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Abstract: This paper aims to evaluate the forecast capability of electricity markets, categorized by nu-
merous major characteristics such as non-stationarity, nonlinearity, highest volatility, high frequency,
mean reversion and multiple seasonality, which give multifarious forecasts. To improve it, this
investigation proposes a new hybrid approach that links a dual long-memory process (Gegenbauer
autoregressive moving average (GARMA) and generalized long-memory GARCH (G-GARCH)) and
the empirical wavelet transform (EWT) and local linear wavelet neural network (LLWNN) approaches,
forming the k-factor GARMA-EWLLWNN model. The future hybrid model accomplished is assessed
via data from the Polish electricity markets, and it is matched with the generalized long-memory
k-factor GARMA-G-GARCH process and the hybrid EWLLWNN, to demonstrate the robustness of
our approach. The obtained outcomes show that the suggested model presents important results to
define the relevance of the modeling approach that offers a remarkable framework to reproduce the
inherent characteristics of the electricity prices. Finally, it is presented that the adopted methodology
is the most appropriate one for prediction as it realizes a better prediction performance and may be
an answer for forecasting electricity prices.

Keywords: electricity cost; empirical wavelet; dual long memory; hybrid estimation; prediction
performance

JEL Classification: C13; C14; C22; C45; C53

1. Introduction

In electricity markets, an analysis of the price has become a significant subject for all
its contributors. The background information about the electricity price is for decisive risk
management. Moreover, it signifies a gain for a market actor leading against their competi-
tors. As part of this framework, both suppliers and customers depend on the forecasting
of price data to move forward with their corresponding bidding strategies. If a supplier
has a precise price expected, they are able to improve their bidding strategy to take full
advantage of the profit. Contrariwise, if an exact expected price is accessible, a customer
can plot to decrease their own electricity fees. Therefore, the player’s advantage is signifi-
cantly impacted by the exactitude of the price expected. Nevertheless, the electricity price
performance is different from other commodity markets and financial markets, whereby it
has particular features which are connected to its characteristics and can noticeably disturb
the prices.

Indeed, in antagonizing commodities markets, the unfeasibility of storing electrical
energy to transport in future periods, related with the requirement of guaranteeing a
continuous balance between supply and demand, makes the way electricity markets
should be activated ultra-unusual. Moreover, delivering electrical energy necessities to
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please the corporal and technical boundaries of the system makes the market more complex.
These worries, as well as the impact of weather conditions and production materials prices,
significantly affect the organization of the electricity markets and lead to special features
of the electricity prices and to the spot price1. More precisely, the electricity spot prices
are considered by their extreme weight fluctuations, which make large and uncommon
leaps (Weron et al. 2004). Moreover, electricity prices display some characteristics, such as
non-stationarity, high frequency, multiple seasonality (on annual, weekly and daily levels)
(Escribano et al. 2011; Koopman et al. 2007; Knittel and Roberts 2005), hard nonlinearity,
high volatility, long memory, a high percentage of unusual prices, the calendar effect, price
spikes and mean reversion. Subsequently, these behaviors will possibly affect the spot
prices dramatically.

To tackle these challenges, this paper aims at theoretically and empirically inves-
tigating the quality of a hybrid system in resolving the difficulty of the electricity spot
price. The objective of this paper is to illustrate a robust approach to modeling electricity
prices. To accomplish the aforementioned goal, the log-return of the electricity price for
the Polish market is used in this study to demonstrate the relevance and usefulness of the
model for time-series forecasting. The remainder of this paper is organized as follows:
The following section provides a short review of the literature. Section 3 illustrates the
econometric methodology which contains the theoretical notions of the k-factor GARMA
model and the wavelet local linear neural network model and explains the hybrid k-factor
GARMA-WLLWNN method and the k-factor GARMA-G-GARCH process, using a wavelet
estimation approach. Section 4 outlines the empirical framework, where the suggested
hybrid model is executed to demonstrate log-return electricity spot price forecasting, and
its performance is compared with the individual WLLWNN model and the generalized
long-memory k-factor GARMA-G-GARCH model. Section 5 concludes this paper.

2. Literature Review

It is vital to remember that a convenient forecast model for electricity prices should
reflect the characteristics outlined above. In the area of electricity price forecasting, two
methods, statistical or econometric time-series models, are largely considered as a para-
metric tool, and soft computing models are considered a nonparametric tool. These two
methods are established to have been useful. In statistical models, the autoregressive inte-
grated moving average (ARIMA) (Contreras et al. 2003; Liu and Shi 2013) and generalized
autoregressive conditional heteroscedasticity (GARCH) (Garcia et al. 2005; Ghosh and
Kanjilal 2014; Girish 2016) models are applied widely. On the other hand, these models
do not allow to take into consideration the long-memory behavior that indicates the elec-
tricity prices. To address this restriction, Granger and Joyeux (1980) and Hosking (1981)
established the fractional autoregressive moving average (ARFIMA) model. Baillie et al.
(1996) and Bollerslev and Mikkelsen (1996) confirmed the use of the fractionally integrated
generalized autoregressive conditional heteroscedasticity (FIGARCH) process to present
finite persistence in the conditional variance. Actual research has executed these method-
ologies for the electricity prices (Koopman et al. 2007). In the spectral area, these procedures
have the highest value for ultra-low rates near to zero frequency. It is noteworthy that the
ARFIMA model is not capable of presenting the determined periodic or cyclical behavior
in the time series.

To address this limitation, Gray et al. (1989) submitted another group of long-memory
models, including the generalized (seasonal) long-memory or Gegenbauer autoregressive
moving average (GARMA) process, which has been recognized for evaluating equally the
seasonality and the persistence in the data. Alternatively, in the frequency domain, the
spectral density is not essentially unlimited at the origin, as with the ARFIMA model, but
for any frequency λ along the interval [0, π]. In that way, the GARMA process provides
long-memory cyclical behavior at a single frequency λ; therefore, it is able to judge a single
persistent periodic component. To address this pitfall, Woodward et al. (1998) generalized
the single frequency GARMA process to the so-called k-factor GARMA process that permits



J. Risk Financial Manag. 2023, 16, 246 3 of 22

the spectral density function to be not just positioned at a single frequency but nonetheless
defined at a fixed number k of frequencies in [0, π], recognized as the Gegenbauer frequen-
cies or G-frequencies. The key distinguished feature of this k-factor GARMA process is
that it permits additional variety in the structure of the covariance of a variable founded
equally through the spectral density function and the autocorrelation function that offers
k singularities. The k-factor GARMA model has been used by numerous researchers to
duplicate the seasonal patterns in addition to the persistent special effects in the stock
markets (Caporale and Gil-Alana 2014; Boubaker and Sghaier 2015). Notwithstanding the
compliance of this modelization with the features of electricity prices, some uses are con-
cerned with the electricity market (Diongue et al. 2009; Soares and Souza 2006). Regarding
the approximation of the parameter’s k-frequency GARMA process, Gray et al. (1989),
Beran (1994) and Woodward et al. (1998) measured the time-domain maximum likelihood
method. Whitcher (2004) added an assessment method in the wavelet domain, established
on the maximal overlap discrete wavelet packet transform (MODWPT). In comparison
with the Fourier analysis, the efficiency of the wavelet analysis connects its capability to
identify a process simultaneously in the time and frequency domains equally (Mallat and
Zhang 1993; Mallat 1999; Boubaker and Boutahar 2011; Boubaker 2015, 2016).

