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Abstract: The main objective of this article is to determine the internal factors of maritime transporta-
tion accidents using a comprehensive approach through robust regression and Gaussian/mixed-
Markov graphical models. Globally, this could be a strong incentive for the employees to negotiate
higher compensation and for the insurance companies to impose higher premiums to cover the risk
for these kinds of accidents. The article uses a dataset consisting of 166 real cases (human injuries)
in the period 2014–2022 in different ships owned by a shipping company indexed in the New York
Stock Exchange. The results of the study support the hypotheses as have been set in the article,
connecting the internal factors with the injuries of any type. The practical implementation of the
study is its ability to be used by policy makers in shipping to compensate employees depending
on the risk of their work on board and at the same time to calculate the insurance premiums in
a more accurate way. The originality of the research lies in the fact that this is a unique study in
maritime transportation related to human accidents and not on ship or cargo casualties. The idea
came from the results of another study conducted on a bibliometric analysis of the factors related to
maritime transportation accidents. The findings of the current study can provide valuable insights to
stakeholders and shipping planners in formulating effective policies for better wage packages and
insurance premiums.

Keywords: maritime transportation accidents; human casualties; robust regression; GMM and
graphical models

1. Introduction

Maritime transportation accidents (MTA) are distinguished in several types depending
on the factors associated with them. The internal factors are related with causes on board,
either “on-duty” or “off duty”, such as the nationality of the employee, the work location,
the rank of the injured person, the working period in the same position, etc., and the external
factors which are related to the sea trip such as maritime disasters, weather conditions,
mechanical failures, collisions, etc. (Roberts et al. 2014).

Mental health and sickness of any kind cannot be considered as MTA because they
are not related to an accident. COVID-19 disease cases on board must be separated from
MTA because they are related to a sudden phenomenon and not to working conditions
on board (Shan 2021), although as Lefkowitz and Slade (2019) stated, the COVID-19
pandemic embedded depression, anxiety or even suicide among maritime workers, and
was associated with a high rate of insecurity, increasing the possibilities of being injured on
board.

Based on a bibliometric analysis conducted by the same authors, there is limited
literature highlighting the issue of MTA worldwide. The research is spread among few
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countries, with limited interconnections among researchers and few citations (Zampeta
and Chondrokoukis Forthcoming).

The present research aims to distinguish the maritime transportation accidents with
human casualties based on a dataset of 166 cases in the period 2014–2022 in different ships
owned by a shipping company indexed in the NYSE. It describes the accidents taking into
consideration the internal factors as described above, while the external factors are not
considered in this article since they are the subject matter of a future research by the same
authors.

The results could be used by the employees working on board for better wages and
by the insurance companies for higher-risk premiums. The study has been conducted
using advance econometric methodologies such as robust regression modelling and the
Gaussian/mixed-Markov graphical models.

The results, as they are discussed in more detail in Sections 4 and 5, are in accordance
with a previous study which shows that the main internal factors behind an MTA are the
following: the nationality of the employee, the rank of the injured person, the working
deck, and the years of employment (Zampeta and Chondrokoukis 2022).

2. Literature Review

World trade is dependent on shipping (Castells 2011). Shipping is one of the most
globalised industries in the world economy and is the leading means of transport (Ljung
2010; Tang and Gekara 2018). In total, about 80 percent of foreign trade is made by marine
transport (European Union 2009). Shipping is a highly international, multicultural, and
technological industry, and it faces strong demands on economic efficiency and profitability
(Hanzu-Pazara et al. 2010; Ljung 2010). This has led to a globalized labour market of
seafarers and to ship crews that are more and more multinational.

Multiculturalism is a general feature of crews today, and in this, language play a
crucial role (Silos et al. 2012). About 70–80% of the world’s merchant fleet has multicultural
crews (Magramo and Cellada 2009; Pyne and Koester 2005). Multicultural crews and a
possible lack of a common language have produced a rising worry of the competence of
ship crews. The worry of maritime safety has caused a growing demand for research in
what kind of competences the crews operating the seas have. The question is inevitable,
especially when it concerns areas with a high risk of accidents.

Maritime transportation accidents (MTA) and maritime emissions are gaining impor-
tance in recent years because of the upward trend on these types of incidents (Hussain et al.
2022).

Harrald et al. (1998) stated that human error is cited as the predominant cause of
maritime transportation accidents. They described the modelling of human-error-related
accident event sequences in a risk assessment of maritime oil transportation in Prince
William Sound, Alaska. The risk analysts were confronted with incomplete and misleading
data that made it difficult to use theoretical frameworks.

Maritime safety has been a core subject in maritime studies because it is coupled with
transport safety, shipping efficiency, distribution reliability and loss prevention. Maritime
accidents have often been attributed to human error, and discussion of human error and
maritime accidents can be found in Millar (1980).

Havold (2010) demonstrated the use of safety culture to improve safety in the maritime
environment. Chin-Shan and Chaur-Luh (2008) analysed the safety climate in the container
shipping. Analyses of maritime accidents often ignore the link to human error.

Celik and Cebi (2009) proposed an analytical framework for identifying human errors
in shipping accidents. The benefit of having an analytical framework is to provide a
consistent manipulation of data and information of shipping accidents. They found that the
primary root causes of shipping accidents are skill-based human errors and the shortfalls
of execution of organizational processes.
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Yip et al. (2015) provided empirical evidence that the maritime safety can be improved
via the training of vessel crew members. Unver and Kocatepe (2019) and Akpinar and
Sahin (2019) analysed the failures in maritime sector by providing detailed root causes.

Ship accidents are caused by various types of failures, e.g., deck officer error (26%),
equipment failure (9%), structural failure (9%), crew error (17%), and mechanical failure
(5%), among others. The factor that influences the risk level of maritime transportation
accidents is defined as risk influence factor (RIF). To determine the risk factors of maritime
transport, the latest related literature and maritime accident reports during 2012–2017 have
been reviewed (Fan et al. 2020).

Since the United Kingdom Maritime and Coastguard Agency (UK MCA) proposed
the formal safety assessment (FSA) framework to the International Maritime Organization,
maritime accident risk models have been fast developed because of the goal-setting risk
regime.

Based on the literature review above, the research hypotheses of the study is formu-
lated as follows, while their test and discussion are presented in Section 4.4:

H01. The mean ranks of work activity are the same across categories of parts of the body injured.

