionally, commodity spreads entail dissimilarities in prices between different com-
modities, disparities in the prices of the same commodity across various trading locations,
and variations in a commodity’s prices at different stages of the production process. Note-
worthy examples include crack spreads in the oil market, crush spreads in the soybean
market, spark spreads in the electricity market, calendar spreads that indicate the prices
of one commodity at different points in time, and so on (Downey 2022). In this paper,
we present the fundamentals of dynamic asset pricing within Bachelier’s market model
(BMM). BMM has consistently been viewed as subordinate to the Black–Scholes–Merton
(BSM) model, with all efforts focused on adapting BMM to resemble BSM. Starting from
equity option pricing and culminating with bond pricing (the term structure of interest
rates), this paper introduces numerous innovative concepts. While all the discoveries are
intriguing, the primary one is as follows: The fundamental asset pricing theorem in BMM
is not based on discounting the price process but on a price shift. It’s astounding to see
how the term structure of interest rate (TSIR) models become much more elegant under
Bachelier’s framework.

In BMM, the risky asset price follows an arithmetic Brownian motion with a time-
dependent instantaneous mean and variance that thus represents a general diffusion
process. The novelty lies in the definition of the riskless asset, which, diverging from the
Black–Scholes–Merton riskless bank account, is defined as a simple interest bank account.
The necessity of selecting a simple interest bank account as the riskless asset was elucidated
in Rachev et al. (2023).

Our exploration of BMM commences with the derivation of Bachelier’s partial differ-
ential equation (PDE) using standard no-arbitrage arguments in a complete market model.
Although Bachelier’s PDE substantially differs from the Black–Scholes–Merton PDE, it is a
particular form of the Cauchy PDE. Therefore, its solution is provided by the Feynman–Kac
probabilistic solution to the Cauchy problem, as outlined in Duffie (2001, Appendix E).
The solution of Bachelier’s PDE furnishes the formula for European contingent claims
(ECCs) within BMM. The continuous diffusion propelling the Feynman–Kac solution repre-
sents Bachelier’s risk-neutral process, which we further elucidate through the risk-neutral
valuation of ECCs in BMM.

We posit that BMM should not be merely viewed as a variant of the Black–Scholes–
Merton market model (BSMMM) that follows an exponential transformation of the price
dynamics of both risky and riskless assets. This position underscores the fundamental
differences between BMM and the BSMMM. Additionally, we extend BMM to situations
in which trading the risky asset yields a simple dividend. This definition of the simple
dividend yield mirrors that of the simple interest rate associated with Bachelier’s riskless
asset. Yet again, the corresponding Bachelier’s PDE is a special form of the Cauchy equa-
tion, with its probabilistic solution provided by the Feynman–Kac formula. Notably, we
derive the no-arbitrage price of the zero-coupon bond within BMM, and this serves as a
springboard for studying Bachelier’s term structure of interest rates (BTSIR).

In the second half of this paper, we delve into the study of BTSIR. We derive both the
no-arbitrage Bachelier’s T-forward (delivery) price and Bachelier’s future price. Attempting
to define Bachelier’s forward rates in a way that mirrors the definition of forward rates
in the BSMMM proves somewhat unsatisfactory. It leads to the Heath–Jarrow–Morton
(HJM) interest rate model for BMM, which has the same deficiencies as the HJM model for
the BSMMM, triggering the introduction of the London Inter-Bank Offered Rate (LIBOR)
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model. We propose a new version of Bachelier’s HJM model in which the forward rates are
replaced with zero-simple-interest loans, more succinctly referred to as no-interest loans.
This modification results in a new form of BTSIR defined by the dynamics of the no-interest
loans. Finally, we adapt the Hull–White interest rate model to fit BMM.

This paper contains three main sections (subdivided into numerous subsections)
and a conclusion. The current section serves as an introduction to BMM and outlines
the principal findings of this study. Section 2 is dedicated to option pricing in BMM for
assets with time-dependent parameters. Section 2.1 involves the derivation of Bachelier’s
PDE and the provision of its Feynman–Kac probabilistic solution, which leads to the no-
arbitrage option price formula. In Section 2.2, the same result is achieved using risk-neutral
valuation in BMM. Section 2.3 explains why BMM and the BSMMM are fundamentally
different. Section 2.4 introduces and studies Bachelier’s option pricing model for assets
with a simple dividend yield. Section 2.4 extends BMM to a risky asset with a dividend
yield. Section 3 focuses on BTSIR. In Section 3.1, we provide the risk-neutral valuation
of Bachelier’s zero-coupon bond and thus introduce BTSIR. In Section 3.2, we define
Bachelier’s forward contract, and in Section 3.3, we present Bachelier’s future price. In
Section 3.4, we introduce Bachelier’s forward rates and no-interest loan rates, and the HJM
model for BMM. Finally, Section 3.5 is devoted to the Hull and White model in BMM.
Section 4 contains the concluding remarks.

2. Approaches to Option Pricing in Bachelier’s Model
2.1. Bachelier’s Option Pricing: The Partial Differential Equation and its Feynman–Kac Solution

Bachelier’s market model (A,B,C) is defined by a risky asset A, riskless asset B,
and EEC1 C. A has the Bachelier’s asset price dynamics of a continuous diffusion process
determined by the stochastic differential equation (SDE)

dAt = ρtdt + vtdBt, t ≥ 0, A0 > 0, (1)

where Bt, t ∈ [0, ∞), is a standard Brownian motion on a stochastic basis (filtered prob-
ability space) (Ω,F,F = {Ft = σ(Bu, u ≤ t) ⊆ F, t ≥ 0},P) on a complete probability
space (Ω,F,P), ρt = ρ(At, t) and vt = v(At, t), t ≥ 0, are F-adapted processes, and
ρ : R× [0, ∞)→ R and v : R× [0, ∞)→ (0, ∞) satisfy the usual regularity conditions2.
From (1), we have

At = At +
∫ t

0
ρsds +

∫ t

0
vsdBs, t ≥ 0. (2)

B is the simple interest bank account3 with price dynamics determined by the SDE

dβt = rtdt, β0 > 0, (3)

where the simple interest rate rt = r(At, t), t ≥ 0, is an F-adapted process,
r : R× [0, ∞)→ R satisfies the usual regularity conditions4, and rt ≤ ρt, t ≥ 0 (P -almost
surely (P-a.s.)).

From (3), we have

βt = β0 +
∫ t

0
rsds. (4)

The EEC C has the price dynamics

Ct = f (At, t), t ∈ [0, T], (5)

where f (x, t), x ∈ R, t ∈ [0, T], has continuous partial derivatives ∂2 f (x,t)
∂x2 , ∂ f (x,t)

∂t on
t ∈ [0, T), and T is the terminal (expiration) time of C, with the EEC’s terminal payoff
CT = g(AT) for some continuous function g : R→ R.
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Next, we will derive Bachelier’s PDE for f (x, t), x ∈ R, t ∈ [0, T). We start with the Itô
formula (See Duffie (2001, sct. 5D)) for Ct = f (At, t):

dCt =

[
∂ f (At, t)

∂t
+

∂ f (At, t)
∂x

ρt +
1
2

∂2 f (At, t)
∂x2 v2

t

]
dt +

∂ f (At, t)
∂x

vtdBt. (6)

Consider a self-financing riskless portfolio of A and C, which can be written as
Pt = at At + Ct. Thus, dPt = atdAt + dCt = dβt, which leads to

at(ρtdt + vtdBt)

+
[

∂ f (At ,t)
∂t + ∂ f (At ,t)

∂x ρt +
1
2

∂2 f (At ,t)
∂x2 v2

t

]
dt + ∂ f (At ,t)

∂x vtdBt = rtdt.

