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Abstract: We generalize the naive estimator of a Poisson regression model with a measurement error
as discussed in Kukush et al. in 2004. The explanatory variable is not always normally distributed as
they assume. In this study, we assume that the explanatory variable and measurement error are not
limited to a normal distribution. We clarify the requirements for the existence of the naive estimator
and derive its asymptotic bias and asymptotic mean squared error (MSE). The requirements for the
existence of the naive estimator can be expressed using an implicit function, which the requirements
can be deduced by the characteristic of the Poisson regression models. In addition, using the implicit
function obtained from the system of equations of the Poisson regression models, we propose a
consistent estimator of the true parameter by correcting the bias of the naive estimator. As illustrative
examples, we present simulation studies that compare the performance of the naive estimator and
new estimator for a Gamma explanatory variable with a normal error or a Gamma error.

Keywords: Poisson regression model; error in variable; naive estimator; asymptotic bias

1. Introduction

We often cannot measure explanatory variables correctly in regression models because
an observation may not be performed properly. The estimation result may be distorted
when we estimate the model from data with measurement errors. We call models with
measurement errors in an explanatory variable Error in Variable (EIV) models. In addition,
actual phenomena often cannot be explained adequately by a simple linear structure, and
the estimation of non-linear models, especially generalized linear models, from data with
errors is a significant problem. Various studies have focused on non-linear EIV models (see,
for example, Box 1963; Geary 1953). Classical error models assume that an explanatory
variable is measured with independent stochastic errors (Kukush and Schneeweiss 2000).
Berkson error models assume that the explanatory variable is a controlled variable with
an error and that only the controlled variable can be measured (Burr 1988; Huwang and
Huang 2000). Approaches to EIV models vary according to the situation. In this paper, we
consider the former EIV. The corrected score function in Nakamura (1990) has been used
to estimate generalized linear models. In particular, the Poisson regression model is easy
to handle analytically in generalized linear models as we see later. Thus, we focus on the
Poisson regression model with measurement errors.

Approaches to a Poisson regression model with classical errors have been discussed
by Kukush et al. (2004), Shklyar and Schneeweiss (2005), Jiang and Ma (2020), Guo and
Li (2002), and so on. Kukush et al. (2004) described the statistical properties of the naive
estimator, corrected score estimator, and structural quasi score estimator of a Poisson
regression model with normally distributed explanatory variable and measurement errors.
Shklyar and Schneeweiss (2005) assumed an explanatory variable and a measurement error
with a multivariate normal distribution and compared the asymptotic covariance matrices
of the corrected score estimator, simple structural estimator, and structural quasi score
estimator of a Poisson regression model. Jiang and Ma (2020) assumed a high-dimensional
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explanatory variable with a multivariate normal error and proposed a new estimator
for a Poisson regression model by combining Lasso regression and the corrected score
function. Guo and Li (2002) assumed a Poisson regression model with classical errors and
proposed an estimator that is a generalization of the corrected score function discussed in
Nakamura (1990) for generally distributed errors; they derived the asymptotic normality of
the proposed estimator.

In this study, we generalize the naive estimator discussed in Kukush et al. (2004). They
reported the bias of the naive estimator, however, the explanatory variable is not always
normally distributed as they assume. In practice, the assumption of a normal distribution
is not realistic. Here, we assume that the explanatory variable and measurement error are
not limited to normal distributions. However, the naive estimator does not always exist
in every situation. Therefore, we clarify the requirements for the existence of the naive
estimator and derive its asymptotic bias. The constant vector to which the naive estimator
converges in probability does not coincide with the unknown parameter in the model.
Therefore, we propose a consistent estimator of the unknown parameter using the naive
estimator. It is obtained from a system of equations that represent the relationship between
the unknown parameter and constant vector. As illustrative examples, we present explicit
representations of the new estimator for a Gamma explanatory variable with a normal error
or a Gamma error.

In Section 2, we present the Poisson regression model with measurement errors and
the definition of the naive estimator and show that the naive estimator has an asymptotic
bias for the true parameter. In Section 3, we consider the requirements for the existence
of the naive estimator and derive its asymptotic bias and asymptotic mean squared er-
ror (MSE) assuming that the explanatory variable and measurement error are generally
distributed. In addition, we introduce application examples of a Gamma explanatory
variable with a normal error or a Gamma error. In Section 4, we propose the corrected
naive estimator as a consistent estimator of the true parameter under general distributions
and give application examples for a Gamma explanatory variable with a normal error or a
Gamma error. In Section 5, we present simulation studies that compare the performance
of the naive estimator and corrected naive estimator. In Section 6, we apply the naive and
corrected naive estimators to real data in two cases. Finally, discussions are presented in
Section 7.