H02. The mean ranks of work location are the same across categories of parts of the body injured.

H03. The mean ranks of the number of months are the same across categories of parts of the body
injured.

H04. The mean ranks of the number of ranks are the same across categories of parts of the body
injured.

3. Materials and Methods
3.1. Multiple Robust Regression

In least-squares techniques, one of the difficulties is that combinations of values
of the explanatory variables can give some observations with far greater influence in
the dependent variable than others. In 1970, the research on robust estimation of least
squares provided new proposals that aimed at least for the protection against distortion by
anomalous data and good efficiency when the data come from the ideal Gaussian model
(Li 2006).

One of the progresses of robust regression is accelerating the analysis process by
limiting the effect of some types of outliers and calling attention to unusual data. In the
regression model, if there are unusual observations, they can sometimes severely distort
estimates from regression with OLS (Andersen 2022). Although less common, unusual
observations can also cause havoc for generalized linear models. This underscores the
importance of detecting and properly handling outliers.

Unusual observations, albeit less frequent, can also ruin generalized linear models.
This emphasizes how crucial it is to identify and manage outliers correctly. Additionally,
robust estimators offer a powerful way to identify outliers or inconsistent substructures in
data collection (Western 1995).

3.1.1. The Structure of Robust Regression Models

After the recognition that parametric models are rarely absolute, precise robust estima-
tion of location has become an important tool (Kafadar 1983). Robust methods are based on
the idea of redescending M-estimators. To clarify M-estimators, consider a classical simple
linear regression model using the notation of Western (1995), as follows:

y = b0 + b1x1 + ε (1)

Here, if we define ri = yi − ŷi, the OLS technique aims to minimize the sum of r
squared as follows:

Minimize∑ir
2
i (2)
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We named this method the least square residuals, and it is called L1.
The objective function generally determines the shape of a statistic’s influence curve.

If the median minimizes the sum of absolute residuals, the objection function is as follows:

Minimize∑i|r| (3)

We named this method least absolute residuals, and it is noted as L2.
One approach to robust regression involves devising estimators whose influence

curves resemble the bi weight. We use ρ for the weight and use a linear function instead of
a quadratic one to make it simple; thus, we have the function as follows:

Minimize∑iρ(ri) (4)

Robust estimation with the bi weight uses an iterative weighted least squares algorithm.
This algorithm consists of four steps (Western 1995):

â Obtain a set of start values from least squares or L1 fit;
â If ri is a residual, c is a tuning constant, and S is the current robust estimate of

dispersion; scaled residuals will be created, which are represented by ui (ui =
ri
cS );

â Form a set of weights wi; wi = (1− u2
i )

2, for u2
i < 1, =0; otherwise;

â Estimate the model again with weighted least squares (WLS) using wi;
â Update the weights with the residuals from the WLS fit, repeating until the coefficients

show little change.

3.1.2. The Robust Regression Estimators

There are many robust regression estimators, such as L-estimator, M-estimator, MM-
estimator, S Estimator, and others. The estimators are constructed on different bases; L-
estimator is based on linear combinations of order statistics, M-estimator is extended from
M-estimates of location by considering the size of the residuals, S-estimator minimizes a
robust M-estimate of the residual scale, and MM-estimators build on both M-estimation and
S-estimation to achieve a high breakdown point with high asymptotic efficiency (Andersen
2022).

When the linear regression given in matrix notation by y = Xθ + ε and the residuals
are defined as ri = yi − ŷi for i = 1≤ i ≤ n, and p is the number of independent variables,
the estimators mentioned below are defined in the following paragraphs.

Edgeworth (1887) suggested a technique that involves reducing the sum of the residu-
als’ absolute values rather than the sum of their squares and the estimator (L1) as follows:

Q̂L1 = arg min
Q

∑n
i=1|ri(Q)| (5)

Huber (1992) proposed an estimator which minimizes a function ρ of the errors rather
than minimizing the sum of squared errors. The estimator keeps robustness with respect
to vertical outliers and increases in Gaussian efficiency. The estimator (M) of Huber is as
follows:

Q̂M= arg min
Q

∑n
i=1 p

∣∣∣∣ ri(Q)

σ

∣∣∣∣ (6)

Rousseeuw and Yohai (1984) aim to find the smallest possible dispersion of the residu-
als and provide S estimator as follows:

Q̂S= arg min
Q

σ̂S{r1(θ), . . . , rn(θ)} (7)

Yohai (1987) proposed MM estimation, which uses iteratively reweighted least squares
(IRLS), the estimator is as follows:

Q̂MM= aarg min
Q

∑n
i=1 p

∣∣∣∣ ri(Q)

σ̂S

∣∣∣∣ (8)
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Robust estimators are not limited to what we gave above; all of them are proposed
based on some pros and cons of the other estimators. In the empirical section, we obtained
the results after processing the multiple regression models through robust regression
with Huber and bi-weight iterations. Huber (1992) proposed a class of estimators called
M-estimators which satisfy three criteria (Huber 2011):

1. reasonably efficient at the assumed model;
2. large changes in a small part of the data or small changes in a large part of the data

should cause only small changes in the result (resistant);
3. gross deviations from the model should not severely decrease its efficiency (robust).

M-estimators are more sensitive to scaling and warn of possible problems in conver-
gence. In the literature, there are debates on the practical usefulness of the bi-weight and of
redescending M-estimates in general (Kafadar 1983).

The method described above has been used in this study as one of the methods
fulfilling the research requirements and the limitations regarding the sample dataset. The
results are presented in Section 4.4.

3.2. Structural Equation Modelling (SEM)

In academic research, regression-based approaches, which are named first-generation
techniques, are used to test hypotheses, such as multiple regression models, discriminant
analysis, logistic regression, and ANOVA. These methods have three limitations, which
restrict their applicability in some circumstances (Haenlein and Kaplan 2004). These three
limitations are:

1. In these models, we need one dependent and several independent variables, namely,
2. the postulation of a simple model structure.
3. In these kinds of models, we have the assumption that all variables can be considered

observable.

The conjecture that all variables are measured without error.
Compared to real-life problems, many researchers have stated arguments about these

limitations. Jacoby (1978) and Shugan (2002) address the issues of studying the impact of
one or two variables and studying defined variables that imply omitting some aspect of
reality. The authors would like to remark on the mediating or moderating effects that we
do not have in regression-based approaches.

