
Citation: Hao, Zheng, Haowei

Zhang, and Yipu Zhang. 2023. Stock

Portfolio Management by Using

Fuzzy Ensemble Deep Reinforcement

Learning Algorithm. Journal of Risk

and Financial Management 16: 201.

https://doi.org/10.3390/

jrfm16030201

Academic Editor: David Liu

Received: 16 February 2023

Revised: 13 March 2023

Accepted: 13 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

Stock Portfolio Management by Using Fuzzy Ensemble Deep
Reinforcement Learning Algorithm
Zheng Hao 1 , Haowei Zhang 2 and Yipu Zhang 2,*

1 Mathematics Department, State University of New York at Oswego, Oswego, NY 13126, USA
2 School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China
* Correspondence: zyipu@chd.edu.cn

Abstract: The research objective of this article is to train a computer (agent) with market information
data so it can learn trading strategies and beat the market index in stock trading without having
to make any prediction on market moves. The approach assumes no trading knowledge, so the
agent will only learn from conducting trading with historical data. In this work, we address this
task by considering Reinforcement Learning (RL) algorithms for stock portfolio management. We
first generate a three-dimension fuzzy vector to describe the current trend for each stock. Then the
fuzzy terms, along with other stock market features, such as prices, volumes, and technical indicators,
were used as the input for five algorithms, including Advantage Actor-Critic, Trust Region Policy
Optimization, Proximal Policy Optimization, Actor-Critic Using Kronecker Factored Trust Region,
and Deep Deterministic Policy Gradient. An average ensemble method was applied to obtain trading
actions. We set SP100 component stocks as the portfolio pool and used 11 years of daily data to
train the model and simulate the trading. Our method demonstrated better performance than the
two benchmark methods and each individual algorithm without fuzzy extension. In practice, real
market traders could use the trained model to make inferences and conduct trading, then retrain
the model once in a while since training such models is time0consuming but making inferences is
nearly simultaneous.

Keywords: stock portfolio management; reinforcement learning; deep learning; fuzzy set; ensemble

1. Introduction

The goal of stock trading is to optimize some relevant measures of performance, such
as profit and utility (Moody and Wu 1997). Traditionally, trading is performed by humans,
who are classified as fundamentalists and technicalists (Murphy 1999), depending on the
strategies one use. Stock trades based on algorithms have received attention and have
started to take over the finance industry in the last two decades with the development
of online trading platforms (Creamer and Freund 2010; Ozbayoglu et al. 2020). Since the
successes that Deep Learning (DL) and Reinforcement Learning (RL) algorithms achieved in
areas such as Go game (Silver et al. 2016) and video games (Vinyals et al. 2017), researchers
have wanted to train computers to be skilled traders using these algorithms.

One of the ideas is supervised learning, for example, trading based on the prediction
of market trends. Studies by (Oelschläger and Adam 2021) and (Leung et al. 2000) used
statistical and DL algorithms to label the market as bullish and bearish; while (Sezer et al.
2017) provided a finer labeling by further giving each direction three levels. Another type
of effort was given to the prediction of stock prices. Long short-term memory (LSTM)
networks were used for the prediction of the Standard and Poor 500 (SP500) index in
(Fischer and Krauss 2018). It, together with a number of other DL models, was implemented
for the prediction of ten stock prices in (Balaji et al. 2018). In (Singh et al. 2023), the author
implemented the Logistic model, Gompertz model, and Harvey model to predict the
increasing trend of the adoption of Unified Payment Interface. However, maximizing profit

J. Risk Financial Manag. 2023, 16, 201. https://doi.org/10.3390/jrfm16030201 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm16030201
https://doi.org/10.3390/jrfm16030201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://orcid.org/0000-0002-6628-0856
https://orcid.org/0000-0003-3326-2093
https://doi.org/10.3390/jrfm16030201
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm16030201?type=check_update&version=1


J. Risk Financial Manag. 2023, 16, 201 2 of 14

by predicting market behavior or prices was a suboptimal approach since the prediction
step itself suffered from forecast errors (Moody and Saffell 1998). Therefore, a number of
past works have been performed to train the program to trade directly by optimizing some
objective functions. The authors in (Moody et al. 1998) presented an adaptive algorithm
called Recurrent Reinforcement Learning (RRL) to train the trading system for a single
asset; (Gold 2003) investigated the foreign currency exchange market by using RRL; In
(Zhang et al. 2020), the authors designed trading strategies by adopting Deep RL algorithms
for future contracts and tested them on 50 future contracts individually. Although these
approaches were able to obtain remarkable returns, their limitation was that the trading
was only on one asset; that is, it was an allocation of money between a risk-free investment
and only one risky investment.

Financial theories state that to achieve better investment return, one would need to
diversify the investment or create a portfolio that usually has much smaller volatility or
variance of returns compared to a single asset (Rubinstein 2002). In (Iliev et al. 2023),
the authors provided a creative way of constructing the pool for building a portfolio.
They focused on stocks that were best related to the concepts of Circular Economy and
Environmental, Social, and Governmental principles and narrowed down to a top 100 stocks
from a list of 6000 globally traded ones. The authors were able to compare three portfolios
built from these 100 stocks to some benchmark measurements, such as a BlackRock ETF,
and found that all portfolios outperformed them with larger returns and equal or smaller
volatilities. In (Li and Hoi 2014), the author grouped related work into four categories
depending on the theories or models that the strategies followed, including Follow-the-
Winner, Follow-the-Loser, Pattern-Matching, and Meta-Learning. In (Ozbayoglu et al. 2020),
the author also surveyed several studies regarding portfolio management. For instance, in
(Fu et al. 2018), multiple stocks were analyzed and selected by using various DL algorithms;
(Lee and Yoo 2020) proposed threshold-based portfolios that were built from a LSTM-based
prediction model; (Liang et al. 2018) proposed an Adversarial Training method that was
adopted from Policy Gradient algorithm and tested it on the Chinese stock market.