2. Preliminary

In this section, we state the statistical model considered in this paper and the definition
of the naive estimator and show that the naive estimator has an asymptotic bias for the
true parameter.

2.1. Poisson Regression Models with an Error

We assume a single covariate Poisson regression model between the objective variable
Y and explanatory variable X

Y|X ∼ Po(exp(β0 + β1X)).

X can typically be correctly observed. We assume here that X has a stochastic error U as

W = X + U,

where U is supposed to be independent of (X, Y|X). We also assume that

(Yi, Xi, Ui) (i = 1, . . . , n) (1)

are independent and identically distributed samples of the distributions of (Y|X, X, U).
Although we can observe Y|X and W, we assume that X and U cannot be directly observed.
However, even if we know the family of the distributions of X and U, we can-not make a
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statistical inference regarding X and U if we can observe only W. Because U is the error
distribution, the mean of U is often zero, and we may suppose that we have empirical
information about the degree of error (the variance of U). Therefore, in this study, we
assume that the mean and variance of U are known. From the above assumption, Y and W
are independent for the given X.

fY,W|X(y, w|x) = fY,W,X(y, w, x)
fX(x)

=
fY,W,U(y, w, w− x)

fX(x)

=
fY,X(y, x) fU(w− x)

fX(x)
= fY|X(y|x) fW|X(w|x).

We use this conditional independence when we calculate the expectations.

2.2. The Naive Estimator

The naive estimator β̂
(N)

= (β̂
(N)
0 , β̂

(N)
1 )′ for β = (β0, β1)

′ is defined as the solution of
the equation

Sn(β̂
(N)|X ) = 02 =

(
0
0

)
, (2)

where

Sn(b|X ) =
1
n

n

∑
i=1
{Yi − exp(b0 + b1Wi)}(1, Wi)

′

is a function of indeterminant b = (b0, b1)
′ given X = (X1, . . . , Xn)′. The naive estimator

can be interpreted as the maximum likelihood estimator if we wrongly assume that Y|W ∼
Po(exp(β0 + β1W)) because (2) is the log-likelihood equation for Y|W ∼ Po(exp(β0 +
β1W)). The correct distribution of Y|W is

fY|W(y|w) =
1

fW(w)

∫
supp( fU)

fY|W,U(y|w, u) fU(u) fX(w− u)du

=
1

fW(w)

∫
supp( fU)

fY|X(y|w− u) fU(u) fX(w− u)du

=
1

fW(w)

∫
supp( fU)

Po(exp(β0 + β1(w− u))) fU(u) fX(w− u)du

assuming that U is independent of (X, Y|X). The right-hand side must be different from
Po(exp(β0 + β1W)) in general. If one ignores the error U and fits the likelihood estimation
using W instead of X, a biased estimator is obtained. In fact, by the law of large numbers,
we have

Sn(β̂
(N)|X ) =

1
n

n

∑
i=1
{Yi − exp(β̂

(N)
0 + β̂

(N)
1 Wi)}(1, Wi)

′

p−→ EX,W [EY|(X,W)[{Y− exp(β̂
(N)
0 + β̂

(N)
1 W)}(1, W)′]].

Thus, the naive estimator converges to b = (b0, b1)
′ which is the solution of the estimating

equation
EX,W [EY|(X,W)[{Y− exp(β̂

(N)
0 + β̂

(N)
1 W)}(1, W)′]] = 02. (3)

Equation (3) implies that for a given X

β̂
(N) p−→ b 6= β.

The solution b of the estimating equation is generally different from β.
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3. Properties of the Naive Estimator

In this section, we consider the requirements for the existence of the naive estimator
and derive its asymptotic bias and asymptotic MSE assuming that the explanatory variable
and measurement error are generally distributed. In addition, we introduce application
examples for a Gamma explanatory variable with a normal error or a Gamma error.

3.1. The Existence of the Naive Estimator

The naive estimator does not always exist for general random variables X and U.
Thus, we assume the existence of the expectation

EX,Y,W [{Y− exp(b0 + b1W)}(1, W)′]

as a requirement for the existence of the naive estimator. Consequently, the following four
expectations should exist.