Thus, at = − ∂ f (At ,t)
∂x , and

atρt +

[
∂ f (At, t)

∂t
+

∂ f (At, t)
∂x

ρt +
1
2

∂2 f (At, t)
∂x2 v2

t

]
= rt.

This leads to ∂ f (At ,t)
∂t + 1

2
∂2 f (At ,t)

∂x2 v2
t − rt = 0.

Bachelier’s PDE for f (x, t), x ∈ R, t ∈ [0, T), is

∂ f (x, t)
∂t

+
1
2

∂2 f (x, t)
∂x2 v(x, t)2 − r(x, t) = 0, (7)

with the boundary condition f (x, T) = g(x), x ∈ R.
Next, we provide the Feynman–Kac solution of (7)5. First, let us recall the Cauchy

problem: Find f ∈ C2,1(R× [0, T)) by solving

D f (x, t)− a(x, t) f (x, t) + h(x, t) = 0, x ∈ R, t ∈ [0, T), (8)

with the boundary condition f (x, T) = g(x), x ∈ R, where

D f (x, t) =
∂ f (x, t)

∂t
+

∂ f (A(t), t)
∂x

µ(x, t) +
1
2

∂2 f (x, t)
∂x2 σ(x, t)2, (9)

where a : R× [0, T]→ R, h : R× [0, T]→ R, g : R→ R, µ : R× [0, T]→ R, and σ : R×
[0, T]→ R.

Let
∼
B(t), t ≥ 0, be a Brownian motion, and consider the Itô process Xt, t ≥ 0, with

the SDE
dXt = µ(Xt, t)dt + σ(Xt, t)d

∼
B(t), t ≥ 0, (10)

assuming that µ : R× [0, T]→ R and σ : R× [0, T]→ R satisfy the regularity conditions,
guaranteeing that (10) has a unique strong solution. The Feynman–Kac (probabilistic)
solution of (7)–(9) is given by

f (x, t) = EXt=x
[∫ T

t
ϕt,sh(Xs, s)ds + ϕt,T g(XT)

]
, (11)

where ϕt,s = exp
[
−
∫ s

t a(Xu, u)du
]
.

The solution (11) solves (7), with a(x, t) = 0, h(x, t) = −r(x, t), µ(x, t) = 0, and
σ(x, t) = v(x, t). Thus, the Feynman–Kac solution of Bachelier’s PDE (7) is

f (x, t) = EZt=x
[

g(ZT)−
∫ T

t
r(Zs, s)ds

]
, (12)
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where Zt, t ≥ 0, is the Itô process satisfying the SDE

dZt = v(Zt, t)d
∼
B(t), t ≥ 0. (13)

The value Ct, t ∈ [0, T), of the option contract C is given by Ct = f (At, t), where
f (x, t), x = At, is determined by (12) and (13).

Bachelier’s PDE for f (x, t), x ∈ R, t ∈ [0, T), with a constant volatility v(x, t) = v and
a constant simple riskless rate r(x, t) = r, is

∂ f (x, t)
∂t

+
1
2

∂2 f (x, t)
∂x2 v2 − r = 0, t ∈ [0, T), (14)

with a boundary condition f (x, T) = g(x), which is a non-homogeneous heat equation in
which the time t has been replaced with the time to maturity τ = T − t6.

As in Shirvani et al. (2020), it will be of interest to find a perpetual derivative C(γ)

with a price process C(γ)
t = f (At, t) = A2

t + γβt for some γ ∈ R r {1, 2}. The parameter
value γ is the solution of (7), where f (x, t) = x2 + γ(β0 + rt). From (7), we have

∂ f (x, t)
∂t

+
1
2

∂2 f (x, t)
∂x2 v2 − r = γr + v2 − r = 0,

and thus γ = 1− v2

r . The market
(
A,B,C(γ)

)
is arbitrage-free and complete, and thus

any security can be replicated using the other two. For example, if a simple risk account B
is not available for trading (Rachev et al. 2017), the trader can use a self-financing portfolio
of the asset A and the perpetual derivative C(γ) to replicate B. C(γ) will also be applied in
the construction of Bachelier’s trinomial tree, which is needed in BTSIR models.

2.2. Risk-Neutral Valuation in Bachelier’s Option Pricing

Consider again BMM (A,B,C), where the asset price At, t ≥ 0, is given by (1), the
simple interest account is given by (3), and the option price Ct, t ∈ [0, T], defined by (5) has
a terminal payoff CT = g(AT). We search for the unique equivalent martingale measure
Q ∼ P such that on Q,

dAt = rtdt + vtdB(Q)
t , t ∈ [0, T], (15)

where B(Q)
t is a standard Brownian motion on Q. On P, B(Q)

t is an arithmetic Brownian

motion dB(Q)
t = dBt + θtdt. Then, by choosing θt =

ρt−rt
vt

> 0 to be the market price of risk,
we obtain the dynamics of At, t ≥ 0, on Q, as defined in (15). Thus, the excess asset price
over the riskless simple interest rate,

At − βt = A0 − β0 +
∫ t

0
vsdB(Q)

s , (16)

is a martingale on (Ω,F,F,Q). This is the main difference between BMM and the BSMMM,
where the discounted price process under the risk-neutral measure is a martingale.

Using the same arguments used in Duffie (2001, sct. 6H), we have that the option price
in excess of the riskless simple interest rate is a martingale under Q, that is,

Ct − βt = EQ
t (CT − βT) = EQ

t (g(AT)− βT). (17)

Thus,

Ct = EQ
t

(
g(AT)−

∫ T

t
rsds

)
= EQ

t

(
g
(

At +
∫ T

t
rsds +

∫ T

t
vsB(Q)

s

)
−
∫ T

t
rsds

)
(18)

Indeed, the option value Ct in (18) and the value Ct = f (At, t), where f (x, t) is given
in (12), coincide.
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In the case when, in (18), rt = r and vt = v, the price dynamics of a call option with a
maturity T and strike price K are given by7

Ct = λ0,tΦ
(

λ0,t

λ1,t

)
+ λ1,t ϕ

(
λ0,t

λ1,t

)
− r(T − t), t ∈ [0, T], (19)

where λ0,t = At−K+ r(T − t), λ1,t = v
√

T − t, Φ is the cumulative probability distribution
of a standard normal random variable, and ϕ = Φ′ is its probability density.