Jiang and Liang (2017) applied Convolutional Neural Networks (CNN) to the Deter-
ministic Policy Gradient (DPG) algorithm to develop a portfolio of 12 cryptocurrencies and
received remarkable return rates. In (Nikolaev and Petrova 2021), the author classified the
stocks’ weekly change into seven categories and implemented two models involving CNN
to make predictions. Their results showed the effectiveness of CNN in predicting graphical
representations such as stock price trends. Yang et al. (2020) used an ensemble strategy
of three RL algorithms for a portfolio of 30 Dow Jones stocks. Our work was to build
a model-free algorithm that can manage a stock portfolio and achieve high returns and
small volatility without predicting stock prices. Sharpe ratio, a measurement introduced by
Sharpe (1998), was computed by the expected return relative to its standard deviation. It is
an effective measurement to evaluate portfolios with similar risk characteristics over the
same period. For example, the authors in (Em et al. 2022) created some metrics for some
and used the Sharpe ratio and its variants to evaluate performance differences among bond
portfolios in the global market.

In sum, there is room to improve the existing literature. The originality of this proposed
method includes the following: first, no prediction is needed, and attention is paid only
to trading since predicting stocks’ prices has errors and is different from making profits.
Secondly, the method is able to include a much larger number of stocks to select from. We
use SP100 index stocks, but the method could be scaled up easily to include more. Third,
we want to include market trend information, such as bullish and bearish, quantitatively
and continuously to help on decision-making. Last but not least, the method assumes
no trading or financial knowledge. The trading agent (machine) will be learning by trial
and error.

The motivation of this work is to use several RL algorithms to train a computer to
manage a portfolio of a relatively large number of stocks and to receive higher measures
of trading, such as profit or Sharpe ratio, by using only past data and assuming no other



J. Risk Financial Manag. 2023, 16, 201 3 of 14

trading knowledge. To incorporate the market direction, e.g., bullish/bearish, but in a
more quantitative way, we incorporated fuzzy extension. We also use average ensemble
to lower the volatility and, therefore, gain higher Sharpe ratios. The remaining parts of
this work are organized as follows. Section 2 reviewed RL algorithms and proposed our
method; Section 3 presented the data sets and data preprocessing; Section 4 illustrated the
results; and Section 5 summarized the work in conclusions and some possible future work.

2. Methodology
2.1. Model Terminology and Assumptions

We explain some notations and their meanings as well as assumptions needed for
them in our problem.

• Reward, denoted by r, is a scalar feedback to reflect the performance of actions. The
goal of most RL algorithms is to optimize the cumulative reward. For the stock trading
problem, it depends on the current market and portfolio information and the trading
actions taken, and, therefore, it is denoted as r(st−1, at−1, st), meaning the change in
the total portfolio value when facing state st−1 and taking action at−1, and, therefore,
the arriving state st, where st and at are defined later in this section.

• We consider a pool of M stocks over T time periods and assume a trader may buy
or sell stocks but may not short sell. For each stock i, and time t, where i = 1, 2 . . . M
and t = 1, 2 . . . T, let pi

t be the price and ni
t ≥ 0 be the numbers of share holding in the

trader’s portfolio. Respectively, combining pi
t and ni

t yields pt = [p1
t , p2

t , . . . , pM
t ]T and

nt = [n1
t , n2

t , . . . , nM
t ]T . Then, the portfolio’s return at time t is

Rt = (pt − pt−1)
Tnt − cost · pt−1

T |nt − nt−1| (1)

where cost is the transaction cost rate, usually ranging from 0% to 1%. Therefore,
our objective is to maximize the total return, the sum of period-wise returns over
all periods.

J =
T

∑
t=1

Rt (2)

• We define s as the environment state space vector, which will be the model input.
In our problem, the environment state space includes two types of components: the
quantities that are dependent on trading actions, e.g., account cash balance and stock
shareholdings, which is denoted by vector s1; and the quantities that are independent
of trading actions, e.g., stock prices and technical indicators, such as MACD, denoted
by vector s2. Thus, s = [s1, s2].

• Action a is a vector with a dimension equaling the number of stocks, M, whose
positive components indicate buying and negative components indicate selling of the
corresponding stocks. Each component of action a is a number between −1 and 1,
indicating the number of shares we buy or sell. For example, a number −0.1 would
mean that we sell 0.1H shares of a stock, where H is a hyperparameter defining the
maximum amount of shares for any single transaction. There are usually two ways
to claim the maximum: the first way is to choose the same number of shares for all
stocks; for example, H = 1000 would mean a single transaction can, at most, buy or
sell 1000 shares of any stock; the second way is to choose the same value for all stocks,
for example, a single transaction can at most have a total value of 100,000 USD. In
this case, the number of maximum shares for each stock is different and is computed
by 100,000 divided by the current stock price. In this work, we used the second way.
π(a|s) is the stochastic policy that gives the probability of action a when facing state s.
We denote at as the action taken in period t. In our problem, for example, say for stock
A, the action could be (1) buying k1 shares of the stock and resulting in nt = nt−1 + k1
shares, or (2) holding, which results in nt = nt−1, or (3) selling k2 stocks and yielding
nt = nt−1 − k2. The action will also update the cash balance and other stocks and,



J. Risk Financial Manag. 2023, 16, 201 4 of 14

therefore, reach the state st. This action results in a reward, denoted by r(st−1, at−1, st),
which is the change in the portfolio’s total value.