E[Y] = EX [E[Y|X]] = EX [exp(β0 + β1X)] = eβ0 MX(β1),
E[exp(b0 + b1W)] = eb0E[eb1X+b1U ] = eb0 MX(b1)MU(b1),
E[YW] = EX [E[Y|X]E[W|X]] = EX [(X + E[U]) exp(β0 + β1X)]

= eβ0E[U]MX(β1) + eβ0E[Xeβ1X ]

= eβ0E[U]MX(β1) + eβ0∇MX(β1),
E[W exp(b0 + b1W)] = EX [EU [(X + U) exp(b0 + b1X + b1U)]]

= eb0E[Xeb1X ]MU(b1) + eb0E[Ueb1U ]MX(b1)

= eb0 MU(b1)∇MX(b1) + eb0 MX(b1)∇MU(b1).

(4)

Therefore, these expectations require that MX(β1), MX(b1), MU(b1) exist. This condition is
the requirement for the existence of the naive estimator. Here, we assume the existence of

MX(β1), MX(b1), MU(b1) (5)

for the distributions of X and U.

3.2. Asymptotic Bias of the Naive Estimator

The naive estimator satisfies

β̂
(N) p−→ b

and has an asymptotic bias for the true β. Here, we derive the asymptotic bias under
general conditions. From (3), we obtain two equations:{

E[Y] = E[exp(b0 + b1W)],
E[YW] = E[W exp(b0 + b1W)].

(6)

From (4) with the above equalities, we have

eβ0 MX(β1) = eb0 MX(b1)MU(b1),

eβ0E[U]MX(β1) + eβ0∇MX(β1) = eb0(∇MX(b1))MU(b1) + eb0(∇MU(b1))MX(b1)

= eb0∇(MX(b1)MU(b1)) = eb0∇MW(b1).

Therefore, we use a transformation to obtain the following system of equations:b0 = β0 + log
(

MX(β1)
MW (b1)

)
,

K′W(b1) = 1
MW (b1)

∇MW(b1) = E[U] + ∇MX(β1)
MX(β1)

,
(7)
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where KW is the cumulant generating function of W. Thus, b = (b0, b1)
′ is determined by

the solution of this system of equations. Therefore, the equation

K′W(b1) = E[U] +
∇MX(β1)

MX(β1)

should have a solution with respect to b1. Here, we set

G(β1, b1) := K′W(b1)− E[U]− K′X(β1).

We assume G(β1, b1) has zero in R2 and satisfies

∂G(β1, b1)

∂b1
= K′′W(b1) 6= 0.

G is continuously differentiable because we assume the existence of (5). Then, by the theo-
rem of implicit functions, there exists a unique C1-class function g that satisfies b1 = g(β1)
in the neighborhood of the zero of G. Using this expression, we write the asymptotic bias
of the naive estimator as

lim
n→∞

E[β̂(N)
0 − β0] = b0 − β0 = log

(
MX(β1)

MW ◦ g(β1)

)
,

lim
n→∞

E[β̂(N)
1 − β1] = b1 − β1 = g(β1)− β1.

We also derive the asymptotic MSE of the naive estimator. The MSE can be represented as
the sum of the squared bias and variance. The asymptotic variance of the naive estimator is
0 because the naive estimator is a consistent estimator of b. Thus, we obtain the asymptotic
MSE of the naive estimator as

lim
n→∞

E[(β̂
(N)
0 − β0)

2] = (b0 − β0)
2 =

(
log
(

MX(β1)

MW ◦ g(β1)

))2

,

lim
n→∞

E[(β̂
(N)
1 − β1)

2] = (b1 − β1)
2 = (g(β1)− β1)

2.

Therefore, the asymptotic bias is given by the following theorem assuming general distri-
butions.

Theorem 1. Let Y|X ∼ Po(exp(β0 + β1X)). Assume that W = X + U and U is independent of
(X, Y|X). Assume the existence of MX(β1), MX(b1), MU(b1). Let

G(β1, b1) := K′W(b1)− E[U]− K′X(β1).

Assume the function G has a zero in R2, namely there exist solutions with G(β1, b1) = 0, and
satisfies

∂G(β1, b1)

∂b1
= K′′W(b1) 6= 0.