2.3. Distinguishing Bachelier’s PDE from the Black–Scholes–Merton PDE

One can perceive that Bachelier’s PDE (7) can be derived as a special case of the
Black–Scholes–Merton PDE (See Duffie (2001, sct. 5.G, p. 92, formula (23)). Indeed, in
BMM, the risky asset follows the dynamics dAt = ρtdt + vtdBt, t ≥ 0, A0 > 0 (see (1)),
and the simple interest bank account dynamics are given by dβt = rtdt, β0 > 0 (see (3)). It
is tempting to consider the processes St = eAt , t ≥ 0, and bt = eβt , t ≥ 0. Then, by Itô’s
lemma, dSt = µ(St, t)dt + σ(St, t)dBt, where µ(St, t) =

(
ρt +

1
2 v2

t

)
St and σ(St, t) = vtSt.

Additionally, dbt = rtbtdt. Consider a Bachelier’s ECC with a maturity T and price process
Ct = f (At, t) = f (lnSt, t) = h(St, t), where h(x, t) = f (lnx, t), x > 0, t ∈ [0, T). The
Black–Scholes–Merton PDE for h(St, t) is

∂h(x, t)
∂t

+ rtx
∂h(x, t)

∂x
+

1
2

σ(x, t)2 ∂2h(x, t)
∂x2 − rth(x, t) = 0, x > 0, t ∈ [0, T). (20)

As h(x, t) = f (lnx, t), (20) is equivalent to

∂ f (y, t)
∂t

+

(
rt −

1
2

v2
t

)
∂ f (y, t)

∂x
+

1
2

v2
t

∂2 f (y, t)
∂x2 − rt f (y, t) = 0, (21)

with y = lnx ∈ R, t ∈ [0, T).
The Black–Scholes–Merton equation for f (y, t) = f (lnx, t) = h(x, t)), where

Ct = f (At, t) = f (lnSt, t) = h(St, t), is different from Bachelier’s PDE for f (y, t), which is
defined as follows (see (7)):

∂ f (y, t)
∂t

+
1
2

∂2 f (y, t)
∂x2 v2

t − rt = 0, y ∈ R, t ∈ [0, T) (22)

The discrepancy arises from the fact that in the BSMMM, necessary arbitrage con-
siderations are applied to the price process St = exp(At), t ≥ 0, and the bank account
bt = eβt , t ≥ 0. In contrast, in BMM, no-arbitrage arguments are applied, assuming that
the asset price processes are the tradable securities, with the asset price process At and
the simple interest bank account βt, t ≥ 0. A holder of a short position in an ECC in BMM
hedges her position using self-financing portfolios of the assets A and B, with dynamics
At and βt, t ≥ 0. The processes St = eAt and bt = eβt are not the price processes of traded
assets in BMM. The processes St = eAt and bt = eβt cannot serve as the price processes
of a traded security (a perpetual derivative) in Bachelier’s no-arbitrage complete market.
For St = eAt , t ≥ 0, to be a perpetual derivative on Bachelier’s market (A,B), the func-
tion f (x, t) = ex should satisfy (7), which it does not. Therefore, in Bachelier’s market,
the process St = eAt , t ≥ 0, cannot be utilized for hedging with a self-financing option
replicating portfolio.

2.4. Bachelier’s Option Pricing Model for Assets with Simple Dividend Yield

Suppose that the asset A(D) pays dividends at a continuous rate8 with an instanta-
neous simple dividend yield Dt ∈ R, that is, in (t, t + dt], the asset-holder receives Dtdt.
Consider an EEC C in the BMM

(
A(D),B

)
, with a price process C(D)

t , t ∈ [0, T], where
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T is the terminal time and the terminal payoff is C(D)
T = g

(
A

(D)
T

)
. Therefore, the price

process of A(D) is given by

dA(D)
t = ρtdt + vtdBt −Dtdt = (ρt −Dt)dt + vtdBt. (23)

Consider a self-financing riskless portfolio of A and C, which can be written as
P(D)

t = at A(D)(t) + C(D)
t . Thus, dP(D)

t = atdA(D)
t + dC(D)

t + atDtdt = dβt, which leads to

at((ρt −Dt)dt + vtdBt) + dC(D)
t + atDtdt = rtdt. From (23) and since C(D)

t =

f (D)
(

A(D)
t , t

)
,

dC(D)
t =

[
∂ f (D)

(
A(D)

t ,t
)

∂t +
∂ f (D)

(
A(D)

t ,t
)

∂x ( ρt −Dt) +
1
2

∂2 f (D)
(

A(D)
t ,t

)
∂x2 v2

t

]
dt

+
∂ f (D)

(
A(D)

t ,t
)

∂x vtdBt.

Thus, at = −
∂ f (D)

(
A(D)

t ,t
)

∂x , which leads to

∂ f (D)
(

A(D)
t , t

)
∂t

−
∂ f (D)

(
A(D)

t , t
)

∂x
Dt +

1
2

∂2 f (D)
(

A(D)
t , t

)
∂x2 v2

t = rt.

Thus, Bachelier’s PDE for an EEC on a stock paying dividends with a rate Dt is

∂ f (D)(x, t)
∂t

− ∂ f (D)(x, t)
∂x

Dt +
1
2

∂2 f (D)(x, t)
∂x2 v2

t − rt = 0, f (D) = g(x) (24)

We solve (24) using the Feynman–Kac solution ((12) and (13)) of the Cauchy problem
((8) and (9)), with a(x, t) = 0, µ(x, t) = −Dt, σ(x, t) = vt, and h(x, t) = −rt. Thus, the
Feynman–Kac solution of Bachelier’s PDE for an EEC on a stock paying dividends with a
rate Dt (24) is

f (D)(x, t)(x, t) = EZ(D)
t =x

[
g
(

Z(D)
T

)
−
∫ T

t
r
(

Z(D)
s , s

)
ds
]

, (25)

where Z(D)
t , t ≥ 0, is the Itô process satisfying the SDE

dZ(D)
t = −Dtdt + v

(
Z(D)

t , t
)

d
∼
B(t), t ≥ 0. (26)

Next, we consider Bachelier’s security X paying a cumulative dividend Dt, t ∈ [0, T],
that is, the total amount of dividends paid until time T. The security price process is
Xt, t ∈ [0, T]. The pair (Dt, Xt)t∈[0,T] is defined on (Ω,F,F,P) and is called the dividend-

price pair9. If Dt =
∫ t

0 Dsds, then Dt, t ∈ [0, T], is called a dividend-rate process. The gain
process is defined as Gt = Xt + Dt. Suppose that Q is the equivalent martingale measure
Q ∼ P such that on Q, Gt − βt = E(Q)

t (GT − βT), t ∈ [0, T]. This leads to Bachelier’s
security pricing formula10:

Xt = E(Q)
t

(
XT +

∫ T

t
dDs −

∫ T

t
rsds

)
, t ∈ [0, T]. (27)
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Consider a Bachelier’s zero-coupon bond, that is, a security paying 1 at time τ ∈ [0, T].
Thus, Dt = 0 for t ∈ [0, τ) and Dt = 1 for t ∈ [τ, T]. According to (27), the value at t ∈ [0, T]
of the zero-coupon bond, denoted as B(t, τ), is

B(t, τ) = EQ
t (1−

∫ τ

t
rsds) = 1− EQ

t (
∫ τ

t
rsds) for t ∈ [0, τ], (28)

and B(t, τ) = 0 for t ∈ (τ, T]. The collection {B(t, τ), 0 ≤ t ≤ τ ≤ T} is called Bachelier’s
term structure of interest, and we will study it in more detail in the following section.