• We also make the following assumptions and constraints. There will be no short
selling. All selling transactions in the action vector are conducted before buying, and
all buying transactions’ total value does not exceed the current cash amount plus the
total value of all sell transactions. That is, the traders could use the cash received from
selling stocks in a period to buy other stocks in the same period, but they could not
borrow other cash. In addition, every single transaction’s total value does not exceed
K% of the total portfolio value, where K is a hyperparameter.

• Value function Vπ(s) and Q function Qπ(s, a) are defined to be the value function
of state s and the value function of state-action pair (s, a) by following policy π. In
stock trading, Vπ(s) means the expected future gain when facing state s, and Qπ(s, a)
means the expected return when facing state s and taking action a if the trader follows
policy π.

• Advantage function, denoted by Aπ(s, a) = Qπ(s, a)−Vπ(s), can be thought of as
how much better state s would be if we take action a opposed to average. In many
algorithms, subtracting the value function is called a baseline. In our approach, value
function, Q function, and advantage function are predefined and embedded in the
programming packages and need no extra attention.

2.2. Reinforcement Learning Algorithms

A review of the classic Policy Gradient algorithm will be given by using the notations
in the previous section, then followed by five RL algorithms, some of which are highly
related to the classic Policy Gradient. These five algorithms are all suitable for continuous
action and are used in our method.

In classic Policy Gradient, the objective of many RL learning algorithms is to maximize
the expected value of the total reward J = E[r(τ)] where τ represents a trajectory of states
and actions, and r(τ) is the total reward by taking this trajectory. Policy Gradient Theorem
(Sutton and Barto 2018) provided a simplified form of the gradient of J that allowed the
update of parameter θ by using gradient ascending, θ ← θ + η∇θ J. The theorem states
that the gradient term is proportional to E[∑t Qπ(st, at)∇θ ln πθ(at|st)]. One may subtract
a base-line value function Vπ(st) from function Qπ(s, a) to make negative values possible;
then the Policy Gradient could be expressed as follows, which is then used in the gradient
ascending method.

∇θ J = E[(Qπ(s, a)−Vπ(st))∇θ ln πθ(a|s)] (3)

(1) Advantage Actor-Critic (A2C)

A2C (Mnih et al. 2016) is an on-policy actor-critic algorithm. The method uses the
advantage function to replace the return function with the advantage function A(st, at) =
Q(st, at)−V(st) in the Policy Gradient, which then becomes

∇θ J = E[
T

∑
t=1

(Q(st, at)−V(st)∇πθ(at|st)]. (4)

Next, Q(st, at) can be approximated by the reward that is observed at time t, rt plus
the value at the next time, V(st+1). Thus, the gradient for parameter θ updating is

∇θ J = E[
T

∑
t=1

(rt + V(st+1)−V(st)∇πθ(at|st)]. (5)

The algorithm uses one network to estimate the policy and another network to estimate
the value function, which may share some parameters.

(2) Trust Region Policy Optimization (TRPO)



J. Risk Financial Manag. 2023, 16, 201 5 of 14

TRPO (Schulman et al. 2015) is an off-policy algorithm that uses an old policy, denoted
as πθ′ , to collect data for updating a new policy πθ . The expected return object function
(Sutton and Barto 2018) could be written in terms of both policies as

J(θ) = Et(
πθ(at|st)

πθ′(at|st)
Â(st, at)), (6)

where Â(st, at) is the estimated advantage function by using importance sampling (Kloek
and Van Dijk 1978; Van Dijk and Kloek 1983), which allows approximating the expectation of
the distribution of interest from samples generated from a different distribution. However,
the expectation might be unstable if these two approximations are too far away; therefore,
the two policies need to be somehow closed in the above objective function. TRPO uses a
trust region defined by KL divergence (Kakade and Langford 2002) to restrict the choice
of the new policy. In particular, the algorithm maximizes J(θ) among θ whose distance
defined KL divergence to θ′ is no larger than δ, or DKL(θ, θ′) < δ, where δ is a small
positive hyperparameter.

(3) Proximal Policy Optimization (PPO)

The idea of PPO (Schulman et al. 2017) started from the same objective function as in
TRPO J(θ) = Et(

πθ(at |st)
πθ′ (at |st)

Â(st, at)) and, therefore, would avoid have old and new policies
too far away. Instead of using a trust region, PPO penalizes the policies distance by adding
a clip function and using objected function

Jclip(θ) = Et[min{ πθ(at|st)

πθ′(at|st)
Â(st, at), clip(

πθ(at|st)

πθ′(at|st)
, 1− ε, 1 + ε)Â(st, at)}] (7)

where ε is a small positive number around 0.1–0.2, function clip(a, b, c) returns a if b < a <
c, returns b if a < b, and returns c if a > c. Therefore, it clips the ratio between new and
old policies to be within 1− ε and 1 + ε. The method was proven to have better sample
complexity and be simpler to implement than some other online Policy Gradient methods
and provides a favorable balance between sample complexity, simplicity, and wall time
(Achiami et al. 2016; Schulman et al. 2017).

(4) Actor-Critic Using Kronecker Factored Trust Region (ACKTR)

ACTKR (Wu et al. 2017) is a natural Policy Gradient method with trust region opti-
mization and uses a more accurate second-order optimization. Similar to A2C, ACTKR
uses two networks for policy and another network for the advantage function. On some
classical testing tasks, the algorithm obtained two to three-fold sample efficiency and only
had 10–25% more computation cost due to the Kronecker-factored approximated curvature
(K-FAC) (Martens and Grosse 2015).