Then, the asymptotic biases of the naive estimators β̂
(N)
0 and β̂

(N)
1 are given by

log
(

MX(β1)

MW ◦ g(β1)

)
and g(β1)− β1

respectively, where g is a C1-class function satisfying b1 = g(β1) in the neighborhood of the zero
of G. Furthermore, the asymptotic MSEs of the naive estimators β̂

(N)
0 and β̂

(N)
1 are given by their

squared asymptotic biases.
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3.3. Examples

In this section, we present two type of examples. First, we assume that a Gamma
explanatory variable with a normal error. Let

X ∼ Γ(k, λ), U ∼ N(0, σ2),

where k > 0, λ > 0, 0 < σ2 < ∞. We apply the naive estimation under this condition. From
the assumptions of Theorem 1, we assume the existence of

MX(β1), MX(b1) and MU(b1).

Therefore, we obtain the parameter conditions

λ− β1 > 0, λ− b1 > 0.

Next, we derive b = (b0, b1)
′. Under this condition, we obtain

G(β1, b1) = K′W(b1)− E[U]− K′X(β1) =
k

λ− b1
+ σ2b1 −

k
λ− β1

.

Thus, the set of zeros of G is{
(β1, b1) ∈ R2; β1 =

k + λσ2(λ− b1)

k + σ2(λ− b1)b1
b1

}
.

In addition,
∂G(β1, b1)

∂b1
=

k
(λ− b1)2 + σ2 > 0.

Therefore, G has a zero in R2 and satisfies ∂G(β1,b1)
∂b1

6= 0. From G(β1, b1) = 0, we obtain two
implicit functions

b(1)1 =
(λ− β1)λσ2 + k +

√
s

2(λ− β1)σ2 ,

b(2)1 =
(λ− β1)λσ2 + k−

√
s

2(λ− β1)σ2 ,

where s = (λ− β1)
2λ2σ4 + 2(λ− β1)(λ− 2β1)σ

2k + k2 > 0. Then, we obtain two expres-
sions of b0 corresponding to b1.

b(1)0 := β0 + log

(
MX(β1)

MW(b(1)1 )

)

= β0 + k log
(λ− β1)λσ2 − k−

√
s

2(λ− β1)2σ2

− (λ− β1)
2λ2σ4 + 2(λ− β1)

2σ2k + k2 + ((λ− β1)λσ2 + k)
√

s
4(λ− β1)2σ2 ,

b(2)0 := β0 + log

(
MX(β1)

MW(b(2)1 )

)

= β0 + k log
(λ− β1)λσ2 − k +

√
s

2(λ− β1)2σ2

− (λ− β1)
2λ2σ4 + 2(λ− β1)

2σ2k + k2 − ((λ− β1)λσ2 + k)
√

s
4(λ− β1)2σ2 .
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In addition,
s = ((λ− β1)λσ2 − k)2 + 4(λ− β1)

2σ2k;

therefore, s satisfies
√

s >| (λ − β1)λσ2 − k |. From the antilogarithm condition,
b = (b(2)0 , b(2)1 )′ is a solution of the system of Equation (6) in the range of R2. Thus,
the asymptotic biases are given by

b0 − β0 = k log
(λ− β1)λσ2 − k +

√
s

2(λ− β1)2σ2

− (λ− β1)
2λ2σ4 + 2(λ− β1)

2σ2k + k2 − ((λ− β1)λσ2 + k)
√

s
4(λ− β1)2σ2 ,

b1 − β1 =
λ

2
− β1 +

k−
√

s
2(λ− β1)σ2 .

Next, we present another example, Gamma explanatory variable with a Gamma error.
Let

X ∼ Γ(k1, λ), U ∼ Γ(k2, λ),

where k1 > 0, k2 > 0, λ > 0. We apply the naive estimation under this condition. From the
assumptions of Theorem 1, we assume the existence of

MX(β1), MX(b1) and MU(b1).

Therefore, we obtain the parameter conditions

λ− β1 > 0, λ− b1 > 0.

Next, we derive b = (b0, b1)
′. Under this condition, we obtain

G(β1, b1) =
k1 + k2

λ− b1
− k1

λ− β1
− k2

λ
.

Thus, the set of zeros of G is{
(β1, b1) ∈ R2; b1 =

k1λβ1

k1λ + k2(λ− β1)

}
.

In addition,
∂G(β1, b1)

∂b1
=

k1 + k2

(λ− b1)2 > 0.

Therefore, G has a zero in R2 and satisfies ∂G(β1,b1)
∂b1

6= 0. From G(β1, b1) = 0, we obtain the
implicit function

b1 =
k1λβ1

k1λ + k2(λ− β1)
.