3. Bachelier’s Term Structure of Interest Rates
3.1. Bachelier’s Zero-Coupon Bond Price

Consider BMM (A,B,C), where C = ZT is a zero-coupon bond11 with a maturity
T > 0, the asset price At, t ≥ 0, is given by (1), and the simple interest account is given by
(3). ZT pays 1 at T and nothing before that time; thus, Bachelier’s zero-coupon bond price
B(t, T) of ZT at time t ∈ [0, T ] is given by (18) or, equivalently, by (28)12:

B(t, T) = EQ
t

(
1−

∫ T

t
rsds

)
= 1− EQ

t

(∫ T

t
rsds

)
. (29)

Let us determine a self-financing portfolio Pt, t ∈ [0, T], of A and B that can replicate
B(t, T), t ∈ [0, T]. According to (29), B(t, T) − βt = EQ

t (1− βT) is a martingale on Q
and thus

B(t, T)− βt = EQ
0 (1− βT) +

∫ t

0
γB(s)dB(Q)

s . (30)

From (30), dB(t, T) = rtdt + γB(t)dB(Q)
t . For the self-financing portfolio Pt = at A(t) +

btβt, we have Pt = (at + bt)rtdt + atvtdB(Q)
t . As dPt = dB(t, T), it follows that at =

γB(t)
vt

and bt = 1− γB(t)
vt

.
Given T > 0, the set ΛT = {B(t, T), 0 ≤ t ≤ T ≤ T} will be called Bachelier’s

term-structure of interest rates (BTSIR) in [0,T].

3.2. Bachelier’s Forward Contract

Bachelier’s forward contract is a slight modification13 of the classical forward contract
in the Black–Scholes–Merton market. Suppose that two market agents (i and (ג enter
Bachelier’s forward contract; i takes a long position in the contract and ג takes a short
position. When the contract reaches maturity, i’s payoff is V(l)(T, T) = AT − F(t, T) and
s’ג payoff is V(s)(T, T) = −V(l)(T, T), where F(t, T) is the Bachelier’s T-forward (delivery)
price of the asset A. At time t, when the contract was initiated, i and ג agreed on the value
of Bachelier’s forward contract, V(t, T) = Vt ≥ 0, that is, the amount ג will receive from i.
To determine the value of Bachelier’s T-forward price F(t, T) = F(t, T; Vt), we apply the
risk-neutral valuation Formula (18). According to (18),

Vt = V(t, T) = EQ
t

(
V(T, T)−

∫ T
t rsds

)
= EQ

t

(
At − F(t, T)−

∫ T
t rsds

)
= EQ

t (AT − βT)− F(t, T) +
∫ t

0 rsds = At − F(t, T).

Thus14,
F(t, T) = At −Vt = At −V(t, T). (31)
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Let us determine the hedging strategy that ג should follow. ג agrees to pay
F(t, T) = F(t, T; V(t)) for the asset with value AT at T. At t, ג receives Vt. At s ∈ [t, T],
V(s, T) = As − F(t, T). By (28), 1 = B(s, T) + EQ

s

(∫ T
s rudu

)
, and thus

V(s, T) = As − F(t, T) = As − F(t, T)
(
B(s, T) + EQ

s

(∫ T
s rudu

))
= As − EQ

s

(∫ T
s rudu

)
− F(t, T)B(s, T).

(32)

At time s ∈ [t, T), ג can hedge her short position in Bachelier’s forward contract by
taking a short position of F(t, T) zero-coupon bonds, each of which has a value of B(s, T).
The value of this position is F(t, T)B(s, T) = At − Vt. ג has received Vt from her short
position in Bachelier’s forward contract. With the amount At, ג buys the asset. At the
terminal time T, s’ג investment position has a value of AT − F(t, T)B(T, T) = AT − F(t, T).
ג delivers the asset and receives F(t, T).

3.3. Bachelier’s Future Price

We now pass to the definition of Bachelier’s future price. Futures contracts in Bache-
lier’s market can be viewed as “mark to market” (See Tuovila (2022)). in a sequence of for-
ward contracts. Let ti,n, i = 0, . . . , n, 0 = t0,n < t1,n < · · · < tn,n = T, n ∈ N = {1, 2, . . .},
be a sequence of trading times (trading instances). To enter this contract, the trader i
should pay ϕ(ti,n)(ti+1,n − ti,n) ≥ 0. In the classical setting of futures contracts, ϕ(ti,n) = 0,
allowing i to take an unlimited number of futures contracts. In reality, i will pay margin
and maintenance fees (See Scott (2021)) to the exchange where the futures contract is traded.
Taking unbounded numbers of futures contracts is impossible. In general, the assumption
ϕ(ti,n)(ti+1,n − ti,n) > 0 can be treated as the transaction cost, and our analysis can follow
the exposition in Janecek and Shreve (2010).

Following the definition of the future price in the Black–Scholes–Merton market (See
Shreve (2004, Definition 5.6.4, p. 244)), we call the F-adapted process Φt, t ∈ [0, T], on
(Ω,F,F,P) Bachelier’s future price process, with an underlying asset A, if (and only if)

Φt = EQ
t (AT), t = [0, T]. (33)

According to (17), Φt = EQ
t (AT) = At +

∫ T
t rudu. Note that the discrete-time inter-

pretation of the future in the BSMMM differs from a similar interpretation in BMM. Thus,
here, we take (33) as the definition of Bachelier’s future price process. In other words,
Bachelier’s future price Φt is the best forecast of the risk-neutral investor of the asset price
AT at maturity T. To show the connection between Bachelier’s forward contracts in discrete
trading instances ti,n, i = 0, . . . , n, and Bachelier’s future price, which is given in (32), we
recall the formula for Bachelier’s forward contract (31). Then,

V(t, T) = At − F(t, T). (34)

For t = ti,n and T = ti+1,n, (34) implies that V(ti,n, ti+1,n) = Ati,n − F(ti,n, ti+1,n). If we
set V(ti,n, ti+1,n) = Φti,n = EQ

ti,n
(AT), this will require that the delivery price F(ti,n, ti+1,n) =

FΦ(ti,n, ti+1,n) is given by

FΦ(ti,n, ti+1,n) = Φti,n − Ati,n = EQ
ti,n

(AT)− Ati,n = EQ
ti,n

(
AT − Ati,n

)
. (35)

Thus, we can view Bachelier’s future price Φti,n , i = 0, . . . , n− 1, as Bachelier’s for-
ward contract V(ti,n, ti+1,n) with Bachelier’s forward (delivery) price FΦ(ti,n, ti+1,n) =

EQ
ti,n

(
AT − Ati,n

)
.