The algorithm uses θ → θ + ηF−1∇θ J for updating, where η is the learning rate, F is
the Fisher information matrix that will be approximated by K-FAC (Martens and Grosse
2015), and ∇θ J is the Policy Gradient. The learning rate η in ACKTR involves trust region

radius hyperparameter δ and is given by η =
√

2η

(∇θ J)T F−1∇θ J .

(5) Deep Deterministic Policy Gradient (DDPG)

DDPG (Lillicrap et al. 2015) uses deep neural networks for fitting a policy π(st) called
the actor with actor parameters θπ and critic Q function, Q(St, at) with critic parameters
θQ. It adapts Deep Q-Learning (DQN) to continuous action cases. The method is an
off-policy algorithm using a replay buffer that stores (state, action, reward, next state) or
(st, at, rt, st+1) to train networks and has a deterministic actor policy function π(st).

To update parameter θQ, DDPG uses the recursive relationship from the Bellman equation

Q(st, at) = E[r(st, at) + γQ(st+1, at+1)] (8)



J. Risk Financial Manag. 2023, 16, 201 6 of 14

where γ is a discount factor whose value is usually between 0.9 and 0.99 and minimizes
the mean square error between Q(st, at) and r(st, at) + Q(st+1, π(st+1)), or

L(θQ) = E[(r(st, at) + Q(st+1, π(st+1))−Q(st, at))
2] (9)

Then, the method updates the parameters of the actor, using the gradient of expected
return with respect to θπ

∇θπ = Et[∇aQ(st, at|θQ)∇θπ π(st|θπ)] (10)

2.3. Fuzzy Extension

It has been known that trading strategies work differently in a bullish market and in a
bearish market (Chen et al. 2020; Dai et al. 2012). Effort has been made for bullish/bearish
market classification(Chong et al. 2017; Oelschläger and Adam 2021; Wu et al. 2020).
However, many classification methods could only tell until a turning signal was shown,
and they only qualitatively classified the market. The idea of a fuzzy set state is where the
state of the membership function, whose range is between 0 and 1, measures the grade that
an element belongs to a set (Pal and Bezdek 1994). Our approach, instead of classifying each
trading day as bullish, bearish, or oscillation, wanted to quantify, for example, a trading
day to be 0.7 oscillation degree, 0.2 bullish degree, and 0.1 bearish degree. To achieve this,
we adopted the approach in (Deng et al. 2016; Lin et al. 2006), as follows:

For each stock, first, find the rate of return for each of the time periods by rt =
pt−pt−1

pt−1
.

To obtain its degree for k = 3 fuzzy sets representing bullish, bearish, and oscillation
markets for a time period t:

• choose moving window length T0, and using k-mean clustering on the rates of return
rt, rt−1, rt−2, . . . , rt−T0+1 to get k = 3 groups with means and standard deviations, mj
and sj, j = 1, 2, 3, respectively.

• For period t0, compute fuzzy degree f j, j = 1, 2, 3 via the Gaussian membership
function (Krasnyuk et al. 2022; Lin et al. 2006) as

f j = e−(rt−mj)
2/s2

j (11)

• These fuzzy degrees, f 1
t , f 2

t , f 3
t , are added as fuzzy extensions to obtain the final state

space, which was stated in Section 3.
• repeat this process for all stocks and for all periods.

2.4. Ensemble

We use the RL algorithms, including A2C, PPO, DDPG, ACKTR, and TRPO, which
are all suitable for continuous action to train the agent individually. These algorithms
each have their strengths and weaknesses, and even for stock trading, they may behave
well in one period but bad in another (Yang et al. 2020), which we observe in our initial
trials as well. We train the model individually and take the average over the five output
actions as our final action decision. Concretely, for any time period t, the model implements
each of the five algorithms mentioned above on a training data set and obtains five action
vector outputs, say a1, a2, a3, a4, and a5, with each of them representing the decision for
buying/holding/selling each of the stocks and the shares of the transaction as defined
in the Model Terminology section. Then, the ensemble technic averages the five actions
and yields action ā = a1+a2+a3+a4+a5

5 as the decision for trading in period t. It is worth
noting that since each of the five ai satisfies the trading constraints claimed in the Model
Terminology section, their average action ā will also satisfy them.

A complete diagram of our work-frame is shown in Figure 1. First, environment
information is observed, and fuzzy extension is computed and added to feed the model as
input for trading period t. Second, five RL algorithms are trained and provide five actions,
which are then averaged to receive the final action decision. Next, this action is conducted



J. Risk Financial Manag. 2023, 16, 201 7 of 14

to yield a reward and update part of the environment’s information, such as shareholdings
and cash. Finally, the updated environment information, together with the reward, is used
for period t + 1, and the whole process repeats until all time periods are used.

Figure 1. Model Flow Chart.

3. Datasets and Preprocessing

We considered all component stocks in the S&P 100 index during the period of
2011–2021, except for those that were listed on the market later than 2011. The data
were available at the daily level from yahoo finance, which yielded M = 94 stocks that
made up our portfolio pool with T = 2537 trading days. For each trading day, t, we
used M = 96 dimension vectors to denote the shareholdings nt, the daily open price ot,
high price ht, low price lt, adjusted closed prices pt, and volumes vt. Following the steps
in Section 2.3 for the fuzzy extensions, we chose a moving window length of T0 = 60,
and obtained three 96-d vectors, f1

t , f2
t , f3

t . A snapshot of the computation for the fuzzy
extensions on one sample trading day is given in Figure 2 and Table 1.

Table 1. The fourth column shows the fuzzy extension of AAPL on 8 April 2019, which was based on
a daily return of 0.0115, or 1.15%.