To duplicate these models, two methods have been approved in this study: the non-
parametric methods, for instance, the neuronal networks, and the parametric models,
termed the generalized GARCH (G-GARCH) process. In the fundamental approach, ar-
tificial neural networks (ANN) have been frequently used in modeling and forecasting
electricity spot prices; Wang and Ramsay (1998), Szkuta et al. (1999), Anbazhagan and
Kumarappan (2014) and Panapakidis and Dagoumas (2016) implemented neural networks
to present and forecast the dynamics of intra-day prices. Zhang and Benveniste (1992)
recommended wavelet neural networks as a solution to traditional NNs (such as feedfor-
ward NNs) to decrease the faults linked to each methodology. WNs are unknown depth
networks, which allow for a wavelet as an activation function. The WNs have been well
applied in time-series forecasting (Cao et al. 1995; Cristea et al. 2000; Jiang et al. 2020;
Jabeur et al. 2021) and in short-term electricity prices forecasting (Bashir and El-Hawary
2000; Yao et al. 2000; Gao and Tsoukalas 2001; Benaouda et al. 2006; Rana and Koprinska
2016). Yet the main weakness of the WNN is that it requires various hidden layer units
for advanced dimensional problems. To maintain the improvement correlated to the local
ability of the wavelet basis purposes while not using many hidden layers, Chen et al. (2004)
established a novel kind of wavelet neural network, named the local linear wavelet neural
network (LLWNN). In this model, a local linear model replaces the connection weights
between the hidden layer units and the output units. For that reason, this network needs
less significant wavelets for a certain hardness, assimilating to the wavelet neural networks.
Quite a number of scientists have widely used the LLWNN model for electricity price
forecasting (Pany 2011; Chakravarty et al. 2012; Athanassios et al. 2015).

Truthfully, both the k-factor GARMA model, as a dominant statistical method, and the
LLWNN model, as an advanced artificial intelligence methodology, have reached achieve-
ments in their specific nonlinear parametric and nonparametric domains individually.
Nevertheless, neither of these are a global model that is appropriate for all situations. That
is, a time series is habitually complicated in nature and an individual model will possibly
not allow to notice diverse forms in a similar way; at this time, no methodology is the best
for all circumstances. For that reason, accepting a hybrid method or joining numerous
modulizations (Granger 1989) has converted a common practice, jumping the limits of the
utilization of a single model to improve the forecasting precision. In the literature, various
mixed methodologies have been recommended to prevent the limitations linked to unique
models (Yu et al. 2005; Armano et al. 2005; Tseng et al. 2002; Zhang 2003; TaskaValenzuela
et al. 2008; Khashei and Bijari 2010; Tan et al. 2010; Sharkey 2002; Shafie-khah et al. 2011;
Jiang et al. 2017; Zhang et al. 2018; Grossi and Nan 2019).

In the next approach, to overcome the restriction of the k-factor GARMA model,
Boubaker (2015) utilized the GARCH model, proposed by Engle (1982) and Bollerslev
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(1986). In one more study, Boubaker and Boutahar (2011) submitted the k-factor GARMA-
FIGARCH to assess the long-memory behavior in the conditional variance of the exchange
rate. However, these modulizations are not completely suitable in modeling the volatility of
intra-daily financial time series. The core characteristic of such data is the robust indication
of cyclical patterns in the volatility. The empirical result highlights the significance of
modeling the periodic dynamics of the volatility. For this target, Bordignon et al. (2007, 2008)
advised a first-hand type of GARCH model categorized by periodic long-memory behavior.
This sort of modulization familiarizes Gegenbauer polynomials into the equation of the
standard GARCH model, measured as generalized periodic long-memory filters to evaluate
the time-varying volatility. These processes are called the periodic long-memory GARCH
(PLM-GARCH) and generalized long-memory GARCH (G-GARCH). In the literature, the
generalized long-memory GARCH model (or G-GARCH) is applied to weigh the financial
time series, such as the exchange rate, using Monte Carlo simulations (Bordignon et al.
2007; and Caporin and Lisi 2010). Rarely has research carried out this process for modeling
the electricity spot price (Diongue et al. 2009).

It is worth taking into consideration that in the works of generalized long-memory
models, the researchers approve either the k-factor GARMA model or the G-GARCH
model to evaluate the conditional mean and the conditional variance of the time series,
correspondingly. None of them take into account the presence of long-memory and cyclical
behavior in the conditional mean and conditional variance together.

The objective of the current work is to address the challenges of modelizing and
expecting numerous components of electricity prices, mainly the presence of seasonal
long-memory behavior in the conditional mean and conditional variance. With this in
mind, this paper provides three contributions. The main goal is to increase the LLWNN
model’s predicting accuracy. Instead of adding the historical price straight to the network
(at the input layer), this is achieved by implementing wavelet theories to deconstruct it
and evaluate the impact of varying heights of decomposition on forecasting accuracy. This
strategy, designated as EWLLWNN, enables the learner’s network to recognize the presence
of seasonal long-memory behavior and therefore further evaluate the data. In reality, the
prior research integrated the wavelet decomposition with the ANN (Aggarwal et al. 2008),
demonstrating its effectiveness, but this technique is not used with the LLWNN. A few
studies (Pany 2011; Chakravarty et al. 2012) hypothesized that this model might offer an
accurate forecast because the features related to electricity prices can be recognized in the
unseen layer and use the wavelet activation function, deprived of the use of an external
decomposer/composer. Lastly, so as to define the best architecture for the proposed
EWLLWNN, we will compare two distinct learning methods, namely the back propagation
(BP) and particle swarm optimization (PSO) algorithms, and then choose the one that
minimizes the errors.

Second, a novel hybrid model is suggested so as to take advantage of the advantages
of both semi-parametric and nonparametric approaches, which actually results in the k-
factor GARMA-EWLLWNN process, which makes it possible for long-memory behavior,
related with the frequency, and involves an EWLLWNN-type model to explain time-varying
volatility. We employ a wavelet estimation method based on Whitcher’s (2004) suggested
maximal overlap discrete wavelet packet transform (MODWPT) to estimate the parameters
k-factor GARMA process (for additional details, see Boubaker 2015).