Regarding the second restriction, the theories on unobservable characteristics can
only be considered once they have prior stand-alone validation, such as confirmatory
factor analysis (Hair et al. 2021). The third limitation is well-known information from
econometrics and statistics lectures; each observation has two errors, which are random
error and systematic error.

Structural equation modelling (SEM), the second-generation technique, was proposed
to overcome these limitations. Whereas regression-based approaches have only one de-
pendent and many independent variables, SEM allows for simultaneous modelling with
multiple dependent and independent variables. In SEM, researchers can use unobserved
variables, and measurement errors take part in the model.

Structural Equation Modelling Approaches

There are two approaches to construct SEM, which are the covariance-based approach
and the variance-based approach. Moreover, Westland (2019) categorized the products
of SEM statistical analysis algorithms into three groups: pairwise canonical correlations
between pairs, multivariate canonical correlation matrices and systems of regression ap-
proaches that fit data to networks of observable variables. Although the author stated that
there are three groups, he mentioned the fourth category, developed by new social network
analysis, which allows for both visualization and network-specific statistics.

If we present multiple regression analysis as follows:

Y1 = X1 + X2 + X3 + · · ·+ Xn (9)
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Then, the structural equation modelling is presented below (Hair et al. 2021)

Y1 = X11 + X12 + X13 + · · ·+ X1n
Y2 = X21 + X22 + X23 + · · ·+ X2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ym = X31 + X32 + X33 + · · ·+ X3n

(10)

In the literature, mainly two models are used: covariance-based SEM (CB-SEM) and
partial least squares SEM (PLS-SEM, also called PLS path modelling) (Westland 2019).
Path models can then be represented graphically by a path diagram (also called an arrow
scheme). These diagrams present the relationship among the variables visually. A PLS
path model consists of two elements, which are the structural model and measurement
model. The structural model displays the relationships (paths) between the constructs. The
measurement model specifies the relationships among observed variables underlying the
latent variables. Using standard notations (Bollen 1989; Stein et al. 2012), we represent
general SEM by the following equations.

x1 = λ1ξ1 + δ1 x2 = λ2ξ1 + δ2 x3 = λ3ξ1 + δ3
y1 = λ3η1 + ε1 y2 = λ4η1 + ε2 y3 = λ5η1 + ε3

η1 = γ11ξ1 + ζ
(11)

where xi and yi are observed indicators for latent variables, the ξ1 and η1 are latent variables,
the λi are factor loadings, the δi and εi are error terms, and the covariance between error
terms is zero.

Traditional regression procedures are robust when it comes to measurement errors
in the outcome but not in the predictors. Additionally, the relationship between error
terms for two independent outcomes cannot be modelled using univariate regression
techniques. SEM gives us the ability to model measurement error for both the predictor
and the outcome. The method described above has been used in this study as one of the
methods fulfilling the research requirements and the limitations regarding the sample
dataset. The results are presented in Section 4.4.

3.3. Gaussian/Mixed-Markov Graphical Models (GGMs, MGMs)

Graphical models are used to designate relationships among a set of variables (Wer-
muth and Cox 2015). Graphical models bring together graph theory and probability theory
for multivariate statistical modelling in a potent formalism (Wainwright and Jordan 2008).
In these graphs, each variable is represented by a node, and any pair of nodes may become
coupled, such as an edge. Edges represent corresponding conditional dependence; if the
edges are missing, it means some form of conditional independence between the pair
of variables. Edges can be drawn, directed or undirected, which show the direction of
dependence of response on an explanatory variable and an equal standing, thus the edge
between two variables.

One of the types of widely used graphical models are the graphical Markov models.
Although graphical Markov models started to be developed after 1970 (Wermuth and Cox
2015), the history of the model started with research in genetics (Wright 1921), in physics
(Gibbs 2010) and in probability theory (Markov 1912). Graphical Markov models are special
subclasses of log-linear models for contingency tables and joint Gaussian distributions.

Altenbuchinger et al. (2020) defines Gaussian graphical models (GGMs) as tools to
infer dependencies between biological variables with the assumptions of multivariate
normal distributed data. Mixed graphical models (MGMs) can be a better choice if the data
are not normally distributed. MGMs combine characteristics of Gaussian graphical and the
Ising model. The Ising model uses discrete data.

MGMs are probabilistic graphical models which reflect the joint probability density
function of a set of variables following two or more different data distributions. Here, if we
give an example for a set of variables following two or more different data distributions,
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one set of variables distributed as a Gaussian, another set of variables distributed as a
multinomial, we may have three different distributions, while one set may be a Poisson
distribution.

A Gaussian graphical model (GGM) is a probability distribution. The distribution in n
dimensions with p density is as follows (Kelner et al. 2020):

px(x) =
1√

(2π)ndet
exp(−(x− µ)T∑−1(x− µ)/2) (12)

where µ is the mean and Σ is the covariance matrix. GGMs are one of the most widely used
methods to model statistical relationships between observable variables in the natural and
social sciences, machine learning, and other fields. In most of the settings in which GGMs
are applied, the dimension is greater than the sample size (Kelner et al. 2020; Liu 2013).

The typical way of GGM estimation depends on regularized optimizations which
depend on tuning parameters. If tuning parameters are large, they are powerless to find
the edges with small weight; if the tuning parameters are small, they will generate many
false edges resulting in high false discovery rates.

For the empirical analysis of the paper, GGMs and MGMs will be used because they
have the benefit of producing reliable results regardless of the indicators’ measurement
units or the kinds of variables employed. Full-order partial correlations are correlations
between two variables corrected for all other variables under investigation. They make it
possible to distinguish between direct and indirect effects. The foundation for estimating
them is provided by Gaussian graphical models (GGMs) (Altenbuchinger et al. 2020; Bishop
2006).

The method described above has been used in this study as one of the methods
fulfilling the research requirements and the limitations regarding the sample dataset. The
results are presented in Section 5.

4. Research Results with Robust Regression Models
4.1. Descriptive Statistics

This study uses data based on research in the “2014–2022_Personal Accidents Met-
rics.xls” as presented in Appendix A. The aim of the analysis is to enhance and assess the
main credentials influencing maritime workers’ health and the injuries they suffer in case
of maritime accidents. The variables considered in this research are the following.

Nationality—there are some main nationalities but also some rare nationalities; for ex-
ample, there are many “Filipino” but only one “Latvian”. Therefore, for Latvian, Romanian,
etc., we generated one category: Central Eastern European (CEE).