Cluster Mean Cluster SD Fuzzy Extension Value

increasing 0.0411 0.0133 e−(0.0115−0.0411)2/0.01332
= 0.0083

oscillation 0.0029 0.01 e−(0.0115−0.0029)2/0.012
= 0.4369

decreasing −0.0323 0.0108 e−(0.0115+0.0323)2/0.01082
= 4.9× 10−8

There were a larger number of technical indicators to measure stock movement in
various ways, among which we chose the ones that were considered related to stock trends
and buy/sell signals (Di 2014; Vargas et al. 2018), including Moving Average Convergence
Divergence (MACD) MACDt, Williams Overbought/Oversold index (WR) WRt, Relative
Strength Index (RSI) RSIt, Commodity Channel Index (CCI) CCIt, and Average Directional
Index (ADX) ADXt. Combining these indicators into one vector yielded TIt. The daily
account cash balance is denoted by ct. Following the notations in Section 2.1, we have
s1 = [ct, nt], and s2 = [ot, ht, lt, pt, vt, TIt].



J. Risk Financial Manag. 2023, 16, 201 8 of 14

Finally, we obtained the state space for our RL algorithms as s = [f1
t , f2

t , f3
t , s1, s2] =

[f1
t , f2

t , f3
t , ct, nt, ot, ht, lt, pt, vt, TIt], which has dimensions of 14× 94 + 1 = 1317.

Figure 2. A snapshot of three-means clustering by using AAPL daily returns from 12 January 2019 to
7 April 2019. The plot included the closing prices as the horizontal axis for a better view, although
the clustering was performed only using the return, which was the vertical axis.

4. Results

For the first round of training, the dataset was split into a training interval from the
beginning of 2011 to the end of 2019, a testing interval ranging from 18 December 2020 to
20 January 2021 (20 trading days), and a validation interval containing any trading day in
between, which had about 250 days. In each of the following rounds, training, testing, and
validation intervals were all moved forward by 20 trading days. The process repeated until
the last day of the data was used. Notice the reason that we chose 18 December 2020 as the
first testing trading day was to ensure that suing periods of 20 trading days, the last trading
day could exactly be 31 December 2021. A diagram showing the training/validation/testing
periods update is shown in Figure 3.

Figure 3. Data division and rolling (we used 20 trading days as 1 month).

We used a hypothetical initial cash amount of 10 million US dollars and conducted
the trial 100 times. The histograms for final return rates and Sharpe ratios were given in
Figures 4 and 5. The red vertical line in Figure 4 indicated a SP100 rate of return during the
same period. We observed that most of the trials were able to gain higher rates of return
than the index. In Figure 5, the red vertical line marked the SP100 index Sharpe ratio, which
was about the same as the average Sharpe ratio for our 100 trials.



J. Risk Financial Manag. 2023, 16, 201 9 of 14

Figure 4. Histogram for return rates of 100 trials by using our fuzzy ensemble model. The red vertical
line indicates the SP100 index return rate.

Figure 5. Histogram for Sharpe ratio of 100 trials by using our fuzzy ensemble model. The red
vertical line indicates the SP100 index Sharpe ratio.

We took the average portfolio values over the 100 trials at the end of each trading
period. A time series plot of our results is shown in Figure 6, as well as two benchmark
portfolios with SP100 representing buying and holding the S&P100 index and rebalance
(Davis and Nairn 2012) being the strategy that money was evenly spread over all stocks
and the weights were rebalanced to maintain the even value allocation at the end of each
trading interval. One could see that the average final portfolio value was over 14.9 million
or a return rate of 49%. A 95% simultaneous confidence band for the portfolio value using
Bonferroni’s adjustment (Dunn 1961) was given by the shaded region. The final value for
the S&P100 index was 12.9 million or a return rate of 29%; the rebalancing strategy yielded



J. Risk Financial Manag. 2023, 16, 201 10 of 14

a return rate of 29.7%. We could see that our method’s confidence band was able to stay
above the S&P100 index and rebalancing for the whole period. Thus, our method was able
to achieve a higher return while keeping about the same Sharpe ratio as the market index.

Figure 6. Time series plot with a 95% confidence band for the portfolio value of our fuzzy ensemble
model compared to the SP100 index and rebalance portfolio with a starting amount of 10,000,000 USD.

For comparison purposes, we respectively used each of the five classic RL methods
without a fuzzy extension to conduct the experiment 100 times and obtained their mean
portfolio values. The result is given in Figure 7. One can see that only the ACKTR model
was able to have a final portfolio value a bit higher than our method, and it was still lower
than the upper limit of the 95% confidence band. However, all methods, including ACKTR,
showed more volatility, especially during the last three periods when the market had large
oscillations. More quantitative results are summarized in Table 2. One could see that our
method had a Sharpe ratio of 0.627, which was close to the S&P100 index Sharpe ratio of
0.622 and rebalancing portfolio Sharpe ratio of 0.679, but had a much higher return rate.
None of the five RL methods had a Sharpe ratio of more than 0.57, with the lowest Sharpe
ratio of 0.347 belonging to DDPG, which indicated that to reach similar expected return
levels, one must suffer from larger volatilities.

Table 2. The results of total returns and Sharpe ratios.

Ours SP100 Rebalance A2C ACKTR DDPG TRPO PPO

Return Rate 49.4% 29.4% 29.9% 38.2% 44.8% 27.9% 35.9% 42.3%

Sharpe Ratio 0.627 0.622 0.679 0.452 0.565 0.347 0.478 0.563



J. Risk Financial Manag. 2023, 16, 201 11 of 14

Figure 7. Time series plot for the portfolio value of our fuzzy ensemble model compared to other RL
algorithms with a starting amount of 10,000,000 USD.

5. Discussion and Conclusions

In this work, we proposed and trained an agent that could conduct automated stock
trading from a pool of stocks to form a portfolio and beat the market. The work had two
theoretical contributions.