Finally, we devised a new methodology based on a dual generalized long-memory
method that involves both the k-factor GARMA model and the G-GARCH model to accom-
modate for various stylized facts including the stochastic volatility, long-range dependence,
and seasonality characteristics found in electricity spot prices. As a consequence, the
forecast accuracy of the k-factor GARMA-G-GARCH model is compared to the suggested
k-factor GARMA-EWLLWNN model. In fact, this stage entails comparing the new EWLL-
WNN’s efficiency with a parametric model (G-GARCH) in forecasting and predicting the
conditional variance’s periodic long-memory behavior.
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3. Econometric Methodology
3.1. The k-Factor GARMA Model

Gray et al. (1989) suggested a k-frequency GARMA model to generalize the ARFIMA
model, permitting periodic or quasi-periodic movement in the signal, which is presented as

Φ(B)
k

∏
i=1

(
I − 2νm,iB + B2

)dm,i
(yt − µ) = Θ(B)εt (1)

where Φ(B) and Θ(B) are the polynomials of the backshift operator B such that all the roots
of Φ(z) and Θ(z) lie outside the unit circle. The parameters νm,i offer information about
periodic movement in the conditional mean, εt is a white noise disturbance sequence with
variance σ2

ε , k is a finite integer, |νm,i| < 1, i = 1, 2, . . . , k, dm,i are long-memory parameters
of the conditional mean indicating how slowly the autocorrelations are damped, µ is the
mean of the process, λm,i = cos−1(νm,i), i = 1, 2, . . . , k, denote the Gegenbauer frequencies
(G-frequencies). The GARMA model with k-frequency is stationary when |νm,i| < 1 and
dm,i < 1/2 or when |νm,i| = 1 and dm,i < 1/4; the model exhibits a long memory when
dm,i > 0. However, when it comes to a single frequency ν = 1, the process is an ARFIMA
(p, d, q) model, and when ν = 1 and d = 1/2, the process is an ARIMA model. Finally,
when d = 0, we acquire a stationary ARMA model. Cheung (1993) defines the spectral
density function and displays that for d > 0 the spectral density function has a pole at
λ = cos−1(ν), which differs in the interval [0, π]. It is important to note that when |ν| < 1,
the spectral density function is bounded at the origin for GARMA processes and thus
does not suffer from many problems related with ARFIMA models (for more details, see
Boubaker and Boutahar 2011; Boubaker 2015).

3.2. The Wavelet Local Linear Wavelet Neural Network

The wavelet local linear wavelet neural network (WLLWNN) involves the following.
Initially, the historical data have been decomposed into wavelet-domain constitutive sub-
series using wavelet area and then using the local linear wavelet neural network (LLWNN)
to form the WLLWNN forecasting model. The reader should consult Ben Amor et al. (2018)
and Boubaker et al. (2020) for further details.

3.2.1. Theoretical Concepts of Wavelet

Wavelet decompositions are a useful tool in producing better local representation of
the series in both frequency and time domain (Nicolaisen et al. 2000; Boubaker 2015, 2016).
Wavelets are orthonormal bases attained through dyadically dilating and translating a pair
of specially constructed functions denoted by ϕ and ψ, which are father wavelet (detected
the smooth and low-frequency part of the time series) and mother wavelet (defined the
detail and the high-frequency components), respectively, given by∫

φ(t)dt = 1 and
∫

ψ(t)dt = 0. (2)

The obtained wavelet basis is φj,k(t) = 2j/2φ
(
2jt− k

)
and ψj,k(t) = 2j/2ψ

(
2jt− k

)
,

where j = 1, . . . , J indexes the scale and k = 1, . . . , 2j indexes the translation. The
parameter j is adopted as the dilation parameter of the wave’s functions. This parameter
j adjusts the support of ψj,k(t) to locally detect the features of high or low frequencies.
The parameter k is used to relocate the wavelets in the temporal scale. The number of
observations limits the maximum number of scales that can be employed in the analysis(

T ≥ 2J). The localization property is a special property of the wavelet expansion, where
the coefficient of ψj,k(t) reveals information content of the function at approximate location
k2−j and frequency 2−j. According to wavelets, all functions in L2(·) can be extended over
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the wavelet basis, exceptionally, as a linear combination at arbitrary level J0 ∈ N through
different scales of the type

f (t) = ∑
k

sJ0,kφJ0,k(t) + ∑
j≥J

∑
k

dj,kψj,k(t) (3)

where ϕJ0,k is a scaling function with the corresponding coarse scale coefficients sJ0,k and dj,k
are the detail coefficients, which measures the contribution of the corresponding wavelet
to the function and constitutes the wavelet multiresolution analysis (MRA), given, respec-
tively, by

sJ0,k =
∫

f (t)φJ0,k(t)dt and dj,k =
∫

f (t)ψj,k(t)dt (4)

In the following, the coefficients of the discrete wavelet transform can be deemed from
the recursive MRA scheme, which is implemented by a two-channel filter bank illustration
of the wavelet transform (i.e., a high-pass wavelet filter {hl , l = 0, . . . , L− 1} and its
associated low-pass scaling filter {gl , l = 0, . . . , L− 1}, satisfying the quadrature mirror
relationship given by gl = (−1)l+1hL−1−l for l = 0, . . . , L− 1, where L ∈ N is the length
of the filter). Moreover, Daubechies (1992) has constructed a class of wavelet functions
which forms an orthonormal basis that possesses the smallest support of a given number of
vanishing moments (the extremal phase filters D(L) and the least asymmetric filters La(L)).

3.2.2. Empirical Wavelet Transforms

Conventional data pre-processing methods such as wavelet alter and Fourier convert
approaches have some shortcomings, for example, the difficulty in choosing the mother
wavelet. Similarly, empirical mode decomposition (EMD) which began with Hilbert–
Huang transform (HHT) and was advanced by Huang et al. (1998), variational mode
decomposition (VMD) by Dragomiretskiy and Zosso (2014) and ensemble empirical mode
decomposition (EEMD) developed by Wu and Huang (2009) also have some disadvantages.
In contrast, empirical wavelet transforms (EWT) were suggested by Gilles (2013) as a
new adaptive time-frequency analysis method, taking into account the advantage of the
empirical mode decomposition method and traditional wavelet analysis in signal process-
ing. In the frequency-domain analysis of the signal, the Fourier spectrum is adaptively
segmented by capturing the frequency-domain maximum point, and finally, the separation
of different modes in the signal frequency component is realized. Indeed, the EWT is used
as a processing tool to decompose the series into specific modal components according to
the features of the signal. The main idea of EWT is based on the divided Fourier spectrum.

Note that the Fourier support interval [0, π] is split into N consecutive parts and ωn
represents the boundary between each segment with λ0 = 0 and λn = π, and every pass

filter can be defined as Λn = [λn−1, λn] and
N
∪

n=1
Λn = [0, π], ∀n > 0. Following Cheng et al.