Work activity level—we have both “Maintenance on Deck” and “Deck Maintenance”,
and we merged them to create one category. This is why the study has new variables in the
following analysis which are not in the research file. This is also one of the reasons why
in this section, we define the variables; some came from the research file, and some are
generated.

In the following section, we present tables and figures generated from the research
file using the SPSS statistical package. Figures and tables generated from SPSS are more
reliable than using the Excel routines.

The qualitative (categorical) variables and their categories are presented below:
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Category:
1. FAC—First Aid Case; 2. LWC—Lost Workday Case; 3. MTC—Medical Treatment Cases; 4.
Other; 5. RWC—Restricted Work Case.
Rank:
1. AB; 2. Bosun; 3. Cadet; 4. Cook; 5. Electrician; 6. Engineer; 7. Fitter; 8. Officer; 9. Oiler; 10.
Ordinary Seaman (OS); 11. Pumpman; 12. Steward; 13. Wiper.
Nationality: Nationality M (Nationality Merged):
1. Brazilian 1. Other
2. Filipino 2. Filipino
3. Georgian 3. Other
4. Greek 4. Greek
5. Hellenic 4. Greek
6. Latvian 5. CEE–Central Eastern European
7. Romanian 5. CEE–Central Eastern European
8. Russian 3. Other
9. Ukrainian 5. CEE–Central Eastern European
Work Location:
1. Accommodation; 2. Deck; 3. Engine; 4. Galley; 5. Other (Bridge, Cabin, Cargo Control Room,
L/B DECK, Manifold, Pump Room, S/G Room, Workshop).
Work activity:
1. Deck Maintenance; 2. Deck Operation; 3. During Work; 4. Engine;
5. Engine Operation; 6. Mooring Operation; 7. Other.
Body part:
1. Arms; 2. Back; 3. Burns; 4. Chest; 5. Eye; 6. Feet; 7. Finger; 8. Hand; 9. Head; 10. Leg; 11. Others.
Body part Merged (Based on Panel Data Analysis):
1. Hand injuries, fingers, hand, wrist (HIFHW);
2. Foot injuries, ankle, knees, and legs (FAKL);
3. Body injury, back, chest, shoulder, ribs (BIBCSR) + burns + eye + head + other.

To determine the relationship between the body part of the injury and specific coordi-
nates related to the maritime activity, such as rank, nationality of workers, work location,
type of work activity and period on board, we calculate the correlation between variables
and Chi-Square test. Because variables are nominal, we used a Cramer V value to see the
correlation among them (Prematunga 2012).

The result shows that there is no correlation between the variables. For the second
analysis, we use the Chi-Square independence test. Nevertheless, before the test, we must
merge categories of rank to provide expected frequencies, which should be at least five for
the majority (80%) of the cell’s requirement. The new rank of variables is defined below in
Table 1. The work location of the positions presented above is shown in Figure 1.

Table 1. Definition of new variables.

Old Value: Rank New Value: New Rank

1. AB 1 Deck Dept

2. Bosun 1 Deck Dept

3. Cadet 1 Deck Dept

4. Cook 3 Catering/Steward Dept

5. Electrician 2 Engine Dept

6. Engineer 2 Engine Dept

7. Fitter 2 Engine Dept

8. Officer 1 Deck Dept

9. Oiler 2 Engine Dept

10. OS 1 Deck Dept

11. Pumpman 2 Engine Dept

12. Steward 3 Catering/Steward Dept

13. Wiper 2 Engine Dept

Source: own study.
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4.2. Cross Tabulation

Because we have merged the variables to make them homogeneous and to avoid
problems related to the sample size, it is required to consider the cross tabulation technique.
Cross tabulation will give a more detailed view of the data. For example, the common
nationality is Filipino, which is why the most common injured nationality is Filipino,
but maybe the number of injuries within the Filipino population is less than in other
nationalities. We can use crosstabs to investigate this kind of situation.

We have different ranks; if there is any pattern in rank to have the same injury, we can
investigate this. Table 2 below shows that the most common injury is finger injury at 27%,
and the most common crew which had an injury is engineer. Most common injuries within
rank are:

â Eye (18%) for AB;
â Head (33%) for Bosun;
â Finger (30%) for Cadet;
â Finger (100%) for Cook;
â Finger (30%) for Electrician;
â Finger (15%) for Engineer;
â Finger (28%) for OS.
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Table 2. Crosstab RankM/BodyPart.

BodyPart
Total

Arms Back Burns Chest Eye Feet Fingers Hand Head Leg Other

AB
Count 1 3 0 1 6 3 5 2 3 0 3 27

% 3.7% 11.1% NA 3.7% 22.2% 11.1% 18.5% 7.4% 11.1% NA 11.1% 100.0%

Bosun
Count 0 1 0 0 0 0 3 0 4 3 1 12

% NA 8.3% NA NA NA NA 25.0% NA 33.3% 25.0% 8.3% 100.0%

Cadet
Count 0 2 0 0 1 1 3 1 1 0 1 10

% NA 20.0% NA NA 10.0% 10.0% 30.0% 10.0% 10.0% NA 10.0% 100.0%

Cook
Count 0 0 0 0 0 0 3 0 0 0 0 3

% NA NA NA NA NA NA 100.0% NA NA NA NA 100.0%

Electrician
Count 0 1 1 0 0 0 3 1 2 0 1 9

% NA 11.1% 11.1% NA NA NA 33.3% 11.1% 22.2% NA 11.1% 100.0%

Engineer
Count 0 2 5 0 4 2 15 2 7 3 2 42

% NA 4.8% 11.9% NA 9.5% 4.8% 35.7% 4.8% 16.7% 7.1% 4.8% 100.0%

Fitter
Count 0 0 0 0 1 0 0 0 1 1 1 4

% NA NA NA NA 25.0% NA NA NA 25.0% 25.0% 25.0% 100.0%

Officer
Count 0 0 1 0 1 2 1 1 0 1 2 9

% NA NA 11.1% NA 11.1% 22.2% 11.1% 11.1% NA 11.1% 22.2% 100.0%

Oiler
Count 0 0 0 1 1 0 3 1 1 3 0 10

% NA NA NA 10.0% 10.0% NA 30.0% 10.0% 10.0% 30.0% NA 100.0%

OS
Count 1 2 0 0 5 2 6 1 1 2 1 21

% 4.8% 9.5% NA NA 23.8% 9.5% 28.6% 4.8% 4.8% 9.5% 4.8% 100.0%

Pumpman
Count 0 2 0 0 1 0 0 0 0 2 0 5

% NA 40.0% NA NA 20.0% NA NA NA NA 40.0% NA 100.0%

Steward
Count 0 1 0 0 0 0 1 1 1 0 0 4

% NA 25.0% NA NA NA NA 25.0% 25.0% 25.0% NA NA 100.0%

Wiper
Count 2 2 0 0 2 1 2 1 0 0 0 10

% 20.0% 20.0% NA NA 20.0% 10.0% 20.0% 10.0% NA NA NA 100.0%

Count 4 16 7 2 22 11 45 11 21 15 12 166

% 2.4% 9.6% 4.2% 1.2% 13.3% 6.6% 27.1% 6.6% 12.7% 9.0% 7.2% 100.0%

Source: own elaboration.