Thus, by Theorem 1, the asymptotic biases are given by

b0 − β0 = −k1 log(1− β1/λ) + (k1 + k2) log(1− b1/λ),

b1 − β1 = − k2(λ− β1)β1

k1λ + k2(λ− β1)
.

4. Corrected Naive Estimator

In this section, we propose a corrected naive estimator as a consistent estimator of
β under general distributions and give application examples for a Gamma explanatory
variable with a normal error or a Gamma error. From (7), we have the following system
of equations:
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β0 = b0 + log
(

MW(b1)

MX(β1)

)
,

G(β1, b1) = K′W(b1)− E[U]− K′X(β1) = 0.

By solving this system of equations for β0, β1 and replacing b = (b0, b1)
′ with the naive

estimator β̂
(N)

= (β̂
(N)
0 , β̂

(N)
1 )′, we obtain the consistent estimator of the true β. Here,

β̂
(N)

=

(
β̂
(N)
0

β̂
(N)
1

)
p−→ b =

(
b0
b1

)
.

Therefore,
β̂
(CN) p−→ β.

Thus, β̂
(CN)

is a consistent estimator of β. If G has zero in R2 and satisfies

∂G(β1, b1)

∂β1
= −K′′X(β1) 6= 0,

then, by the theorem of implicit functions, there exists a unique C1-class function h that
satisfies β1 = h(b1) in the neighborhood of the zero of G. We note that h is the inverse
function of g in Theorem 1. We propose a corrected naive estimator that is the consistent
estimator of the true β as follows.

Theorem 2. Let Y|X ∼ Po(exp(β0 + β1X)). Assume that W = X + U and U is independent of
(X, Y|X). Assume the existence of MX(β1), MX(b1), MU(b1). Let

G(β1, b1) := K′W(b1)− E[U]− K′X(β1).

Assume G has zero in R2 and satisfies

∂G(β1, b1)

∂β1
= −K′′X(β1) 6= 0.

Then, the corrected naive estimator β̂
(CN)

= (β̂
(CN)
0 , β̂

(CN)
1 )′, which corrects the bias of the naive

estimator β̂
(N)

= (β̂
(N)
0 , β̂

(N)
1 )′, is given by

β̂
(CN)
0 = β̂

(N)
0 + log

(
MW(β̂

(N)
1 )

MX(β̂
(CN)
1 )

)
,

β̂
(CN)
1 = h(β̂

(N)
1 ),

where h is a C1-class function satisfying β1 = h(b1) in the neighborhood of the zero of G. Further-
more, the corrected naive estimator is a consistent estimator of β.

Example 1. We derive the corrected naive estimator assuming

X ∼ Γ(k, λ), U ∼ N(0, σ2).

We obtain

G(β1, b1) =
k

λ− b1
+ σ2b1 −

k
λ− β1

,

∂G(β1, b1)

∂β1
= − k

(λ− β1)2 < 0.
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G has zero in R2 and satisfies ∂G(β1,b1)
∂β1

6= 0. From G(β1, b1) = 0, we obtain the implicit function

β1 =
σ2λb2

1 − (k + λ2σ2)b1

σ2b2
1 − λσ2b1 − k

= h(b1).

Thus, by Theorem 2, the corrected naive estimator is given by

β̂
(CN)
0 = β̂

(N)
0 + log

(
MW(β̂

(N)
1 )

MX(β̂
(CN)
1 )

)

= β̂
(N)
0 +

1
2

β̂
(N)2
1 σ2 + k log(1− β̂

(CN)
1 /λ)− k log(1− β̂

(N)
1 /λ),

β̂
(CN)
1 = h(β̂

(N)
1 ) =

λσ2 β̂
(N)2
1 − (k + λ2σ2)β̂

(N)
1

σ2 β̂
(N)2
1 − λσ2 β̂

(N)
1 − k

.

Example 2. We derive the corrected naive estimator assuming

X ∼ Γ(k1, λ), U ∼ Γ(k2, λ).

We obtain

G(β1, b1) =
k1 + k2

λ− b1
− k1

λ− β1
− k2

λ
,

∂G(β1, b1)

∂β1
= − k1

(λ− β1)2 < 0.

G has zero in R2 and satisfies ∂G(β1,b1)
∂β1

6= 0. From G(β1, b1) = 0, we obtain the implicit function

β1 =
(k1 + k2)b1λ

k1λ + k2b1
= h(b1).