First, the method was able to handle a vast number of stocks and gain a satisfactory
return with no more risks. In our case, the model built and managed a portfolio from S&P
100 component stocks. The model could easily include an even larger number of stocks. In
the existing literature, the difficulties of dealing with many of stocks came from two aspects.
The first one was the restriction of the model. For example, time series type analysis or
Markov Decision Process were naturally limited to small dimension state spaces. The other
one is the computing capacity of the computer. In our approach, the most time-consuming
part was training, but this training and retraining could be performed during closed market
periods daily or weekly. The trading operations were nearly simultaneous after the model
was trained. The model earned an average return of about 49% during a one-year period.
This was significantly higher than the return of the index and rebalanced equal-weight
portfolio, which was about 29%. Their associated Sharpe ratios were similar and around 0.6.

Second, the method incorporated ensemble technic and fuzzy extension in addition
to existing RL algorithms. The averaging ensemble technic reduced the volatility com-
pared to any single algorithm, and the fuzzy extension itself also provided a numerical
way to describe the market trend as opposed to the traditional categorical classifications as
bullish/bearish/oscillation. As the comparison results suggested, our method achieved higher
returns and Sharpe ratios than each single RL algorithm without using the fuzzy extension.

Our work added evidence that machines have the potential to beat humans and
provided investors with a practical way to make profit in the market. Most investors,
especially individual investors and small funds used fundamental analysis and technical
analysis techniques for trading. It was not easy for them to beat the indices consistently,
such as S&P 100, S&P 500, Dow Jones Industrial Average, and NASDAQ Composite. The
reasons were that for fundamental analysis, most information they collected was public
information and, therefore, was already reflected in current prices (price-in); while for
technical analysis, the patterns or technical indicators might be used or interpreted in



J. Risk Financial Manag. 2023, 16, 201 12 of 14

more than one way, which might contradict others. Our method assumed no fundamental
analysis, technical analysis, or other trading strategies, creating a possibility for them to
achieve higher returns without running into more risks. The approach could also be used by
large investment companies that have more and quicker information and data on a larger
scale. It was desirable that the model could be trained to achieve even higher performance.

This work took a step into algorithm-based trading; however, it has limitations, which
were from the nature of the market assumptions we used. We assumed that in the market:
(1) Each of our transaction amounts was insignificant compared to the total volumes, thus
had no impact on the market prices, and (2) we were able to sell or buy stocks right at the
stocks’ closing prices and the transactions were executed immediately.

The limitation of the first assumption was the scaling problem. When the portfolio
value became large, this was no longer true. While it was somehow realistic as long as
the total portfolio values were small, which in this work was 10 million US dollars, or the
stocks volumes and market caps were reasonably large, which all S&P 100 stocks should
satisfy. The limitation of the second assumption was that trading at the closing prices was
not always possible, and only using daily closing prices would ignore the intraday trends
and extended-hours trends and, therefore, miss many profitable opportunities.

There could be three possible ways for future study. The first way is based on the
second assumption mentioned above. For example, if one wants to use computer algorithms
for real automated trading, it would be necessary to use market information on finer time
intervals, such as hourly data or minute data. Secondly, we could include training periods
that include some recent long bullish and long bearish markets and tune the parameters
so the model could be more robust. Historically speaking, U.S. stock markets had much
longer bullish periods than bearish periods, which was also true in our data time frame.
We are observing a long ongoing bearish market starting year 2022. Thus the authors think
this period would be valuable for any algorithm-based trading strategy and would like
to include it in the future. The third one is to improve the algorithms themselves. This
includes adopting existing ones, such as implementing CNN to pre-transform the inputs,
integrating additional features, such as ESG and macroeconomics indicators, into the model
environment, and exploring more complicated structures or models.

Author Contributions: Conceptualization, Y.Z.; methodology, H.Z. and Z.H.; software, H.Z.; val-
idation, Z.H. and Y.Z.; formal analysis, Z.H.; investigation, Z.H.; data curation, Z.H. and H.Z.;
writing—original draft preparation, Z.H.; writing—review and editing, Z.H., H.Z. and Y.Z.; supervi-
sion, Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data in this study were obtained from yahoo finance.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DL Deep Learning
RL Reinforcement Learning
LSTM Long short-term memory
RRL Recurrent Reinforcement Learning
CNN Convolutional Neural Network
MACD Moving Average Convergence/Divergence
A2C Advantage Actor-Critic
TRPO Trust Region Policy Optimization
PPO Proximal Policy Optimization
ACKTR Actor-Critic Using Kronecker Factored Trust Region
K-FAC Kronecker-factored approximated curvature
DDPG Deep Deterministic Policy Gradient



J. Risk Financial Manag. 2023, 16, 201 13 of 14

WR Williams Overbought/Oversold Index
RSI Relative Strength Index
CCI Commodity Channel Index
ADX Average Directional Index

References
Achiam, Joshua, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained Policy Optimization. Proceedings of the 34th International

Conference on Machine Learning PMLR 70: 22–31.
Balaji, A. Jayanth, D. S. Harish Ram, and Binoy B. Nair. 2018. Applicability of deep learning models for stock price forecasting an

empirical study on bankex data. Procedia Computer Science 143: 947–53. [CrossRef]
Chen, Peng, Dongyun Yi, and Chengli Zhao. 2020. Trading strategy for market situation estimation based on hidden markov model.

Mathematics 8: 1126. [CrossRef]
Chong, Eunsuk, Chulwoo Han, and Frank C. Park. 2017. Deep learning networks for stock market analysis and prediction:

Methodology, data representations, and case studies. Expert Systems with Applications 83: 187–205. [CrossRef]
Creamer, Germán, and Yoav Freund. 2010. Automated trading with boosting and expert weighting. Quantitative Finance 10: 401–20.