(2019), the empirical wavelet’s function ψ̂n(λ) and the empirical scaling function φ̂n(λ) are
given by the following formula:

ψ̂n(λ) =



1 i f λn + τn ≤ |λ| < λn+1 − τn+1

cos
[

π
2 β
(

1
2τn

(|λ| − λn+1 + τn+1)
)]

i f λn+1 − τn+1 ≤ |λ| < λn+1 + τn+1

sin
[

π
2 β
(

1
2τn

(|λ| − λn + τn)
)]

i f λn − τn ≤ |λ| < λn + τn

0 otherwise

.

and

φ̂n(λ) =


1 i f |λ| < λn − τn

cos
[

π
2 β
(

1
2τn

(|λ| − λn + τn)
)]

0 otherwise
i f λn − τn < |λ| < λn + τn,

(5)
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where the proportional relationship between τn and λn is τn = γλn, 0 < γ < 1 and

β(x) satisfy β(x) =

{
0, ∀x ≤ 0
1, ∀x > 1

along with β(x) + β(1− x) = 1, ∀x ∈ [0, 1]. The set{
φ1(t), {ψn(t)}N

n=1

}
is a tight frame of L2(·). Thus, the EWT can be implemented in the

same way as the classic wavelet transform, and the corresponding mathematical expression
is as follows:

Wε
f (n, t) = 〈 f (t), ψ(n, t)〉 =

∫
f (τ)ψn(t− τ)dτ = F−1

(
f̂ (ω), ψ̂n(ω)

)
. (6)

where Wε
f (n, t) is different frequency component of the empirical wavelet, and F−1(·) is

the inverse Fourier transformation.
Ultimately, we can reconstruct the original signal as

f (t) = Wε
f (0, t) ∗ φ1(t) +

N
∑

n=1
Wε

f (n, t) ∗ ψn(t)

= F−1
(

Ŵε
f (0, ω) ∗ φ̂1(ω) +

N
∑

n=1
Ŵε

f (n, ω) ∗ ψ̂n(ω)

) (7)

where Ŵε
f (0, ω) and Ŵε

f (n, ω) are, respectively, the Fourier transformations of Wε
f (0, t)

and Wε
f (n, t); ∗ is convolution symbol. Therefore, the empirical wavelet decomposition is

expressed by f0(t) = Wε
f (0, t) ∗ φ1(t) and fk(t) = Wε

f (k, t) ∗ φk(t). So, any series f (t) can

be defined as intrinsic mode function as f (t) =
N
∑

k=0
fk(t).

3.2.3. The Local Linear Wavelet Neural Network

The local linear wavelet neural network (LLWNN) of time-series forecasting was
proposed by Chen et al. (2004) who proved that this modelization has more accuracy than
the classic WNN. The LLWNN includes an input layer, hidden layer and linear output layer.
In this case, the input series in the input layer of the network are diffused straight into the
wavelet layer. The hidden layer neurons make use of wavelets as activation functions; these
neurons are habitually called ‘wavelons’ (see Ben Amor et al. 2018 for more details about
the method). As an alternative to exploiting multilayered neural networks and several
variants, a WLLWNN is used for forecasting data. Regarding wavelet transformation
theory, wavelets in the following form are a family of functions, produced from one single
function ψ(x) by the operation of dilation and translation.

ψ(x) =
{

ψi = |ai|−1/2ψ

(
x− bi

ai

)
; ai, bi ∈ Rn, i ∈ Z

}
(8)

x = (x1, x2, . . . , xn),
ai = (ai1, ai2, . . . , ain),
bi = (bi1, bi2, . . . , bin ).
ψ(x) is localized in both time space and the frequency space, called a mother wavelet,

and the parameters ai and bi are the scale and translation parameters, respectively. Instead
of the straightforward weight wi (piecewise constant model), a linear model vi = wi0 +
wi1x1 + . . . + winxn is introduced.

The activities of the linear models vi (i = 1, . . . , n) are resolved by the associated lo-
cally active wavelet functions ψi(x) (i = 1, . . . , n); thus, vi is the single significant variable.
Nonlinear wavelet basis functions (named wavelets) are contained equally in time space
and frequency space. Here, m = n and output (Y) of the suggested model is considered as

Y =
M

∑
i=1

(wi0 + wi1x1 + . . . + winxn)ψi(x) (9)
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The mother wavelet is

ψ(x) =
−x2

2
e
−x2

σ2 (10)

ψ(x) = e−(
x−c

σ )2 (11)

where
x =

√
d2

1 + d2
2 + . . . + d2

n (12)

To optimize the neural networks, the widely used learning algorithm is the back
propagation (BP). Firstly, the parameters are randomly prepared, and after the algorithm
measures the error between the output value and the real value, it lastly adjusts the weights
in the direction of descendent gradient. The equations of the BP algorithm are offered in
Burton and Harley (1994).

Moreover, Kennedy and Eberhart (1995) established the PSO as an optimization
technique. In accord with other learning algorithms, the PSO clearly showed its efficacy.
PSO algorithm is made through simulation of bird flocking in two-dimensional space. The
position of each agent is denoted by XY-axis position, and the velocity is represented by vx
and vy. The agent position’s adjustment is documented by the location and the velocity
information. The bird flocking optimizes the objective function. Each agent identifies its
best value so far (pbest) and its XY place. In addition, each agent identifies the top value
so far in the group (gbest) between (pbest). Mostly, each agent attempts to regulate its
position using the following information:

(a) The distance between current position and pbest.
(b) The distance between the current position and gbest.
Velocity of each agent can be updated by the following equation:

vp+1
i = wvp

i + c1rand1 × (pbest1 − sp
i ) + c2rand2(gbest− sp

i ) (13)

where vp
i is the velocity of agent i at iteration p, w is the weight function, cj is weighting

factor, sp
i is the current position of agent i at iteration p, pbesti is the pbest of agent i and

gbest is the gbest of the group.
The velocity, which progressively gets closer to pbest and gbest can be computed using

the above equation. The actual position, which characterizes the searching point in the
solution space, can be updated using the following equation:

sp+1
i = sp + vp+1

i (14)

The PSO algorithm escapes from convergence toward a local minimum, because it is
not based on gradient information contrary to the BP case (Abbass et al. 2001; Boubaker
et al. 2020). The objective of the PSO is to produce the best set of weights (particle position)
where numerous particles are moving to obtain the best solution, where the total number
of weights characterizes the dimension of the search space. The optimization is finished
when the personal best solution of each particle and the global best amount of the entire
swarm are attained.

3.3. The Hybrid k-Factor GARMA-WLLWNN Model

Our hybrid approach combines a semi-parametric k-factor GARMA model and the
proposed WLLWNN model. The k-factor GARMA model offers better flexibility in model-
ing simultaneous short- and long-term behavior of a seasonal time series. In addition, the
selection of WLLWNN in our hybrid model is encouraged by the wavelet decomposition
and its local linear modeling ability. It may be useful to think of time series as having
two components: The first is a parametric form with unknown parameters, for which
a parametric technique appears suitable. The residuals are the second component; this
section normally has no special procedure. As a result, determining the right model to deal



J. Risk Financial Manag. 2023, 16, 246 9 of 22

with this component of the time series is problematic. As a result, a nonparametric model
appears to be the best choice for modeling the residuals. This choice is based on the notion
that nonparametric models can decrease modeling bias by enforcing no specific model
structure rather than a smoothness assumption and are thus particularly useful when we
have little data or wish to be flexible with the underpinning model.