The rest of the ranks have one or two injuries with the same ratios within their injury
rate in many cases, which is why we did not present the ratios of other ranks. In summary,
although the most common injury is a finger injury, for AB, the common injury is the eye,
and for Bosun, the common injury is the head.

Another question is if any rank has more accidents in any specific location. Table 3
shows that the most common location of injuries is the deck. Within rank variables, the
most common locations are:

â Deck (74%) for AB;
â Deck (100%) for Bosun;
â Galley (67%) for Cook;
â Engine (78%) for Electrician;
â Engine (62%) for Engineer;
â Engine (75%) for Fitter;
â Deck (56%) for Officer;
â Engine (60%) for Oiler;
â Deck (81%) for OS;
â Other (60%) for Pumpman;
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â Galley (75%) for Steward;
â Engine (70%) for Wiper.

The results show that for different work expertise, there are different locations regard-
ing most common injury. Generally, technical workers have accidents in the engine location
and the deck for servants.

Table 3. Cross tab RankM/WorkL.

WorkL
Total

Accommodation Deck Engine Galley Other

RankM

AB
Count 5 20 1 1 0 27

% 18.5% 74.1% 3.7% 3.7% NA 100.0%

Bosun
Count 0 12 0 0 0 12

% NA 100.0% NA NA NA 100.0%

Cadet
Count 2 3 5 0 0 10

% 20.0% 30.0% 50.0% NA NA 100.0%

Cook
Count 0 0 0 2 1 3

% NA NA NA 66.7% 33.3% 100.0%

Electrician
Count 0 2 7 0 0 9

% NA 22.2% 77.8% NA NA 100.0%

Engineer
Count 3 7 26 3 3 42

% 7.1% 16.7% 61.9% 7.1% 7.1% 100.0%

Fitter
Count 0 1 3 0 0 4

% NA 25.0% 75.0% NA NA 100.0%

Officer
Count 0 5 1 1 2 9

% NA 55.6% 11.1% 11.1% 22.2% 100.0%

Oiler
Count 0 1 6 0 3 10

% NA 10.0% 60.0% NA 30.0% 100.0%

OS
Count 3 17 1 0 0 21

% 14.3% 81.0% 4.8% NA NA 100.0%

Pumpman
Count 0 2 0 0 3 5

% NA 40.0% NA NA 60.0% 100.0%

Steward
Count 1 0 0 3 0 4

% 25.0% NA NA 75.0% NA 100.0%

Wiper
Count 1 2 7 0 0 10

% 10.0% 20.0% 70.0% NA NA 100.0%

Total
Count 15 72 57 10 12 166

% 9.0% 43.4% 34.3% 6.0% 7.2% 100.0%

Source: own elaboration.

Based on the within percentages, we saw that some experts have more injuries in
their respective places. Table 4 shows the main activity of the ranks when they have an
injury. Like work location cross-tabulation analysis, technical workers’ most common
injury activities are the same, which is engine maintenance.
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Table 4. Cross tab RankM/WorkL.

WorkA

TotalDeck
Mainte-
nance

Deck Op-
eration

During
Work

Engine
Mainte-
nance

Engine
Opera-

tion

Mooring
Opera-

tion
Other

AB
Count 3 7 7 1 0 3 6 27

% 11.1% 25.9% 25.9% 3.7% NA 11.1% 22.2% 100.0%

Bosun
Count 4 4 2 0 0 1 1 12

% 33.3% 33.3% 16.7% NA NA 8.3% 8.3% 100.0%

Cadet
Count 1 1 3 2 1 0 2 10

% 10.0% 10.0% 30.0% 20.0% 10.0% NA 20.0% 100.0%

Cook
Count 0 0 0 0 0 0 3 3

% NA NA NA NA NA NA 100.0% 100.0%

Electrician
Count 0 1 0 5 1 0 2 9

% NA 11.1% NA 55.6% 11.1% NA 22.2% 100.0%

Engineer
Count 0 2 8 14 6 2 10 42

% NA 4.8% 19.0% 33.3% 14.3% 4.8% 23.8% 100.0%

Fitter
Count 0 0 0 3 0 0 1 4

% NA NA NA 75.0% NA NA 25.0% 100.0%

Officer
Count 1 3 2 1 0 0 2 9

% 11.1% 33.3% 22.2% 11.1% NA NA 22.2% 100.0%

Oiler
Count 1 0 2 2 4 0 1 10

% 10.0% NA 20.0% 20.0% 40.0% NA 10.0% 100.0%

OS
Count 3 5 3 1 0 4 5 21

% 14.3% 23.8% 14.3% 4.8% NA 19.0% 23.8% 100.0%

Pumpman
Count 0 0 2 0 0 0 3 5

% NA NA 40.0% NA NA NA 60.0% 100.0%

Steward
Count 0 0 0 0 0 0 4 4

% NA NA NA NA NA NA 100.0% 100.0%

Wiper
Count 0 0 1 5 2 0 2 10

% NA NA 10.0% 50.0% 20.0% NA 20.0% 100.0%

Count 13 23 30 34 14 10 42 166

% 7.8% 13.9% 18.1% 20.5% 8.4% 6.0% 25.3% 100.0%

Source: own elaboration.