According to (34), the holder of a long Bachelier’s forward contract initiated at t = 0 in
which no payment is made at t = 0 will pay F(0, T) +V(0, T) to receive the asset with price
AT . In comparison, the holder (i) of a long Bachelier’s forward contract initiated at t = 0
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who keeps the contract until maturity will pay ΦT = AT at maturity to receive the asset
with price AT . According to (35) and passing to the limit as n ↑ ∞ , i will collect a total
payment of

∫ T
0 dΦt = ΦT −Φ0 = AT − EQ(AT). Thus, to receive the asset with value AT ,

i has paid Φ0 = EQ(AT) = A0 +
∫ T

0 rudu. Consider the spread Φ0 − (F(0, T) + V(0, T))
of the payments made by the future and forward holders to receive the same asset with
value A(T) at maturity T. According to (31) and (33),

Φ0 − (F(0, T) + V(0, T)) = A0 +
∫ T

0
rudu− A0 =

∫ T

0
rudu ∈ R.

If
∫ T

0 rudu > 0, then i must make payments over all positive simple riskless rates,

and for this reason, Φ0 > (F(0, T) + V(0, T)). As Φ0 = EQ(AT) = A0 +
∫ T

0 rudu and

EP(AT) = A0 +
∫ T

0 ρudu, if Φ0 < EP(AT), then Bachelier’s market is in normal backwar-
dation15. If Φ0 > EP(AT), then Bachelier’s market is in contango16.

3.4. Bachelier’s Forward Rates and the Heath–Jarrow–Morton Model in Bachelier’s Market Model

We start with the definition of Bachelier’s forward agreement17, which will allow us
to determine an alternative representation of BTSIR:

ΛT = Λ(r)
T =

{
B(t, T) = EQ

t

(
1−

∫ T

t
rsds

)
, 0 ≤ t ≤ T ≤ T

}
. (36)

At t ≥ 0, consider borrowing 1 ($1, for example) at time T > t, with a repay-
ment of γ(t, T, T + ε) = 1 + εR(t, T, T + ε) at T + ε. This is equivalent to determining
the number γ(t, T, T + ε) of Bachelier’s zero-coupon bonds B(t, T + ε), so that B(t, T) =
γ(t, T, T + ε)B(t, T + ε). Thus, γ(t, T, T + ε) = 1 + εR(t, T, T + ε) = B(t,T)

B(t,T+ε)
and

R(t, T, T + ε) = −B(t,T+ε)−B(t,T)
εB(t,T+ε)

. We call

f(t, T) = lim
ε↓0

R(t, T, T + ε) = − 1
B(t, T)

∂B(t, T)
∂T

= −∂lnB(t, T)
∂T

(37)

Bachelier’s forward rate, which represents the simple interest rate agreed upon at time
t ≥ 0 for borrowing and repaying the instantaneous loan at T ≥ t. Thus, we obtain an
alternative representation of BTSIR,

Λ(f)
T =

{
B(t, T) = exp

(
−
∫ T

t
f(t, u)du

)
, 0 ≤ t ≤ T ≤ T

}
, (38)

in terms of Bachelier’s forward rates f(t, u), 0 ≤ t ≤ u ≤ T.
From (36), ∂B(t,T)

∂T = −EQ
t (rT) and ∂B(t,T)

∂T

∣∣∣
T=t

= −rt. From (37), ∂B(t,T)
∂T =

−f(t, T)exp
(
−
∫ T

t f(t, u)du
)

and ∂B(t,T)
∂T

∣∣∣
T=t

= −f(t, t). Thus, f(t, t) = rt for all

t ∈ [0,T].
Next, we derive the dynamics of B(t, T), 0 ≤ t ≤ T ≤ T, in BTSIR by applying the

HJM model for the TSIR (See Heath et al. (1992) and Jarrow (2002)). We start with the
stochastic dynamics of f(t, T), 0 ≤ t ≤ T ≤ T, on (Ω,F,F,P) given by the Itô process18.

df(t, T) = µf(t, T)dt + σf(t, T)dBt,f(0, T) ∈ R. (39)

From (38) and since f(t, t) = rt,

dB(t, T) =
(

rt − µ∗f(t, T) +
1
2

σ∗f(t, T)2
)
B(t, T)dt− σ∗f(t, T)B(t, T)dBt, (40)

where µ∗f(t, T) =
∫ T

t µf(t, u)du and σ∗f(t, T) =
∫ T

t σf(t, u)du.
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We search for the unique equivalent martingale measure Q ∼ P such that on Q,

dB(t, T) = rtB(t, T)dt− σ∗f(t, T)B(t, T)B(Q)
t , (41)

where B(Q)
t is a standard Brownian motion on Q. On P, B(Q)

t is an arithmetic Brownian

motion dB(Q)
t = dBt + θtdt. Then, assuming that there exists θt, 0 ≤ t ≤ T, independent

of T such that θt =
µ∗f(t,T)−

1
2 σ∗f(t,T)

2

σ∗f(t,T)
for all 0 ≤ t ≤ T, then (41) holds. The dynamics of

f(t, T), 0 ≤ t ≤ T ≤ T, on (Ω,F,F,Q) are given by

df(t, T) = σf(t, T)σ∗f(t, T)dt + σf(t, T)dB(Q)
t . (42)

The derivation of (41) and (42) is the same as in the classical HJM market model. This
is disappointing, as B(t, T) = EQ

t

(
1−

∫ T
t rsds

)
, while in the HJM model, the zero-coupon

bond price is B(t, T) = EQ
t

(
exp

(
−
∫ T

t
∼
rsds

))
, where d

∼
βt =

∼
rt
∼
βtdt,

∼
β0 > 0, represents the

riskless bank account dynamics. Obviously, the stochastic dynamics of B(t, T) and B(t, T),
though they may look similar, are different. The reason that the derivation of (41) and
(42) is the same as in the HJM model is the choice of the forward rates as the starting
point in modeling BTSIR. From (37), it is clear that the definition of f(t, T) is not going to

change if we replace B(t, T) with
∼
B(t, T) = EQ

t

(
exp

(
−
∫ T

t rsds
))

. While
∼
B(t, T) is close

to B(t, T) = EQ
t

(
1−

∫ T
t rsds

)
, they are different. With this consideration in mind, we

introduce no-interest loan rates l(t, T), 0 ≤ t ≤ T ≤ T, as an alternative to Bachelier’s
forward rates f(t, T). Choosing the stochastic dynamics of l(t, T), 0 ≤ t ≤ T ≤ T, as a
starting point in the analysis of BTSIR will lead to an alternative to the representation of
BTSIR given by (36) and (38), namely,

Λ(l)
T =

{
B(t, T) = 1−

∫ T

t
l(t, u)du, 0 ≤ t ≤ T ≤ T

}
. (43)

We call Λ(l)
T the Bachelier–Heath–Jarrow–Morton (BHJM) model for the TSIR.

Let T > t ≥ 0 and tk = t + k∆, k = 0, . . . , n, n∆ = T. At time t, consider a zero-simple-
interest loan (shortly, no-interest loan)19 Ck in which 1 ($1, for example) is received at tk
and 1 is paid back at tk+1 . At t, the cost l(t, tk; ∆)∆ for the provider of the loan Ck

20 is

l(t, tk; ∆)∆ = B(t, tk)−B(t, tk+1) = EQ
t

(∫ tk+1

tk

rsds
)

.