We consider a two-step approach; in the first stage, the purpose is modeling the
conditional mean using a semi-parametric k-factor GARMA model. Conversely, residuals
are important in forecasting time series; they may contain some information that is able
to develop forecasting performance. Thus, in the second phase, the residuals resulting
from the first step will be treated according to a novel wavelet local linear wavelet neural
network (WLLWNN) model.

Hence, a time series can be written as

yt = µt + εt (15)

where µt denotes the conditional mean of the time series, and εt is the residuals. In the
head stage, the key purpose is the parametric modeling; therefore, the k-factor GARMA
model is used to replicate the conditional mean (Equation (1)).

In the next stage, the residuals from the parametric model are used as a proxy for
the corresponding volatility and modeled using the WLLWNN model. Let εt denote the
residuals at time t from the k-factor GARMA model, and then

εt = yt − µ̂t (16)

The first stage’s results are the forecast values and residuals of the semi-parametric
modeling. In the following stage, the target is the modeling of the residuals using the
WLLWNN with n input nodes, and the WLLWNN for the residuals is

εt = f (εt−1, εt−2, . . . εt−n) (17)

where each εt−i is decomposed using the wavelet transform (Equation (3)), f is a nonlinear,
nonparametric function determined by the neural network with the reference to the current
state of the data, during the training of the neural network. The output layer of the network
(Equation (9)) gives the forecasting results.

ŷt = µ̂t + ε̂t (18)

As a consequence, this global prediction is the outcome of anticipating the time series’
conditional mean and conditional variance.

3.4. The k-Factor GARMA-G-GARCH Model

The conditional variance is assumed to be constant throughout time in the k-frequency
GARMA model. Many time series are known to display volatility clustering, where time
series have both high and low periods of volatility, according to empirical investigations. To
duplicate these patterns, we added a fractional filter to the conditional variance equation of
the k-factor GARMA model described above. As a result, we present the dual generalized
k-factor GARMA-G-GARCH model, which can incorporate seasonality and long-memory
dependency in the conditional mean and variance. The basic concept behind this model
is to incorporate the generalized long-memory process into the GARCH equation that
describes the evolution of conditional variance. This is why this new model category
is known as Gegenbauer-GARCH (G-GARCH). To account for the presence of a time-
varying conditional variance, we investigate the following k-factor GARMA process with
G-GARCH-type innovations.

yt = µt + εt = µt + σtzt (19)
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where µt is the conditional mean of yt modeling using the following k-factor GARMA
process

Φ(B)
k

∏
i=1

(
I − 2νm,iB + B2

)dm,i
(yt − µ) = Θ(B)εt (20)

εt/It−1 ∼ D
(

0, σ2
t

)
(21)

where σ2
t is the conditional variance, It−1 is the information up to time t− 1, zt is a i.i.d

random variable with zero mean and unitary variance and D(·) is a probability density
function. To define the conditional variance’s dynamics, the starting point is the dynamics
of ε2

t . We assume that ε2
t follow a k-factor GARMA model, which describes a cyclical pattern

of length S.[
(I − B)dv0(I + B)dv,k I(E)k−1

∏
i=1

(
I − 2νv,iB + B2)dv,i

]
α(B)ε2

t = γ + [I − β(B)]ϑt,

Pv(B)α(B)ε2
t = γ + [I − β(B)]ϑt.

(22)

where α(B) = 1−
q
∑

i=1
αiBi and β(B) = 1−

p
∑

i=1
βiBi are suitable polynomials in the lag

operator B and ϑt = ε2
t − σ2

t is a martingale difference, dv,0 = dv/2, I(E) = 1 if S is even
and zero otherwise.

With this assumption, the corresponding GARCH-type dynamics for conditional
variance are given by

σ2
t = γ + β(B)σ2

t + [I − β(B)− Pv(B)α(B)]ε2
t (23)

This indicates that in the G-GARCH framework, each frequency has been modeled by
means of a specific long-memory parameter dv,i (differencing parameter of the conditional
variance). When dv,0 = dv,1 = . . . = dv,k, all the involved frequencies have equal degree
of memory. Model (23) can deliver, in this case, most of the existing GARCH models. For
instance, standard GARCH models (including seasonal GARCH (Bollerslev and Hodrick
(1992)) can be obtained by putting dv,i = 0, i = 0, . . . , k. Similarly, the FIGARCH model
is equivalent to S = 1 and 0 < dv,0 < 1. It is worth noting that generalized long-memory
filters can theoretically be applied to any GARCH structure category. However, because
G-GARCH models are not always practical due to the limitations required for conditional
variance positive, Bordignon et al. (2007) advocated modeling the conditional variance
logarithm. As a result, applying the filter to a generalized log-GARCH model provides a
viable computational solution. This entails starting with the phrase

Pv(B)α(B)
[
ln(ε2

t )− τ
]
= γ + [I − β(B)]ϑt (24)

where Pv(B) is the generalized long-memory filter introduced into a GARCH structure,
ϑt = ln

(
ε2

t
)
− τ − ln

(
σ2

t
)

is a martingale difference and τ = E
[
ln
(
z2

t
)]

. The expected
τ value depends on the distribution of the idiosyncratic shock and ensures that ϑt is a
martingale difference, given that ln

(
ε2

t
)
= ln

(
σ2

t
)
+ ln()z2

t . Under the Gaussian assumption,
τ = −1.27. The expression for conditional variance implied by (23) is

ln
(

σ2
t

)
= γ + β(B) ln

(
σ2

t

)
+ [I − β(B)− Pv(B)α(B)]

[
ln
(

ε2
t

)
− τ

]
(25)

Because we are modeling ln(σ2
t ) instead of σ2

t , there are no requirements for vari-
ance positivity limitations. Adopting EGARCH versions of our model is another way
to get around the problem of parameter limitations. To sum up, the purpose of this re-
search consists of modeling the different patterns in the electricity time series to provide
the best forecasting methods. For this determination, we exploit a hybrid methodology
based on combining the semi-parametric k-factor GARMA model with a novel neural
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network named the EWLLWNN model. The performances of the proposed hybrid k-factor
GARMA-EWLLWNN model are evaluated using data from the Polish electricity markets
and matched with the dual comprehensive long-memory k-factor GARMA-G-GARCH
model and the individual (E)WLLWNN, in order to demonstrate the resilience of the hybrid
model we have proposed. The flow-chart construction of the hybrid GARMA-EWLLWNN
model appears in Figure 1.
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4. Empirical Methodology
4.1. Data Description and Preliminary Study

After the liberalization of the electricity sector in 1999, the Polish power market was
established, with electrical power being handled like any other commodity in a compet-
itive market (instead the monopolistic market). The technique provided in this study is
validated using hourly spot prices on the Polish power market between 10 January 2021
and 10 August 2022. Overall T = 5390 hourly observations are shown in Figure 2. This
information was taken from the Polish Power Exchange’s official website. We look at the
logarithm of these series in this study because using the difference logarithm can make
the series stationary and allow modeling of returns series (Rt = ∆LogPt). As a result,
we investigate the statistical and econometric characteristics of log-return electricity spot
price series.