Thus, by Theorem 2, the corrected naive estimator is given by

β̂
(CN)
0 = β̂

(N)
0 + log

(
MW(β̂

(N)
1 )

MX(β̂
(CN)
1 )

)
= β̂

(N)
0 + k1 log(1− β̂

(CN)
1 /λ)− (k1 + k2) log(1− β̂

(N)
1 /λ),

β̂
(CN)
1 = h(β̂

(N)
1 ) =

(k1 + k2)β̂
(N)
1 λ

k1λ + k2 β̂
(N)
1

.

5. Simulation Studies

In this section, we present simulation studies that compare the performance of the
naive estimator and corrected naive estimator. We denote the sample size by n and the num-

ber of simulations by MC. We calculate the estimated bias for β̂
(N)

and β̂
(CN)

as follows:

̂
BIAS(β̂

(N)
) =

1
MC

MC

∑
i=1

β̂
(N)
i − β,

̂
BIAS(β̂

(CN)
) =

1
MC

MC

∑
i=1

β̂
(CN)
i − β,



J. Risk Financial Manag. 2023, 16, 186 10 of 15

where β̂
(N)
i and β̂

(CN)
i represent the naive estimator and corrected naive estimator in the

ith time simulation, respectively. Similarly, we calculate the estimated MSE matrix for β̂
(N)

and β̂
(CN)

as follows:

̂
MSE(β̂

(N)
) =

1
MC

MC

∑
i=1

(β̂
(N)
i − β)(β̂

(N)
i − β)′,

̂
MSE(β̂

(CN)
) =

1
MC

MC

∑
i=1

(β̂
(CN)
i − β)(β̂

(CN)
i − β)′.

5.1. Case 1

We assume X ∼ Γ(k, λ), U ∼ N(0, σ2). Let β0 = 0.2, β1 = 0.3, k = 2, λ = 1.2,
n = 500, MC = 1000. We perform simulations with σ2 = 0.05, 0.5, 2. Note that we assume
that the true value of σ2 is known. We estimate k, λ in the formula of the corrected naive
estimator by the moment method in terms of W because the value of X cannot be directly
observed.

k̂ =

(
1
n

n

∑
i=1

wi

)
λ̂,

λ̂ =
1
n ∑n

i=1 wi
1
n ∑n

i=1(wi − w̄)2 − σ2
,

where wi (i = 1, . . . , n) is the samples of W.
Table 1 shows the estimated bias of the true β. Asy.Bias β̂0 and Asy.Bias β̂1 denote

the theoretical asymptotic biases of β̂
(N)
0 and β̂

(N)
1 , respectively, given in Theorem 1. The

bias correction of the naive estimator is performed by the corrected naive estimator. With
increasing σ2, the bias of the naive estimator increases. However, the bias of the corrected
naive estimator is small for large σ2.

Table 1. Estimated bias of a Gamma distribution with a Normal error.

Asy.Bias β̂0 ̂BIAS(β̂0) Asy.Bias β̂1 ̂BIAS(β̂1)

σ2 = 0.05
Naive 0.01111 0.01139 −0.005993 −0.007199

CN 0 0.00003532 0 0.0002603

σ2 = 0.5
Naive 0.09912 0.1025 −0.05297 −0.05582

CN 0 0.007817 0 0.0007142

σ2 = 2
Naive 0.2757 0.2774 −0.1454 −0.1472

CN 0 −0.009493 0 0.002736

Table 2 shows the estimated MSE of the true β. Asy.MSE β̂0 and Asy.MSE β̂1 denote
the theoretical asymptotic MSEs of β̂

(N)
0 and β̂

(N)
1 , respectively, given in Theorem 1. The

MSE of the corrected naive estimator is smaller than that of the naive estimator in all cases.

Table 2. Estimated MSE of a Gamma distribution with a normal error.

Asy.MSE β̂0 ̂MSE(β̂0) Asy.MSE β̂1 ̂MSE(β̂1)

σ2 = 0.05
Naive 0.0001235 0.003003 0.00003592 0.0004536

CN 0 0.002920 0 0.0004254

σ2 = 0.5
Naive 0.009824 0.01362 0.002806 0.003508

CN 0 0.003806 0 0.0006354

σ2 = 2
Naive 0.07600 0.08124 0.02115 0.02214

CN 0 0.01021 0 0.002160
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5.2. Case 2

We assume X ∼ Γ(k1, λ), U ∼ Γ(k2, λ). Let β0 = 0.2, β1 = 0.3, k1 = 2, λ = 1.2, n = 500,
MC = 1000. We perform simulations with k2 = 0.072, 0.72, 2.88. Similarly, we assume
that the true value of k2 is known. We estimate k1, λ in the formula of the corrected naive
estimator by the moment method in terms of W because the value of X cannot be directly
observed.