[CrossRef]
Dai, Min, Hefei Wang, and Zhou Yang. 2012. Leverage management in a bull–bear switching market. Journal of Economic Dynamics and

Control 36: 1585–99. [CrossRef]
Davis, Jonathan, and Alasdair Nairn. 2012. Templeton’s Way with Money. New York: Wiley Online Library.
Deng, Yue, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. 2016. Deep direct reinforcement learning for financial signal

representation and trading. IEEE Transactions on Neural Networks and Learning Systems 28: 653–64. [CrossRef]
Di, Xinjie. 2014. Stock Trend Prediction with Technical Indicators Using SVM. Independent Work Report. Standford: Leland Stanford

Junior University, USA.
Dunn, Olive Jean. 1961. Multiple comparisons among means. Journal of the American Statistical Association 56: 52–64. [CrossRef]
Em, Olga, Georgi Georgiev, Sergey Radukanov, and Mariana Petrova. 2022. Assessing the market risk on the government debt of

kazakhstan and bulgaria in conditions of turbulence. Risks 10: 93. [CrossRef]
Fischer, Thomas, and Christopher Krauss. 2018. Deep learning with long short-term memory networks for financial market predictions.

European Journal of Operational Research 270: 654–69. [CrossRef]
Fu, Xingyu, Jinhong Du, Yifeng Guo, Mingwen Liu, Tao Dong, and Xiuwen Duan. 2018. A machine learning framework for stock

selection. arXiv arXiv:1806.01743.
Gold, Carl. 2003. FX trading via recurrent reinforcement learning. Paper presented at 2003 IEEE International Conference on

Computational Intelligence for Financial Engineering, Hong Kong, China, March 20–23; pp. 363–70.
Iliev, Nikola, Marin Marinov, Valentin Milinov, and Mariana Petrova. 2023. Is investment portfolio construction sustainable in the

circular economy paradigm—The case of esg investment? In Circular Business Management in Sustainability. ISCMEE 2022. Lecture
Notes in Management and Industrial Engineering; Cham: Springer, pp. 15–42.

Jiang, Zhengyao, and Jinjun Liang. 2017. Cryptocurrency portfolio management with deep reinforcement learning. Paper presented at
2017 Intelligent Systems Conference (IntelliSys), London, UK, September 7–8; Piscataway: IEEE, pp. 905–13.

Kakade, Sham, and John Langford. 2002. Approximately optimal approximate reinforcement learning. Paper presented at the
Nineteenth International Conference on Machine Learning, San Francisco, CA, USA, July 8–12; pp. 267–74.

Kloek, Teun, and Herman K. Van Dijk. 1978. Bayesian estimates of equation system parameters: an application of integration by monte
carlo. Econometrica: Journal of the Econometric Society 46: 1–19. [CrossRef]

Krasnyuk, Maxim, Iryna Hrashchenko, Svitlana Goncharenko, and Svitlana Krasniuk. 2022. Hybrid application of decision trees, fuzzy
logic and production rules for supporting investment decision making (on the example of an oil and gas producing company).
Access Journal 3: 278–91. [CrossRef] [PubMed]

Lee, Sang, II, and Seong Joon Yoo. 2020. Threshold-based portfolio: the role of the threshold and its applications. The Journal of
Supercomputing 76: 8040–57. [CrossRef]

Leung, Mark T., Hazem Daouk, and An-Sing Chen. 2000. Forecasting stock indices: A comparison of classification and level estimation
models. International Journal of Forecasting 16: 173–90. [CrossRef]

Li, Bin, and Steven CH Hoi. 2014. Online portfolio selection: A survey. ACM Computing Surveys (CSUR) 46: 1–36. [CrossRef]
Liang, Zhipeng, Hao Chen, Junhao Zhu, Kangkang Jiang, and Yanran Li. 2018. Adversarial deep reinforcement learning in portfolio

management. arXiv arXiv:1808.09940.
Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015.

Continuous control with deep reinforcement learning. arXiv arXiv:1509.02971.
Lin, Chin-Teng, Chang-Mao Yeh, Sheng-Fu Liang, Jen-Feng Chung, and Nimit Kumar. 2006. Support-vector-based fuzzy neural

network for pattern classification. IEEE Transactions on Fuzzy Systems 14: 31–41.
Martens, James, and Roger Grosse. 2015. Optimizing neural networks with kronecker-factored approximate curvature. Paper

presented at 32nd International Conference on Machine Learning, Lille, France, July 6–11; New York: PMLR, pp. 2408–17.

http://doi.org/10.1016/j.procs.2018.10.340
http://dx.doi.org/10.3390/math8071126
http://dx.doi.org/10.1016/j.eswa.2017.04.030
http://dx.doi.org/10.1080/14697680903104113
http://dx.doi.org/10.1016/j.jedc.2012.04.004
http://dx.doi.org/10.1109/TNNLS.2016.2522401
http://dx.doi.org/10.1080/01621459.1961.10482090
http://dx.doi.org/10.3390/risks10050093
http://dx.doi.org/10.1016/j.ejor.2017.11.054
http://dx.doi.org/10.2307/1913641
http://dx.doi.org/10.46656/access.2022.3.3(7)
http://www.ncbi.nlm.nih.gov/pubmed/36913418
http://dx.doi.org/10.1007/s11227-018-2577-1
http://dx.doi.org/10.1016/S0169-2070(99)00048-5
http://dx.doi.org/10.1145/2512962


J. Risk Financial Manag. 2023, 16, 201 14 of 14

Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement learning. Paper presented at 33rd International Conference
on Machine Learning, New York, NY, USA, June 19–24; New York: PMLR, pp. 1928–37.