The log-return electricity price (abbreviated L-REP) shown in Figure 2 seem to fluc-
tuate randomly around zero, while the variance varies over time with the alternation of
volatile and tranquil periods. Moreover, L-REP series appears to have remained stable
throughout time. Furthermore, the application of standard unit root tests and unit root tests
show evidence of stationarity2. The return series illustrated in Figure 1 seem to fluctuate
randomly around zero while the variance varies over time with alternation of volatile and
tranquil periods.
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Table 1 shows the L-descriptive REP’s data in summary form. The standard devia-
tion is low, indicating a non-symmetric distribution, whereas the series exhibit negative
skewness and show excess kurtosis. Furthermore, the high kurtosis statistic indicates that
the underlying data are leptokurtic. The observed asymmetry may indicate the presence
of nonlinearities in the evolution process of returns. The departure from normality is
confirmed by the Jarque–Bera test. Indeed, this test strongly rejects the null hypothesis
of normality for the series, which means that minimum and maximum values deviate in
higher number from the mean calculated. These findings clearly show that the probability
of observing extremely negative and positive realizations for our return series is higher
than that of a normal distribution.

Table 1. Descriptive statistics of the spot prices time series.

The Log-Returns Electricity Price

Mean −1.5478× 10−5

Standard Deviation 0.1079

Skewness −0.2634

Excess Kurtosis 37.2358

Jarque–Bera 2.9826 × 105 ***
Note: *** denotes significance at 1% level.

As shown in Figure 3, for the log-return electricity price series (L-REP), the spectral
density, traced by the periodogram, displays numerous peaks at equidistant frequencies,
which demonstrates the presence of many seasonalities.

In addition, we use the GPH (Geweke and Porter-Hudak 1983) and local Whittle (LW)
(Robinson 1995) semi-parametric techniques approach. For the GPH and LW tests, we need
to choose a bandwidth, balancing a high variance caused by staying too close to the origin
and using too little information and a bias induced by the contamination of the estimation
through the short-memory component of the process. We apply three different bandwidths
T0.6, T0.7 and T0.8, where T is the sample size. The results of the GPH and LW tests do not
prove to be sensitive to the choice of the bandwidth. Table 2 indicates that the log-return
electricity price is stationary and mean reverting.
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Table 2. Results of GPH and LW tests in the conditional mean.

L-REP

Bandwidth

GPH LW

d̂m
Standard

error p-value d̂m
Standard

error p-value

T0.6 = 169 −0.51683 0.0558 0.0000 −0.5588 0.0403 0.0000

T0.7 = 397 −0.61336 0.0372 0.0000 −0.5775 0.0269 0.0000

T0.8 = 934 −0.4786 0.0253 0.0000 −0.5892 0.0178 0.0000

4.2. Estimation Results
4.2.1. The k-Factor GARMA Estimation Results

The seasonality can be detected without difficulty in the frequency domain λi = 1/T,
where λ is the frequency of the seasonality and T is the period of seasonality. As revealed,
the spectral densities, denoted in the periodogram (see Figure 3), are unrestrained at
equidistant frequencies, which demonstrates the existence of numerous seasonalities. The
estimation results of the k-factor GARMA model, using the wavelets method, are reported
in Table 3. This result illustrates unusual peaks at frequencies λ̂m;1 = 0.0417 (T = 23.9808≈
1 day), λ̂m,2 = 0.0834 (T = 11.9904 ≈ 1/2 day) and λ̂m,3 = 0.1262 (T = 7.9239 ≈ 1/3 day),
corresponding to cycles with daily, semi-daily and third-daily periods, respectively. The
results reveal that the k-factor GARMA adaptation appears to be the most satisfactory
representation to describe the seasonal long-memory behavior of the L-REP series.

The next step consists of modeling the conditional variance, so the residuals of the
k-factor GARMA estimation are formed using a new EWLLWNN as a first approach, and
then addressed using the generalized GARCH model, known as G-GARCH, as a second
approach, to determine the appropriate strategy.
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Table 3. Estimation of the k-factor GARMA model: a wavelet-based approach.

Parameters k-Factor GARMA Model Estimation

Φ̂ 0.5132 ***

Θ̂ -

µ -

d̂m,1 0.1687 ***

d̂m,2 0.2349 ***

d̂m,3 0.4137 ***

λ̂m;1 0.0417 ***

λ̂m,2 0.0834 ***

λ̂m,3 0.1262 ***
Notes: *** denotes significance at 1% level.

4.2.2. The EWLLWNN Estimation Results

The residuals from the k-factor GARMA modeling are used as input for the innovative
EWLLWNN and WLLWNN models to assess the conditional variance. All the inputs
are normalized within a range of [0, 1] using the following formula before being applied
to the network to eliminate the risk of coupling among distinct inputs and to accelerate
convergence, which is regarded as the most generally used data smoothing approach:
ynorm =

yorg−ymin
ymax−ymin

, where ynorm is the normalized value, yorg is the original value and ymin

and ymax are the minimum and maximum values of the corresponding residuals data,
respectively. These normalized data are then decayed by means of the MODWT3 with
Daubechies least asymmetric (La) wavelet filter of length L = 8 (La(8)). This wavelet filter
has been recurrently assumed in the financial literature and it has been shown that La(8)
offers the greatest performance for the wavelet time-series decomposition. Our MODWT
decomposition goes up to level J = 12 which is specified by J ≤ log2

[
T

L−1 + 1
]
, i.e., where

T denotes the distance of the given time series and L denotes the length of the filter (see
Percival and Walden 2000; and Gençay et al. 2002). Indeed, our time series is decomposed
into 12 components.

4.2.3. The LLWNN Modeling

The datasets are split into three parts: (a) a sample of 500 observations to start the
network training, (b) a training set (4815 observations) and (c) a test set (72 observations).
The forecasting experiment is carried out using an iterative forecasting method across the
test set, with the model forecasting for 6, 12, 24, 48 and 72 h ahead. The parameters are ran-
domly initialized at first to discover the optimum neural network design. The parameters
are then modified using two separate algorithms: the back-propagation algorithm (BP) and
the particle swarm optimization algorithm (PSO) to reduce the error between the output
values and the real values throughout the network’s training.

4.2.4. The k-Factor GARMA-G-GARCH Estimation Results

The spectral distribution, Figure 4, traced by the periodogram, for the squared resid-
uals of the k-factor GARMA model (the squared log-returns are used as a proxy for the
associated volatility) exhibits numerous peaks at equidistant frequencies, proving the exis-
tence of various seasonalities. The findings of the GPH and LW demonstrate the existence
of long memory in the conditional variance, as shown in Table 4.
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Table 4. Results of GPH and LW tests in the conditional variance.