k̂1 =

(
1
n

n

∑
i=1

wi

)
λ̂− k2,

λ̂ =
1
n ∑n

i=1 wi
1
n ∑n

i=1(wi − w̄)2
,

where wi (i = 1, . . . , n) is the samples of W.
Table 3 shows the estimated bias of the true β. Similarly, the bias correction of the

naive estimator is performed by the corrected naive estimator. The bias of the corrected
naive estimator is small when the variance of the error is large. Table 4 shows the estimated
MSE of the true β. The MSE of the corrected naive estimator is also smaller than that of the
naive estimator.

Table 3. Estimated bias of a Gamma distribution with a Gamma error.

Asy.Bias β̂0 ̂BIAS(β̂0) Asy.Bias β̂1 ̂BIAS(β̂1)

k2 = 0.072 Naive −0.002634 −0.005415 −0.007887 −0.008874
CN 0 −0.0006636 0 0.0002777

k2 = 0.72 Naive −0.02090 −0.01725 −0.06378 −0.06475
CN 0 -0.0002963 0 −0.003184

k2 = 2.88 Naive −0.04953 −0.05439 −0.1558 −0.1569
CN 0 0.002954 0 −0.003224

Table 4. Estimated MSE of a Gamma distribution with a Gamma error.

Asy.MSE β̂0 ̂MSE(β̂0) Asy.MSE β̂1 ̂MSE(β̂1)

k2 = 0.072 Naive 0.08533 0.003109 0.000006940 0.0005384
CN 0 0.003074 0 0.0004743

k2 = 0.72 Naive 0.05580 0.005320 0.0004368 0.004894
CN 0 0.004457 0 0.0008818

k2 = 2.88 Naive 0.02080 0.01147 0.002453 0.02553
CN 0 0.007401 0 0.001963

6. Real Data Analysis

In this section, we apply the naive and corrected naive estimators to real data in two
cases. First, we consider football data provided by Understat (2014). In this work, we
focus on Goals and expected Goals (xG) in data on N = 24,580 matches over 6 seasons
between 2014–2015 and 2019–2020 from the Serie A, the Bundesliga, La Liga, the English
Premier League, Ligue 1, and the Russian Premier League. Detail, such as the types and
descriptions of the features, used in this section are provided in Table 5.

Table 5. Details of the variables.

Features Type Description

Goals counting number of goals scored in the
match

xG continuous
performance metric used to
evaluate football team and

player performance
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We use goals as an objective variable Y and xG as an explanatory variable X and
assume Y|X ∼ Po(exp(β0 + β1X)) as the true model. Thus, this Poisson regression model
refers to the extent to which expected goals (xG) explains (true) goals. We assume that the
true parameter β is obtained by the estimate from all N data.

As a diagnostic technique, we calculate a measure of goodness-of-fit to verify that
the dataset follows a Poisson regression model. Table 6 shows estimates of φ and RMcF
(McFadden 1974), where RMcF is the ratio of the log-likelihood estimate to the initial log-
likelihood. φ = V[Y|X]/E[Y|X] is an overdispersion parameter. We may consider that
overdispersion is not observed because φ = 1 equates to the standard Poisson regression
model. The estimated value of β is (−0.5225, 0.5308)′. Thus, we use this estimate as a true
value. We assume X (xG) ∼ Γ(k1, λ) and obtain estimates of k1, λ as k1 = 2.425, λ = 1.851
(see Figure 1).

Table 6. Estimates of φ and RMcF.

φ̂ R̂McF

0.8907 0.1589

0 1 2 3 4 5 6
xG

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

xG
pdf

Figure 1. Distribution of xG.

Expected goals (xG) is a performance metric used to represent the probability of a
scoring opportunity that may result in a goal. xG is typically calculated from shot data.
The measurer assigns a probability of scoring to a given shot and calculates the sum of
the probabilities over a single game as xG. Observation error may occur in subjective
evaluations. We can consider the situation that a high scorer happened to rate. Thus, we
assume that X includes a stochastic error U given as

W = X + U.

Because W must be a positive value, we choose a positive error by U ∼ Γ(k2, λ) with
k2 = k1/10, k1/3, k1. We sample 1000 random samples from among all N samples to obtain
the values of the estimates of βs. We repeat the estimations MC = 10,000 times to obtain
the Monte Carlo mean of βs. The bias is calculated by the difference between the Monte
Carlo mean and the true value.