Thus, ∑n−1
k=0 l(t, tk; ∆)∆ =EQ

t

(∫ T
0 rsds

)
∼ ∑n−1

k=0 EQ
t
(
rtk

)
∆. By passing to the limit as

n ↑ ∞, ∆ = T
n ↓ 0, we determine the no-interest loan rates:

l(t, T) = EQ
t (rT), 0 ≤ t ≤ T ≤ T,

∫ T

t
l(t, u)du = EQ

t

(∫ T

t
rsds

)
,0 ≤ t ≤ T ≤ T. (44)

Thus, B(t, T) = EQ
t

(
1−

∫ T
t rsds

)
= 1 −

∫ T
t l(t, u)du. We obtained an alternative

representation of BTSIR, Λ(l)
T (see (43)), in terms of the no-interest loan rates l(t, T),

0 ≤ t ≤ T ≤ T.
From (36), ∂B(t,T)

∂T = −EQ
t (rT) and ∂B(t,T)

∂T

∣∣∣
T=t

= −rt. Similarly, from (43), ∂B(t,T)
∂T =

−l(t, T)exp
(
−
∫ T

t l(t, u)du
)

and ∂B(t,T)
∂T

∣∣∣
T=t

= −l(t, t). Thus, l(t, t) = rt for all

t ∈ [0,T].
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Next, we derive the dynamics of B(t, T), 0 ≤ t ≤ T ≤ T, in BTSIR (43) by applying
risk-neutral valuation, such as that in (38)–(42). We start with the stochastic dynamics for
l(t, T), 0 ≤ t ≤ T ≤ T21.

dl(t, T) = µl(t, T)dt + σl(t, T)dBt,l(0, T) ∈ R. (45)

As B(t, T) = 1−
∫ T

t l(t, u)du, dB(t, T) =
(

rt − µ
(*)
l (t, T)

)
dt− σ

(*)
l (t, T)dBt, where

µ
(∗)
l (t, T) =

∫ T
t µl(t, u)du and σ

(∗)
l (t, u) =

∫ T
t σl(t, u)du. We search for the unique equiva-

lent martingale measure Q ∼ P such that on Q,

dB(t, T) = rtdt− σ
(∗)
l (t, T)dB(Q)

t , (46)

where B(Q)
t is a standard Brownian motion on Q. On P, B(Q)

t is an arithmetic Brownian

motion dB(Q)
t = dBt + θ

(l)
t dt. Then,

dB(t, T) =
(

rt − µ
(∗)
l (t, T) + σ

(∗)
l (t, T)θ(l)t

)
dt− σ

(∗)
l (t, T)dB(Q)

t .

Next, if there exists θ
(l)
t , 0 ≤ t ≤ T, independent of T such that θ

(l)
t =

µ
(*)
l (t,T)

σ
(*)
l (t,T)

for all

0 ≤ t ≤ T, then (46) holds. Because µ
(*)
l (t, T) = σ

(*)
l (t, T)θ(l)t , 0 ≤ t ≤ T, is equivalent

to µl(t, u) = σl(t, u)θ(l)t , 0 ≤ t ≤ T, we have that θ
(l)
t = µl(t,u)

σl(t,u)
. Thus, the risk-neutral

dynamics of l(t, T) are given by

dl(t, T) = σl(t, T)dB(Q)
t . (47)

Comparing (47) with (42), we see that the “unfortunate” drift term σf(t, T)σ∗f(t, T)
(See Shreve (2004, Section 10.4.1) and Chalasani and Jha (1997)). in (42) that led to the
introduction of the LIBOR market model22 is not present in (47). This simplifies the
implementation of the BHJM model Λ(l)

T . We begin the implementation of the BHJM
model by estimating σl(t, T), 0 ≤ t ≤ T ≤ T23. For the historical estimation, we choose
σl(t, T) = σll(t, T), where the constant σl > 0 is the volatility of the no-interest loan rates
l(t, T), 0 ≤ t ≤ T. We choose σl to match historical data. Note that the diffusion coefficient
σl(t, T) is the same on (Ω,F,F,Q) and (Ω,F,F,P). By (47),

dl(t, T) = σll(t, T)dB(Q)
t , (48)

where l(0, T) is determined by the market data for non-interest-bearing loans. From (48),
we determine l(t, T) and rt = l(t, t), 0 ≤ t ≤ T ≤ T, on (Ω,F,F,Q). According to (46),
we obtain the dynamics of B(t, T) on (Ω,F,F,Q):

dB(t, T) = rtdt− σl

(∫ T

t
l(t, u)

)
dB(Q)

t , (49)

where B(0, T) is determined by market data. The dynamics of B(t, T) on (Ω,F,F,Q)
are needed to value derivatives on the BTSIR ΛT . As rt = l(t, t), 0 ≤ t ≤ T ≤ T, on
(Ω,F,F,Q) is also known, we can also determine the dynamics of the BTSIR ΛT = Λ(r)

T ={
B(t, T) = EQ

t

(
1−

∫ T
t rsds

)
, 0 ≤ t ≤ T ≤ T

}
on the natural world (Ω,F,F,P).
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Let τ = T − t ≥ 0 denote the time to maturity, B(t, T) = B(t, t + τ) = 1 −
EQ

t

(∫ t+τ
t rsds

)
= D(t, τ) , r(t, τ) = l(t, t + τ), and r(t, 0) = l(t, t) = rt. As B(t, T) =

EQ
t

(
1−

∫ T
t rsds

)
= 1−

∫ T
t l(t, u)du24, we have an alternative representation for D(t, τ):

D(t, τ) = B(t, t + τ) = EQ
t

(
1−

∫ t+τ

t
rsds

)
= 1−

∫ t+τ

t
l(t, u)du. (50)

Thus, ∂D(t,τ)
∂τ = ∂B(t,t+τ)

∂T = −r(t, τ). The notation σl(t, T) can be replaced with
σl(t, T), and thus (49) and (50) become

dB(t, T) = rtdt− σ
(∗)
l (t, τ)dB(Q)

t , dl(t, T) = σl(t, τ)dB(Q)
t , (51)

where σ
(∗)
l (t, τ) =

∫ τ
0 σl(t, u)du. Thus, by (51), dr(t, τ) = ∂ r(t,τ)

∂τ dt + σl(t, τ)dB(Q)
t , and

dD(t, τ) = (r(t, 0)− r(t, τ))dt − σ
(∗)
l (t, τ)dB(Q)

t . As l(t, t + τ) = r(t, τ) =

lim
δ↓0

1
δ

∫ τ+δ
τ r(t, u)du, we can write

L(t, τ; δ) =
1
δ

∫ τ+δ

τ
r(t, u)du. (52)

Bachelier’s forward LIBOR with tenor δ > 025. The dynamics of L(t, τ; δ) are given by

dL(t, τ; δ) = 1
δ

∫ τ+δ
τ dr(t, u)du

= 1
δ

[
(r(τ + δ)− r(τ))dt +

(
σ
(∗)
l (t, τ + δ)− σ

(∗)
l (t, τ)

)
dB(Q)

t

]
.

Furthermore, ∂
∂τL(t, τ; δ) = 1

δ
∂

∂τ

∫ τ+δ
τ r(t, u)du = 1

δ (r(t, τ + σ)− r(t, τ)). Thus,

dL(t, τ; δ) =
∂

∂τ
L(t, τ; δ) + γ(t, τ; δ)dB(Q)

t ,

where γ(t, τ; δ) = 1
δ

(
σ
(∗)
l (t, τ + δ)− σ

(∗)
l (t, τ)

)
26.