L-REP

Bandwidth

GPH LW

d̂v
Standard

error p-value d̂v
Standard

error p-value

T0.6 = 169 0.5275 0.0523 0.0000 0.4982 0.0381 0.0000

T0.7 = 397 0.3678 0.0329 0.0000 0.3874 0.0246 0.0000

T0.8 = 934 0.2379 0.0218 0.0000 0.2453 0.0249 0.0000

The G-GARCH model is used to evaluate the seasonal long-memory behavior in
the conditional variance using the residuals from the k-factor GARMA. At equidistant
frequencies, the spectral densities are unbounded, indicating the presence of multiple sea-
sonality’s. The estimation results reported in Table 5, indicating the long-range dependence
in squared residuals of the GARMA process and strongly supporting the estimation of
dynamic returns that allow for time-varying correlations. Moreover, the three different
estimates of the long memory of the conditional variance are close to one another and less
than 0.5, implying that the squared returns series is stationary and mean reverting, and
long-memory processes require the use of some fractionally integrated method to estimate
such processes.

Table 5. The k-factor GARMA-G-GARCH estimation results.

k-Factor GARMA Model Estimation The G-GARCH Model Estimation

Φ̂ 0.6327 *** ψ̂ 0.7156 ***

Θ̂ - β̂ 0.5139 ***

µ - γ̂ -

d̂m,1 0.1698 *** d̂v,1 0.1497 ***

d̂m,2 0.2568 *** d̂v,2 0.2678 ***

d̂m,3 0.3978 *** d̂v,3 0.4319 ***

λ̂m,1 0.0405 *** λ̂v,1 0.0411 ***

λ̂m,2 0.0838 *** λ̂v,2 0.0854 ***

λ̂m,3 0.1289 *** λ̂v,3 0.1197 ***
Notes: *** denotes significance at 1% level.

The results of estimation of the k-factor GARMA-G-GARCH model are described in
Table 5. They show special peaks at frequencies λ̂v;1 = 0.0411 (≈1 day), λ̂v,2 = 0.0854
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(≈1/2 day) and λ̂v,3 = 0.1197 (≈1/3 day), which correspond to cycles with daily, semi-daily
and third-daily periods, respectively.

4.3. Forecasting Results: A Comparative Approach

In a multi-step-ahead forecasting task, this section is devoted to evaluating the esti-
mated models. We prefer to use out-of-sample criteria because predicting is essentially
an out-of-sample problem. To ensure the accuracy and robustness of the modeling and
forecasting findings, 5 distinct periods (6 h, 12 h, 1 day, 2 days and 3 days) were cho-
sen. To assess the accuracy of the forecasting, we adopt two evaluation criteria, the
mean absolute error (MAE) and the mean squared error (MSE), given, respectively, by

MAE = 1
N−t1

N
∑

t=t1

∣∣(yt+h − ŷt,t+h)
∣∣ and MSE = 1

N−t1

N
∑

t=t1

(yt+h − ŷt,t+h)
2, where N is the

number of observations, N − t1 is the number of observations for predictive performance,
yt+h is the log-return series through period t + h, ŷt,t+h is the predictive log-return series of
the predictive horizon h at time t.

To evaluate the suggested hybrid methodology’s prediction performance, the k-factor
GARMA-WLLWNN was evaluated by two different models: the individual WLLWNN
model and the k-factor GARMA-G-GARCH model. In terms of the network training, we
used two alternative learning methods (BP and PSO). Furthermore, we used 5 time horizons
for forecasting, 6 h, 12 h, 1 day, 2 days and 3 days ahead forecasting, using the MAE and the
MSE out-of-sample criteria. Furthermore, we use Diebold and Mariano’s (1995) statistical
test to conclude that the projections are equally accurate. The test statistics noted (DM) is
asymptotically N(0, 1) distributed under the null hypothesis of no difference. However,
the DM test requires the loss differential to be covariance stationary. Nevertheless, it may
not be strictly necessary in some cases (Diebold 2015). In addition, the DM statistic can
be obtained by regressing the loss differential on a constant, using Newey–West standard
errors. To estimate the performance of the hybrid methodology forecast, we consider the
k-factor GARMA-G-GARCH model for the purpose of comparison between the forecast
results of all the other models. The significance level at 5% and 1% is displayed by ** and ***,
respectively. Moreover, to better approve the predictive performances of our models, we
use the model confidence set (MCS), introduced by Hansen et al. (2003), for the comparison
of multiple forecast models at once. This model selection method is an innovative way to
deal with the issue of selecting the best forecast model(s) using an out-of-sample evaluation
under a specified loss function. In this work, we use the block bootstrap procedure and
significance level α = 5% to determine the MCS p-values. The forecast models that are
included in the 95% MCS are identified by an asterisk on the MSE. The forecast evaluation
results are described in Table 6.

Table 6. Out of sample forecasts results.

Models Criterion h = 6 h = 12 h = 24

WLLWNN-based BP algorithm

MAE 6.3134× 10−5 2.3486× 10−5 7.5648× 10−5

MSE 4.2321× 10−9 2.2457× 10−10 5.7365× 10−9

DM 1.1545 1.2874 1.3786

EWLLWNN-based BP algorithm

MAE 5.5623× 10−5 1.5893× 10−5 6.9873× 10−5

MSE 3.4285× 10−9 2.0445× 10−10 4.8745× 10−9

DM 1.2334 1.2982 1.4684

WLLWNN-based PSO algorithm

MAE 2.3458× 10−7 3.9523× 10−7 10.2415× 10−7

MSE 6.9982× 10−14 2.2341× 10−13 1.2134× 10−12

DM 1.3566 1.5562 1.6414
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Table 6. Cont.