Moody, John, and Lizhong Wu. 1997. Optimization of trading systems and portfolios. Paper presented at IEEE/IAFE 1997
Computational Intelligence for Financial Engineering (CIFEr), New York, NY, USA, March 24–25; Piscataway: IEEE, pp. 300–7.

Moody, John, and Matthew Saffell. 1998. Reinforcement learning for trading. Advances in Neural Information Processing Systems, 917–23.
Moody, John, Lizhong Wu, Yuansong Liao, and Matthew Saffell. 1998. Performance functions and reinforcement learning for trading

systems and portfolios. Journal of Forecasting 17: 441–70. [CrossRef]
Murphy, John J. 1999. Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Penguin;

New York: New York Institute of Finance.
Nikolaev, Daniel, and Mariana Petrova. 2021. Application of simple convolutional neural networks in equity price estimation. Paper

presented at 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T),
Kharkiv, Ukraine, October 5–7; Piscataway: IEEE, pp. 147–50.

Oelschläger, Lennart, and Timo Adam. 2021. Detecting bearish and bullish markets in financial time series using hierarchical hidden
markov models. arXiv arXiv:2007.14874 [CrossRef]

Ozbayoglu, Ahmet Murat, Mehmet Ugur Gudelek, and Omer Berat Sezer. 2020. Deep learning for financial applications: A survey.
Applied Soft Computing 93: 106384. [CrossRef]

Pal, Nikhil R., and James C. Bezdek. 1994. Measuring fuzzy uncertainty. IEEE Transactions on Fuzzy Systems 2: 107–18. [CrossRef]
[PubMed]

Rubinstein, Mark. 2002. Markowitz’s “portfolio selection”: A fifty-year retrospective. The Journal of Finance 57: 1041–45. [CrossRef]
Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms.

arXiv arXiv:1707.06347.
Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015. Trust region policy optimization. Paper

presented at 32nd International Conference on Machine Learning, Lille, France, July 6–11; New York: PMLR, pp. 1889–97.
Sezer, Omer Berat, Murat Ozbayoglu, and Erdogan Dogdu. 2017. A deep neural-network based stock trading system based on

evolutionary optimized technical analysis parameters. Procedia Computer Science 114: 473–80. [CrossRef]
Sharpe, William F. 1998. The sharpe ratio. Streetwise–the Best of the Journal of Portfolio Management 3: 169–85. [CrossRef]
Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis

Antonoglou, Veda Panneershelvam, Marc Lanctot, and et al. 2016. Mastering the game of go with deep neural networks and tree
search. Nature 529: 484–89. [CrossRef]

Singh, Sanjay Kumar, Shivendra Sanjay Singh, and Vijay Lakshmi Singh. 2023. Predicting adoption of next generation digital
technology utilizing the adoption-diffusion model fit: The case of mobile payments interface in an emerging economy. Access
Journal 4: 130–48. [CrossRef]

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. Cambridge: MIT press.
Van Dijk, Herman K., and Teunis Kloek. 1983. Experiments with Some Alternatives for Simple Importance Sampling in Monte Carlo

Integration. Technical report. Amsterdam: Elsevier.
Vargas, Manuel R., Carlos E. M. Dos Anjos, Gustavo L. G. Bichara, and Alexandre G. Evsukoff. 2018. Deep leaming for stock market

prediction using technical indicators and financial news articles. Paper presented at 2018 International Joint Conference on
Neural Networks (IJCNN), Rio de Janeiro, Brazil, July 8–13; Piscataway: IEEE, pp. 1–8.

Vinyals, Oriol, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich
Küttler, John Agapiou, Julian Schrittwieser, and et al. 2017. A new challenge for reinforcement learning. arXiv arXiv:1708.04782.

Wu, Dingming, Xiaolong Wang, Jingyong Su, Buzhou Tang, and Shaocong Wu. 2020. A labeling method for financial time series
prediction based on trends. Entropy 22: 1162. [CrossRef] [PubMed]

Wu, Yuhuai, Elman Mansimov, Roger B. Grosse, Shun Liao, and Jimmy Ba. 2017. Scalable trust-region method for deep reinforcement
learning using kronecker-factored approximation. In Advances in Neural Information Processing Systems; Cambridge: MIT Press,
pp. 5279–88.

Yang, Hongyang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. 2020. Deep reinforcement learning for automated stock trading: An
ensemble strategy. Paper presented at the first ACM International Conference on AI in Finance, New York, NY, USA, October
15–16; pp. 1–8.

Zhang, Zihao, Stefan Zohren, and Stephen Roberts. 2020. Deep reinforcement learning for trading. The Journal of Financial Data
Science 2: 25–40. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-
http://dx.doi.org/10.1177/1471082X211034048
http://dx.doi.org/10.1016/j.asoc.2020.106384
http://dx.doi.org/10.1109/91.277960
http://www.ncbi.nlm.nih.gov/pubmed/36239094
http://dx.doi.org/10.1111/1540-6261.00453
http://dx.doi.org/10.1016/j.procs.2017.09.031
http://dx.doi.org/10.3905/jpm.1994.409501
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.46656/access.2023.4.1(10)
http://dx.doi.org/10.3390/e22101162
http://www.ncbi.nlm.nih.gov/pubmed/33286931
http://dx.doi.org/10.3905/jfds.2020.1.030

	Introduction
	Methodology 
	Model Terminology and Assumptions 
	Reinforcement Learning Algorithms
	Fuzzy Extension
	Ensemble

	Datasets and Preprocessing 
	Results 
	Discussion and Conclusions 
	References