3.5. Hull and White Model in Bachelier’s Market Model

The first definition of BTSIR (see (36)),

ΛT = Λ(r)
T =

{
B(t, T) = EQ

t

(
1−

∫ T

t
rsds

)
, 0 ≤ t ≤ T ≤ T

}
, (53)

was in terms of the stochastic dynamics of the simple interest rate rt, t ∈ [0,T], and this
indicates that we should study BTSIR following the Hull and White (HW) model27. The
HW model allows for negative interest rates, and this is important since negative interest
rates are not exotic phenomena in the world’s markets (See Haksar and Kopp (2020) and
Foster (2020)). In 2023, Japan, Denmark, and Switzerland have negative interest rates (see
Table 1).

Table 1. Countries with negative interest rates in 2023 (See Neufeld (2022)).

Country Interest Rate 2023 Population

Japan −0.01% 123,294,513
Denmark −0.06% 5,910,913

Switzerland −0.08% 8,796,669
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We start with the assumption that the simple interest rate rt, t ∈ [0,T], in (53) has the
following mean reverting dynamics on (Ω,F,F,Q) :

drt = (a(t)− b(t)rt)dt + v(t)dB(Q)
t , t ∈ [0,T], r0 ∈ R, (54)

where a(t),b(t), and v(t), t ∈ [0,T], are positive deterministic functions satisfying the
standard regulatory conditions that guarantee the existence and strong uniqueness of the
solution of (54). Then, setting b(∗)(t) =

∫ t
0 b(u)du, the solution of (54) is given by the

Markov process

rt = e−b
(∗)(t)

(
r0 +

∫ t

0
eb

(∗)(u)a(u)du +
∫ t

0
eb

(∗)(u)v(u)dB(Q)
t

)
, t ∈ [0,T]. (55)

The dynamics of Bachelier’s bond B(0, T) = E(Q)
(

1−
∫ T

0 rtdt
)

, 0 ≤ T ≤ T, are given by

B(0, T) = 1− E(Q)

(∫ T

0
rtdt

)
= 1−

∫ T

0
e−b

(∗)(t)
(

r0 +
∫ t

0
eb

(∗)(u)a(u)du
)

dt = 1− r0(0, T)− a(0, T),

where (0, T) =
∫ T

0 e−b
(∗)(v)dv and a(0, T) =

∫ T
0 e−b

(∗)(t)
(∫ t

0 eb
(∗)(u)a(u)du

)
dt =∫ T

0 eb
(∗)(v)a(v)

(∫ T
v e−b

(∗)(u)du
)

dv. Because rt, t ∈ [0,T], is a Markov process,

B(t, T) = 1− E(Q)

(∫ T

t
rudu

)
= 1− rt(t, T)− a(t, T), (56)

where

a(t, T) =
∫ T

t
eb

(∗)(v)a(v)
(∫ T

v
e−b

(∗)(u)du
)

dv and(t, T) =
∫ T

t
e−b

(∗)(v)dv. (57)

We must determine the conditions on a(t),b(t), and v(t), t ∈ [0,T], that will ensure that
BTSIR (53) is arbitrage-free. Consider the stochastic dynamics of B(t, T), 0 ≤ t ≤ T ≤ T :

dB(t, T) = −drt(t, T)− da(t, T)
= −

(
(a(t)− b(t)rt)dt + v(t)dB(Q)

t

)
(t, T)− rt

∂(t,T)
∂t dt− ∂a(t,T)

∂t dt

= −
[
a(t)− b(t)rt + rt

∂(t,T)
∂t + ∂a(t,T)

∂t

]
dt− (t, T)v(t)dB(Q)

t .
(58)

According to (30), dB(t, T) = rtdt + γB(t)dB(Q)
t , and thus the HW model in Bache-

lier’s market model is free of arbitrages if and only if

a(t)− b(t)rt + rt
∂(t, T)

∂t
+

∂a(t, T)
∂t

+ rt = 0,

for all 0 ≤ t ≤ T ≤ T.
Consider a European call option on Bachelier’s zero-coupon price B(t, T), t ∈ [0, T ],

with a maturity T. The maturity of the call option is τ ∈ (0, T), with a terminal value
(B(τ, T)− K)+ = max(B(T1, T)− K, 0), where K ∈ R is the strike price. According to
(18), the value of the call option at t = 0 is

C0 = E(Q)((B(τ, T)− K)+ − Rτ)

= E(Q)((1− rτ(τ, T)− a(τ, T),−K)+ − Rτ)

=
∫ ∞
−∞

∫ ∞
−∞ [(1− y(τ, T)− a(τ, T),−K)+ − x] fRτ ,rτ (x, y)dxdy,
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where fRτ ,rτ (x, y), x ∈ R, y ∈ R, is the density of Rτ =
∫ τ

0 rsds and rτ . The density fRτ ,rτ is
bivariate normal, with (See Chalasani and Jha (1997)).

µRτ = E(Q)(Rτ) =
∫ τ

0

[
e−b

(∗)(v)
(

r0 +
∫ v

0
eb

(∗)(u)a(u)du
)]

dv,

σ2
Rτ

= E(Q)(Rτ − µRτ )
2 =

∫ τ

0

[
e2b(∗)(v)v(v)2

(∫ τ

v
e−b

(∗)(u)du
)2
]

dv,

µrτ
= E(Q)(rτ) = e−b

(∗)(v)
(

r0 +
∫ v

0
eb

(∗)(u)a(u)du
)

,

σ2
rτ
= E(Q)(rτ − µrτ )

2 = e−2b(∗)(v)
∫ τ

0
e2b(∗)(v)v(v)2dv,

and a covariance

cov(Rτ , rτ) =
∫ τ

0
e−b

(∗)(u)−b(∗)(τ)
(∫ u

0
e2b(∗)(v)v(v)2dv

)
du.

4. Conclusions

In this paper, we explore the fundamentals of dynamic asset pricing within Bachelier’s
market model (BMM), an extension of Louis Bachelier’s groundbreaking option pricing
model. We leverage the arithmetic Brownian motion within BMM to represent risky
asset price dynamics, coupled with a simple interest bank account that represents the
riskless asset. Our investigation delves into Bachelier’s partial differential equation (PDE),
the solution of which provides a formula for European contingent claims (ECCs). This
approach highlights the fundamental differences between BMM and the Black–Scholes–
Merton market model (BSMMM), and it allows the expansion of BMM to include assets
yielding a simple dividend. We also probe the no-arbitrage price of zero-coupon bonds
within BMM, which leads us to explore Bachelier’s term structure of interest rates (BTSIR).
We present a novel version of Bachelier’s Heath–Jarrow–Morton (HJM) model, replacing
forward rates with zero-simple-interest loans, which introduces a new form of BTSIR.
Lastly, the Hull–White (HW) interest rate model is adapted so that it aligns with BMM.
This paper concludes with the investigation of BMM’s applicability in cases such as those
involving ESG-adjusted stock prices and commodity spreads, introducing new dimensions
into traditional investment frameworks.