Models Criterion h = 6 h = 12 h = 24

EWLLWNN-based PSO algorithm

MAE 2.2412× 10−7 3.5932× 10−7 9.9865× 10−7

MSE 6.4532× 10−14 2.0126× 10−13 1.1625× 10−12

DM 1.3751 1.5875 1.7486

The hybrid k-factor
GARMA-WLLWNN-based

BP algorithm

MAE 4.4627× 10−5 1.4341× 10−5 6.6247× 10−5

MSE 1.8653× 10−9 1.8968× 10−10 4.8791× 10−9

DM 1.9874 ** 2.3536 ** 2.7861 ***

The hybrid k-factor
GARMA-EWLLWNN-based

BP algorithm

MAE 4.2358× 10−5 1.3652× 10−5 6.1762× 10−5

MSE 1.8342× 10−9 1.7981× 10−10 4.3871× 10−9

DM 2.0143 ** 2.5462 ** 2.8871 ***

The hybrid k-factor
GARMA-WLLWNN-based

PSO algorithm

MAE 1.4760× 10−9 1.9674× 10−8 3.4597× 10−9

MSE 2.2175× 10−18 5.3560× 10−16 1.5261× 10−17

DM 2.6716 *** 2.9873 *** 3.5728 ***

The hybrid k-factor
GARMA-EWLLWNN-based

PSO algorithm

MAE 1.4372× 10−9 1.9247× 10−8 3.2655× 10−9

MSE 2.0716× 10−18 5.1038× 10−16 1.4234× 10−17

DM 2.7861 *** 3.0837 *** 3.7981 ***

The k-factor
GARMA-G-GARCH model

MAE 7.4882× 10−5 7.8547× 10−5 3.7866× 10−7

MSE 4.5763× 10−14 9.5376× 10−14 1.8527× 10−15

Models Criterion h = 48 h = 72

WLLWNN-based BP algorithm

MAE 1.2834× 10−4 3.4326× 10−4

MSE 1.3543× 10−8 7.3536× 10−8

DM 1.4932 1.6133

EWLLWNN-based BP algorithm

MAE 1.1382× 10−4 2.9546× 10−4

MSE 1.3312× 10−8 6.8745× 10−8

DM 1.5623 1.7593

WLLWNN-based PSO algorithm

MAE 2.7863× 10−7 3.9472× 10−7

MSE 1.1568× 10−13 2.2486× 10−13

DM 1.9645 ** 2.2514 **

EWLLWNN-based PSO algorithm

MAE 2.5643× 10−7 3.6765× 10−7

MSE 1.1358× 10−13 2.1378× 10−13

DM 20342 ** 2.3436 **

The hybrid k-factor
GARMA-WLLWNN-based

BP algorithm

MAE 7.7763× 10−5 8.9761× 10−5

MSE 7.1321× 10−9 9.1497× 10−9

DM 2.9784 *** 3.4836 ***

The hybrid k-factor
GARMA-EWLLWNN-based

BP algorithm

MAE 7.6408× 10−5 8.4873× 10−5

MSE 7.0265× 10−9 8.9870× 10−9

DM 3.1426 *** 3.7625 ***
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Table 6. Cont.

Models Criterion h = 48 h = 72

The hybrid k-factor
GARMA-WLLWNN-based

PSO algorithm

MAE 4.4379× 10−9 2.4687× 10−8

MSE 2.7859× 10−17 7.5843× 10−16

DM 3.7633 *** 3.8921 ***

The hybrid k-factor
GARMA-EWLLWNN-based

PSO algorithm

MAE 4.2465× 10−9 2.2274× 10−8

MSE 2.7152× 10−17 7.0872× 10−16

DM 3.9562 *** 4.1201 ***

The k-factor
GARMA-G-GARCH model

MAE 4.6851× 10−8 5.1257× 10−8

MSE 2.3420× 10−15 3.7871× 10−15

Notes: The significance level at 5% and 1% is displayed by ** and ***, respectively.

According to this table, it can be seen that the individual EWLLWNN-based PSO
method outperforms the individual EWLLWNN-based BP algorithm, demonstrating the
superiority of the PSO algorithm for neural network model training. This finding can be
clarified by the fact that weights are updated in the direction of the negative gradient in
BP algorithms. As a result, network training using BP methods has several disadvantages,
such as sluggish convergence to a local minimum. Weights are branded by the particle
position in the case of training with the PSO algorithm. The velocity and location of these
particles are adjusted so as to find personal and global optimal values. This prevents the
weights from converging to a local minimum.

Furthermore, the hybrid k-factor GARMA-EWLLWNN model outperforms all other
computing approaches, as shown in Table 6. However, from this table, the ARFIMA-HY
k-factor GARMA-EWLLWNN seems to be the only model included in the 95% MCS for all
horizons under the MSE. In reality, this model combines the advantages of three techniques:
first, the semi-parametric k-factor GARMA model, which detects and estimates both long
memory and seasonality in the conditional mean; second, the empirical wavelet decompo-
sition can produce a good local representation of the signal in both the time and frequency
domains, making it a useful tool for revealing hidden patterns in electricity prices, such
as high volatility, corrupted by occasional spikes, and followed by multiple seasonalities;
and finally, the LLWNN model’s capability as a nonlinear, nonparametric model, as well
as its uniqueness in having a wavelet activation function and local linearity, allows it to
capture more nuanced characteristics of the data. As a consequence, the suggested hybrid
k-factor GARMA-EWLLWNN is a robust tool that can handle the characteristics of power
pricing while providing the best forecasting results. In sum, for all the evaluation criteria
and forecast time horizons, the k-factor GARMA-EWLLWNN model prediction errors are
the smallest.

5. Conclusions

In this research, we combine the parametric k-factor GARMA and the novel EWLL-
WNN models to produce a combined approach for electricity price forecasting. The k-factor
GARMA model is used to evaluate the conditional mean of the time series because it
can estimate the periodic long-memory behavior in the data. Second, the residuals from
the k-factor GARMA model are utilized as a proxy for the associated volatility, and the
empirical wavelet local linear neural network (EWLLWNN) model is used to estimate it.
The data were divided into a wavelet-domain constitutional subseries and then injected
into the network to construct the set of input variables in this network using empirical
wavelet transform and form the proposed EWLLWNN forecasting model. On the other
hand, while working with neural networks, it is critical to select the right training method;
hence, this research compares two learning algorithms: the BP and PSO algorithms.
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The projected hybrid model’s performance is assessed by means of data from the
Polish electricity markets. To demonstrate the robustness of our suggested hybrid model,
it is collated with the dual generalized long-memory k-factor GARMA-G-GARCH model
and the individual (E) WLLWNN. The proposed k-factor GARMA-EWLLWNN approach
is the best acceptable price forecasting strategy according to the empirical data. Because it
produces fewer predicting errors than the other computing techniques, it is preferred. It
could be considered a powerful forecasting method, especially when higher forecasting
accuracy is required.

Related to other approaches, the innovation in our methodology lies in the combination
of the seasonal long-memory estimation process, empirical wavelet decomposition and
learning algorithms. Indeed, compared to other time-frequency analyses, the empirical
wavelet method is used to improve the prediction accuracy of the artificial structure of the
neural network. Moreover, we argue that this approach is a promising tool for modeling
and forecasting the price of electricity.

In conclusion, the empirical example proved that the suggested hybrid algorithm can
produce a superior predicting performance and that it is the best approach for forecasting
the power market. Forecasts derived from benchmark datasets further demonstrate the
usefulness of our technique in terms of reliability evaluation and prediction optimization.
Finally, our results are of major interest to researchers, regulators and market partici-
pants. In fact, our findings may be valuable for energy market players, international asset
allocation and risk management as a strategy for predicting power prices.

As a proposal for future work, we suggest comparing our hybrid approach to other
artificial neural network algorithms as well as other recently used decomposition pro-
cedures in order to validate the stability of the prediction results obtained for different
forecast horizons.
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Notes
1 We refer to Bunn and Karakatsani (2003) and Huisman et al. (2007), among others, for an overview on (hourly specific) day-ahead

price characteristics.
2 To check the stationarity, we apply the unit root tests without and with structural breaks. We find evidence of stationarity. These

results are not reported here but are available upon request.
3 For more details, see Daubechies (1992) and Gençay et al. (2002).
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