4.3. Research Questions and Variables Selection

In this section, we select the variables based on the previous analysis. In the previous
analysis, body part injured is the dependent variable, and rank, nationality, work location,
work activity and period on board in months (POBM) are the independent variables. We
use all these independent variables except for Nationality because there is a high weight on
Filipino nationality, which will affect the results. We aim to analyse if these independent
variables significantly differentiate injured body parts. The research questions which will
be analysed below are the following:

• work activity is the main coordinate that determines the injuries of maritime workers;
• work location determines an increase in body injuries of maritime workers;
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• number of months spent on the ship (period on board) leads to a decrease in the
number of injuries.

Moreover, in panel data models and SEM models, the dependent variable “parts of
body injured” is used in different categories and with different estimation methods. In
this section, we similarly use two different “parts of body injured” variables, one has 3
categories, and one has 23 categories.

To investigate whether there is a statistically significant difference between parts of the
body injured, we select the non-parametric method to check the normality of the variables.
The test’s null hypothesis is that the mean ranks of the groups are the same. Under this test,
we can check only the existence of differences among the groups, but we cannot say which
group is more important than the other.

The subsection results below show that the variable “body injuries” in three categories
has a significant relationship between work activity and workplace, but not between rank
and POBM. In 23 categories, the variable “injured parts of the body” has a relationship
between workplace and sequence, but there is no significant relationship between work
activity and POBM.

4.4. Research Hypotheses Testing and Discussion

Following the analysis as described above in the section on cross-tabulation (Section 4.2),
we will proceed with the merged data on body part injuries and work activity. The dataset
consists of 166 observations (Table 5), and the Kruskal–Wallis test for work activity is presented
in Table 6. The Kruskal–Wallis test, proposed by Kruskal and Wallis in 1952, is a nonparametric
method for testing whether samples originate from the same distribution. The first research
hypothesis is as follows:

H01. The mean ranks of work activity are the same across all categories of parts of the body injured.

Table 5. Descriptive statistics: minimum and maximum.

N Minimum Maximum

BodyPartM 166 1 3

Work Activity 166 1 73

Valid N (listwise) 166
Source: own elaboration.

Table 6. Kruskal–Wallis test results for work activity.

Test Statistics a,b

Work Activity

Chi-Square 5.174

df 2

Asymp. Sig. 0.075
a Kruskal–Wallis Test; b Grouping Variable: BodyPartM. Source: own elaboration.

Table 6 shows that the null hypothesis is not rejected at the 10% significance level but
is rejected at the 5% level (Asymp. Sig. 0.075). We conclude that work activity injuries are
different across body part groups. Different work activities injure different body parts.

Table 7 presents the work activity and the ranks of the merged body parts with their
means, while Table 8 presents the hypothesis test summary as defined above in H01.
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Table 7. Descriptive statistics: means.

Ranks

BodyPartM N Mean Rank

Work Activity

BIBCSR 80 92.27

FAKL 28 75.38

HIFHW 58 75.33

Total 166
Source: own elaboration.

Table 8. Hypothesis test summary.

Null Hypothesis Test Significance Decision

The distribution of work
activity is the same across
categories of BodyPartM

Independent samples
Kruskal–Wallis Test 0.075 Reject the null

hypothesis

Note: Asymptotic significances are displayed. The significance level is 0.10. Source: own elaboration.

To verify the results, we used the independent samples Kruskal–Wallis test, a nonpara-
metric method for testing whether samples originate from the same distribution, as shown
in Figure 2.
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The second hypothesis is stated among work location and parts of the body injured as
follows:

H02. The mean ranks of work location are the same across categories of parts of the body injured.

Table 9 presents the descriptive statistics of merged body parts and work location,
Table 10 shows that the null hypothesis is rejected at the 5% significance level. We concluded
that work location injuries are different across body part groups.
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Table 9. Descriptive statistics: minimum and maximum.

N Minimum Maximum

BodyPartM 166 1 3

Work Location 166 1 13

Valid N (listwise) 166
Source: own elaboration.

Table 10. Kruskal–Wallis test results for work location.

Work Location

Chi-Square 7.417

df 2

Asymp. Sig. 0.025
Source: own elaboration.

Table 11 presents the work location and the ranks of the merged body parts with their
means, while Table 12 presents the hypothesis test summary as defined above in H02:

Table 11. Descriptive statistics: means.

Ranks

BodyPartM N Mean Rank

Work Location

BIBCSR 80 74.71

FAKL 28 82.71

HIFHW 58 96.01

Total 166
Source: own elaboration.

Table 12. Hypothesis test summary.

Hypothesis Test Summary

Null Hypothesis Test Significance Decision

The distribution of work
location is the same across
categories of BodyPartM

Independent samples
Kruskal–Wallis test 0.025 Reject the null

hypothesis

Note: Asymptotic significances are displayed. The significance level is 0.10. Source: own elaboration.

To verify the results, we used the independent samples Kruskal–Wallis test, a nonpara-
metric method for testing whether samples originate from the same distribution as shown
in Figure 3.
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The third research hypothesis is stated among work period (number of months in the
same position) and parts of the body injured as follows:

H03. The mean ranks of the number of months are the same across categories of parts of the body
injured.

Table 13 shows that the null hypothesis cannot be rejected. We conclude that the mean
ranks of the number of working months in the same position are the same across categories
of parts of the body injured (Asymp. Sig. statistic 0.812).

Table 13. Kruskal–Wallis test results for period on board.

Period on Board (Months)

Chi-Square 0.415

df 2

Asymp. Sig. 0.812
Source: own elaboration.

The fourth research hypothesis is stated among the number of ranks and parts of the
body injured as follows:

H04. The mean ranks of the number of rank are the same across categories of parts of the body
injured.

Table 14 presents the descriptive statistics of the variables, while Table 15 shows that
the null hypothesis cannot be rejected. We concluded that the rank is the same across body
part groups.

Table 14. Descriptive statistics: minimum and maximum.

Descriptive Statistics

N Minimum Maximum

BodyPartM 166 1 3

Rank 166 1 23

Valid N (listwise) 166
Source: own elaboration.



J. Risk Financial Manag. 2023, 16, 183 17 of 30

Table 15. Kruskal–Wallis test results for rank.

Period on Board (Months)

Chi-Square 0.41

df 2

Asymp. Sig. 0.810
Source: own elaboration.