In future work, we plan to explore the valuation of ESG-adjusted prices for US equity
on both the spot and derivative markets. Additionally, we intend to extend BMM to account
for asset prices that follow Lévy processes, drawing upon the exposition in Schoutens (2003)
and Shirvani et al. (2021).
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Notes
1 An EEC is also called a European derivative security (shortly, derivative) or European option (shortly, option).
2 See Duffie (2001, sct. 5G and appendix E). The regularity conditions are satisfied if ρ(x, t), x ∈ R, t ≥ 0, and v(x, t), x ∈ R, t ≥ 0,

are measurable and satisfy the Lipschitz and growth conditions in x ∈ R and
∫ t

0 |ρs|ds < ∞,
∫ t

0 v2
s ds < ∞ for all t ≥ 0. To
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simplify the exposition, we will assume that ρt, t ≥ 0, and vt, t ≥ 0, have trajectories that are continuous and uniformly bounded
on [0, ∞).

3 See Rachev et al. (2023). One can view B as a piggy bank account; see Sallie Mae (2023). If β0 = 0, rt = prt, then B is a simple
interest savings bank account; see Burnette (2022). We prefer to call B a simple interest bank account rather than a piggy bank
account, following the definition of βt, t ≥ 0, given in (3) and (4).

4 The regularity conditions are satisfied if r(x, t), x ∈ R, t ≥ 0, is measurable and
∫ t

0 |rs|ds < ∞ for all t ≥ 0. To simplify the
exposition, we will assume that rt, t ≥ 0, has trajectories that are continuous and uniformly bounded on [0, ∞).

5 See the Feynman–Kas solution of the Cauchy problem in Duffie (2001, appendix E).
6 For the solution of the non-homogeneous heat equation, see Herman (2023).
7 See Theorem 1 in Rachev et al. (2023).
8 See Duffie (2001, sct. 6L) and Shreve (2004, sct. 5.5.1) for options on stocks with dividends in the Black–Scholes–Merton market.
9 We follow the exposition of arbitrage pricing with dividends given in Duffie (2001, sct. 6L).

10 The pricing Formula (24) is the analogue of the security pricing formula in the BSMMM; see Duffie (2001, p. 125, formula (20)).
11 See Duffie (2001, sct. 6M) and Shreve (2004, sct. 5.6.1). When we introduce and study Bachelier’s term structure of interest rates

(BTSIR), we follow the exposition of the TSIR given in Shreve (2004, chp. 10) and Chalasani and Jha (1997).
12 In the BSMMM, B(t, T) = EQ

t

(
exp
(
−
∫ T

t rsds
))

.

13 In the traditional definition of a forward contract in the Black–Scholes–Merton market, it is assumed that at the time of contract
initiation, the value of the forward contract is zero. Therefore, the determination of the forward (delivery) price is based on
classical no-arbitrage assumptions; see Whaley (2012). Assuming that the value of the forward contract at its initiation is non-zero
is not merely a simple transformation of the formula for the delivery price. If we assume that the forward contract is zero at its
initiation, this means that traders entering the contract can multiply the value of the contract by any number, increasing the risk
of their position without “paying for it.” In other words, assuming that the value of the forward contract at its initiation is zero is
unrealistic in business practice.

14 According to (31), if Bachelier’s forward contract value at time t, V(0)(t, T), is set to zero, that is, V(0)(t, T) = At − F(0)(t, T) = 0,
then Bachelier’s forward (delivery) price should be F(0)(t, T) = At.

15 For normal backwardation in the BSMMM, see Hull (2012, pp. 123, 805) and Harper (2022).
16 For contango in the BSMMM, see Hull (2012, pp. 123, 795).
17 We follow the definitions of forward rates and the Heath–Jarrow–Morton (HJM) model for the TSIR in the BSMMM given in

Shreve (2004, sct. 10.3), adapting them for BTSIR.
18 µf(t, T), σf(t, T), t ≥ 0, are F-adapted processes, and µf : R× [0, T]→ R and σf : R × [0, T] → (0, ∞) satisfy the usual

regularity conditions; see Duffie (2001, appendix E).
19 The no-interest loan is also known as a “non-interest-bearing loan” or a “zero-interest loan.” In this type of agreement, the

borrower receives a certain amount of money (in this case, $1) at tk and is required to repay the same amount without any
additional interest or charges at a specified future time (in this case, at time tk+1). For some examples of zero-interest loans
provided by government agencies to support certain types of purchases or investments, see Bonta (2023) and Service-Public.fr
(2022). For no-interest loans offered to individuals, see Depersio (2023): “Zero-interest loans, where only the principal balance must be
repaid, often lure buyers into impulsively buying cars, appliances, and other luxury goods. These loans saddle borrowers with rigid monthly
payment schedules and lock them into hard deadlines by which the entire balance must be repaid. Borrows who fail to honor the loan terms are
subject to stiff penalties. These loans are typically only available to prospective buyers with FICO scores of 740 or higher.”

20 This cost is typically paid by the receiver of the loan in the form of fees to the loan provider; the following is from Brozic (2022):
“No-interest loans can provide extra cash to pay a bill or cover an unexpected expense. But interest-free doesn’t necessarily mean no cost. It’s
important to understand what fees—in addition to the principal—you may need to pay when getting a no-interest loan. We’ve rounded up
our top picks with features such as low fees, access to money management tools, flexible repayment terms and the ability to build credit.”

21 µl(t, T), σl(t, T), t ≥ 0, are F-adapted processes, and µl : R× [0, T]→ R and σl : R× [0, T]→ (0, ∞) satisfy the usual regularity
conditions; see Duffie (2001, appendix E).

22 The LIBOR market model is also known as the Brace–Gatarek–Musiela (BGM) model; see Brace et al. (1997) and Musiela and
Rutkowski (2005, sct. 12.4).

23 We follow the exposition in Shreve (2004, sct. 10.3.6) and Chalasani and Jha (1997).
24 We follow the exposition in Shreve (2004, sct. 10.4), where the zero-coupon bond value is B(t, T) = EQ

t

(
exp

(
−
∫ T

t
∼
rsds

))
, and

d
∼
βt =

∼
rt
∼
βtdt,

∼
β0 > 0, represents the riskless bank account dynamics.

25 In Shreve (2004, chp. 10.4), the definition (52) is replaced by L(t, τ; δ) = 1
δ

[
exp

(∫ τ+δ
τ r(t, u)du

)
− 1
]
, where r(t, u) = f (t, t + u)

and f (t, t + u) is the forward rate. L(t, τ; δ) is called the forward LIBOR, where δ > 0 is the tenor; see Fernando (2021). The
LIBOR market model is also known as the Brace–Gatarek–Musiela (BGM) model; see Brace et al. (1997) and Musiela and
Rutkowski (2005, sct. 12.4).
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26 The implementation of L(t, τ; δ) in (51) is similar to that in Shreve (2004, p. 442), where

γ(t, τ; δ) =
1+δL(t,T;σ)

δL(t,T;δ)

(
σ
(∗)
l (t, τ + δ)− σ

(∗)
l (t, τ)

)
.

27 See Hull and White (1990, 1993). In our exposition of the Hull and White model in Bachelier’s market model, we follow Shreve
(2004, sct. 6.5) and Chalasani and Jha (1997).
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