Table 7 shows the estimated bias calculated by 10,000 simulations. The estimated bias
of the corrected naive estimator is smaller than that of the naive estimator in all cases.
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Table 7. Estimated bias and asymptotic bias in football data.

Asy.Bias β̂0 ̂BIAS(β̂0) Asy.Bias β̂1 ̂BIAS(β̂1)

k2 = k1/10 Naive −0.01148 −0.01337 −0.03534 −0.03471
CN 0 −0.001804 0 0.0006200

k2 = k1/3 Naive −0.03263 −0.02383 −0.1020 −0.1067
CN 0 0.008176 0 −0.005575

k2 = k1
Naive −0.06889 −0.04692 −0.2210 −0.2291

CN 0 0.01871 0 -0.01215

Next, we apply the naive and corrected naive estimators to financial data based on
data collected in the FinAccess survey conducted in 2019, provided by Kenya National
Bureau of Statistics (2019). In this study, we focus on the values labelled as finhealthscore
and Normalized Household weights, with a sample size of N = 8669. Details of the features
used in this section, such as their types and descriptions, are provided in Table 8.

Table 8. Details of the variables.

Features Type Description

finhealthscore counting Score of financial health for
households

Normalized Household
weights continuous Weighted and normalized

households

We use finhealthscore as an objective variable Y and normalized household weights
as an explanatory variable X and assume Y|X ∼ Po(exp(β0 + β1X)) as the true model. We
further assume that the true parameter β is obtained by the estimate from all N data.

As a diagnostic technique, we calculate a measure of goodness-of-fit to verify that
the dataset follows a Poisson regression model. Table 9 shows estimates of φ and RMcF
(McFadden 1974). Overdispersion tends to occur to some extent in this Poisson regres-
sion model because the estimate of φ is greater than 1. The estimated value of β is
(1.0442, 0.1568)′. As in the previous example, we regard the estimate as a true value.
We assume X ∼ Γ(k1, λ) and obtain estimates of k1, λ as k1 = 2.0746, λ = 2.0746 (see
Figure 2).

Table 9. Estimates of φ and RMcF.

φ̂ R̂McF

1.4360 0.4478

According to Kenya National Bureau of Statistics (2019), the data from the FinAccess
survey were weighted and adjusted for non-responses to obtain a representative dataset
at the national and county level. Thus, we may consider the situation that X exhibits a
stochastic error U as

W = X + U.

We assume a positive error by U ∼ Γ(k2, λ) with k2 = k1/10, k1/3, k1 because the distribu-
tion of normalized household weights is positive. We sample random 1000 samples from
among all N samples to obtain the values of the estimates of βs. We repeat the estimations
over MC = 10,000 iterations to obtain the Monte Carlo mean of βs. The bias is calculated by
the difference between the Monte Carlo mean and the true value.
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Figure 2. Distribution of normalized household weights.

Table 10 shows estimated bias calculated by 10,000 simulations. The estimated bias of
the corrected naive estimator is smaller than that of the naive estimator in all cases.

Table 10. Estimated bias and asymptotic bias in financial data.

Asy.Bias β̂0 ̂BIAS(β̂0) Asy.Bias β̂1 ̂BIAS(β̂1)

k2 = k1/10 Naive −0.0005704 −0.002225 −0.01327 −0.01207
CN 0 −0.001628 0 0.001275

k2 = k1/3 Naive −0.001581 −0.004088 −0.03694 −0.03522
CN 0 -0.002404 0 0.002119

k2 = k1
Naive −0.003204 −0.008314 −0.07534 −0.07283

CN 0 −0.004744 0 0.004338

7. Discussion

In this study, we have proposed a corrected naive estimator as a consistent estimator
for a Poisson regression model with a measurement error. Although Kukush et al. (2004)
showed that the naive estimator has an asymptotic bias, the authors did not provide a
method to correct this bias. Therefore, we developed an approach to estimate a Poisson
regression model with an error. In contrast, the authors of Kukush et al. (2004) also pro-
posed a corrected score estimator and a structural quasi-score estimator for a Poisson
regression model with an error. These estimators are score-based and consistent for un-
known parameters. Hence, a generalization of these estimators should be considered in
future research. In addition, the model considered in the present work is restricted in the
univariate case. Extending the explanatory variable to the multivariate case also remains a
challenge of note.
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