5. Results of Gaussian and Mixed Markov Graphical Models (GGMs, MGMs)

The research endeavour is complemented by a network analysis performed through
Gaussian and mixed-Markov graphical models (GGMs, MGMs) processed through partial
correlations. GGMs and MGMs substantiate previous results and strengthen the robustness
of the empirical analysis. The main purpose of these advanced modern econometric models
is to evidence the existence and intensity of the connections between all variables in a
comprehensive approach and to enhance the linkages between specific coordinates related
to the maritime activity and workers injuries. The Gaussian graphical models (GGMs) are
entailed in Figure 4, and the mixed-Markov models (MGMs) are presented in Figure 5.

The configuration of a GGM under the format of a network, which is usually titled a
partial correlation network, presents positive partial correlations with blue edges, while
negative partial correlations are entailed by red edges (Figures 4 and 5). In addition, the
absolute strength of a partial correlation is highlighted by the width and saturation of an
edge (Epskamp et al. 2018). If there is no edge between two nodes/variables, it means
that the partial correlation is zero and that those two variables are independent after
conditioning on all other variables in the dataset. In this case, the GGM can be seen as a
network model of conditional associations.
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Both GGMs presented in Figure 4 and MGMs entailed in Figure 5 show that there is a
very strong positive relation between work activity and parts of body injured (configured
here as an encoded combined variable from hand, foot, and body injuries). At the same time,
a positive correlation is revealed between work location and parts of body injured, work
location also being strongly and positively linked with rank and nationality of maritime
workers. Hand injuries, foot injuries and body injuries are positively correlated with work
location and are inversely correlated with work activity, yet in the case of hand injuries,
these linkages are more pronounced.

6. Conclusions

To comply with the requirements regarding sample size, number of variables and
type of research, we have merged some of the variables as shown in Section 4.1. We have
presented the cross-tabulation (Section 4.2) to determine the merged variables used in the
analysis.

Robust regression presents the advantage of undertaking robust estimates, thus avoid-
ing spurious regression and coping with possible outliers within the sample. The analysis
above has shown the following.

The first hypothesis “The mean ranks of work activity are the same across categories of
parts of the body injured” is rejected at the 5% significance level. Different work activities
injure different body parts.
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The second hypothesis “The mean ranks of work location are the same across cat-
egories of parts of the body injured” is also rejected at the 5% significance level. Work
location injuries are different across body part groups.

The third hypothesis “The mean ranks of the number of months are the same across
categories of parts of the body part injured” is not rejected. Number of months is an
irrelevant variable to the dependent variable (body injuries).

The fourth hypothesis “The mean ranks of the number of ranks are the same across
categories of parts of the body injured” is also not rejected. Rank is an irrelevant variable to
the dependent variable (body injuries).

Therefore, this research has shown that work activities on board and the work location
are important factors for body injuries, while the time of employment and the rank of the
worker are irrelevant variables on body injuries. Compensation packages and insurance
premiums must be different for these positions (work activities and work location on the
ship).

Spurious correlation is also avoided with the use of Gaussian and mixed-Markov
graphical models, which provide a comprehensive view of the interlinkages between all
considered variables. These graphical models employed in the current research have shown
strong connections between work activity, work location, rank, nationality, and the injuries
suffered by maritime workers.

GGMs and MGMs also present the advantage of providing robust results regardless
of the measurement units of indicators/type of variables used in the empirical analysis.
Moreover, structural equation modelling strengthened the research endeavour and showed
consistency of all results through robust estimates captured by the maximum likelihood
procedure (MLE).

Overall, the findings of the current study can provide valuable insights to stakeholders,
shipping companies, insurance companies and policy planners in formulating effective
policies for insurance premiums, compensation packages and human resource evaluations.

Future studies could focus on analysing MTA in terms of external factors, as the
present study referred only to internal factors, (one limitation of this study), as described
in the introduction or/and in the mix of two, internal and external factors. It could also
be interesting to analyse a bigger sample with ships from different shipping companies
(another limitation of this study).
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Appendix A

Table A1. The dataset.

A/A Vessel Type of Vessel Category Rank Nationality Work Location Work Activity Period on
Board (Months) Parts of Body Injured

1 ALASKA Tanker FAC COOK Filipino L/B DECK Handling weather tight door 1.70 Finger Injury

2 INCA Tanker FAC Fitter Romanian Engine Room Repairs in ER–SW Cooler pipeline 0.70 Head Injury

3 SELECAO Tanker LWC OS Russian DECK Mooring operation 7.80 Hand Fracture

4 IRENES LOGOS Container FAC Electrician Filipino DECK Unplugging the reefers for discharging 1.10 Ribs

5 BEIJING 2008 Bulk Carrier MTC OS Filipino DECK Deck maintenance—rust scaling 2.67 Eye Injury

6 SELECAO Tanker MTC 4th Engineer Ukrainian Engine Room Operation of grinding machine 2.30 Eye Injury

7 ANTARCTIC Tanker FAC OS Filipino Accommodation Walking in accommodation 7.87 Minor Foot Injury

8 IRENES
RELIANCE Container FAC 3rd Engineer Filipino Galley During repairing the oven, slightly cut his

finger. 4.10 Minor Finger Injury

9 ANDROMEDA Tanker LWC AB Filipino DECK AB right arm while handling a loose mooring
rope. 1.17 Arm Injury (broke)

10 BYZANTION Tanker FAC Oiler Filipino S/G Room During collecting the working material lost his
balance 7.77 Minor Knee Injury

11 SELINI Tanker FAC 2nd Engineer Greek Galley During exiting the pantry stepped over the
drops of water and slipped 9.63 Minor Knee Injury

12 AMPHITRITE Tanker FAC PUMPMAN Romanian Deck Slipped on deck and slightly hit the small of his
back 2.77 Minor Back Injury

13 INCA Tanker MTC Ch.Eng. Filipino Workshop During trying to pull the bearing, puller slipped
and his slightly his fingers 1.70 Minor finger Injury

14 ALASKA Tanker FAC Ch.Eng. Greek Deck Stepped on a VS manhole and hit his leaps 2.67 Minor leaps Injury

15 BOSPOROS Tanker LWC OS Filipino DECK Finger injury during handling a heaving line 7.13 Finger fracture

16 DIDIMON Tanker LWC Electrician Romanian Engine Room Finger Injury during maintenance of an ER fan 4.90 Hand Ring Finger
Injury

17 AMPHITRITE Tanker LWC 3rd Engineer Ukrainian Engine Room Finger injury while operating the engine crane 0.90 Hand Small Finger
Injury

18 ARTEMIS Tanker LWC Pumpman Russian Manifold While connecting the cargo hoses 2.73 Shoulder Injury

19 EURONIKE Tanker MTC AB Filipino Deck During chipping 9.70 Eye Injury

20 Rio 2016 Tanker FAC 3rd Engineer Greek Engine While working in the engine room 4.37 Finger Injury
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Table A1. Cont.

A/A Vessel Type of Vessel Category Rank Nationality Work Location Work Activity Period on
Board (Months) Parts of Body Injured

21 CAP
TRAFALGAR Bulk Carrier FAC AB Filipino Deck During deploying the gangway net 1.00 Finger Injury

22 BYZANTION Tanker LWC Wiper Filipino Deck During carrying the bunker reducer 7.97 Ankle Injury

23 CAP TALBOT Container FAC C/E Ukrainian Engine During routine inspection in engine room 4.73 Ribs Injury

24 STELLA Bulk Carrier Illness Bosun Filipino Deck During moving a piece of pallet 1.83 Back Pain

25 STELLA Bulk Carrier LWC 3rd Officer Filipino Bridge Officer on bridge, injured whilst on
watch—Non-work Related 2.03

26 MANOUSOS P Bulk Carrier LWC Oiler Filipino Engine While cutting a part of pipe 3.93 Leg Injury

27 WORLD
HARMONY Tanker MTC Cadet El/cian Greek Engine During repairing of LL water level alarm of

boiler No. 1 1.53 Hand Injury

28 PROTEAS Tanker LWC C/E Greek Deck Slip and fall while walking on deck 1.60 Shoulder dislocation

29 ARCHANGEL Tanker
Non-
work

Related
AB Filipino Accommodation While trying to open one accommodation

internal door 0.17 Hand Injury

30 BYZANTION Tanker LWC PumpMan Greek Deck Slip and fall while walking on deck 1.20 Knee Injury

31 NIPPON
PRINCESS Tanker LWC C/O Greek Deck While walking on deck after completion of

anchoring operation 0.97 Wrist Fracture

32 IZUMO
PRINCESS Tanker FAC OS Filipino Deck During handling deck air comp.rubber hose 7.57 Eye Injury

33 WORLD
HARMONY Tanker FAC Bosun Filipino Deck While pushing the paint sprayer machine 4.20 Knee Injury

34 WORLD
HARMONY Tanker FAC OS Filipino Deck

While on duty at manifolds during loading op;
suffered eye irritation due to foreign object in

his right eye
4.23 Eye Injury

35 Maya Tanker Illness AB Filipino Deck During handling of rope tails 2.90 Back Pain

36 OLYMPIA I Tanker FAC AB Filipino Deck While proceeding to accommodation (coffee
time) 4.07 Eye Injury

37 MARIA
PRINCESS Tanker FAC Deck Cadet Filipino Deck While collecting antipiracy wire 0.60 Foot Injury (minor)

38 CHANTAL Tanker FAC 3rd Engineer Filipino Engine During inspection/maintenance of supply fans 3.77 Finger Injury

39 SALAMINA Tanker MTC PumpMan Filipino Pump Room While going down to the pumproom, slipped
and lost grip of the hand rails 0.20 Leg Injury
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40 ANDES Tanker Illness Engine Cadet Filipino Engine While cleaning in boiler area 2.03 Muscle cramps

41 Uraga Princess Tanker MTC 2nd Engineer Greek Engine At the DD due to unsafe act of the yard
personnel 0.70 Head Injury

42 NIPPON
PRINCESS Tanker LWC C/O Greek Deck During mooring operation, slipped and fell 4.43 Hand fracture

43 SELINI Tanker MTC AB Filipino Deck During carrying out, mooring routine check,
slipped at the deck ramp 6.80 Finger Injury

44 OLYMPIA I Tanker
Non-
work

Related
2nd Engineer Greek Cabin While trying to open the air fan in his cabin 5.43 Eye Injury

45 IRENES REMEDY Container FAC AB Filipino Deck While lifting up the railings of accommodation
ladder 1.07 Palm Injury

46 NIPPON
PRINCESS Tanker FAC OS Filipino Deck During maintenance of vapour manifold valve 4.33 Finger Injury

47 BYZANTION Tanker FAC 2nd Engineer Filipino Engine During pulling out a bush 3.83 Head Injury

48 PROTEAS Tanker
Non-
work

Related
As. Steward Filipino Accommodation Slipped and hit on the garbage comminutor

due to heavy rolling and pitching 6.80 Head Injury

49 SALAMINA Tanker FAC 4th Engineer Filipino Engine Room Maintenance in the Engine Room 1.03 Head

50 PENTATHLON Tanker LWC Wiper Ukrainian Engine Room Maintenance in the Engine Room 2.30 ELBOW

51 ANDES Tanker LWC Cook Filipino Galley Food preparation 0.67 Fingers

52 AFRODITE Tanker LWC AB Russian Deck Maintenance on Deck 0.13 Fingers

53 ALASKA Tanker MTC OS Filipino Deck Mooring operation 7.63 Eyes

54 AJAX Tanker FAC OS Filipino Engine Room Maintenance in the E/R workshop 3.73 Fingers

55 INCA Tanker FAC AB Filipino Deck Maintenance on Deck 4.77 Eyes

56 INCA Tanker FAC 3rd Engineer Filipino Engine Room Maintenance in the Engine Room 6.30 Eyes

57 DIDIMON Tanker FAC Wiper Filipino Deck Leisure Activities on the deck—non-work
related 5.40 Eyebrow

58 SELECAO Tanker MTC 3rd Engineer Russian Accommodation Leisure Activities in the
Gymnasium—non-work related 3.40 Foot

59 BALTIC Tanker FAC Fitter Filipino Engine Room Maintenance in the Engine Room 1.37 Poisoning by Solvent
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60 APOLLON Tanker LWC Wiper Russian Engine Room Maintenance in the Engine Room 7.03 Arms

61 ASAHI PRINCESS Tanker FAC 2nd Engineer Filipino Cargo Control
Room Inspection Of Steam Pressure Gauge 1.00 Head

62 SOCRATES Tanker FAC AB Filipino Deck Maintenance on Deck 5.90 Eyes

63 DECAMERON Tanker FAC 3rd Engineer Filipino Engine Room Maintenance in the Engine Room 1.73 Fingers

64 DIDIMON Tanker FAC 3rd Engineer Filipino Engine Room Maintenance in the Engine Room 9.27 Skin Burn

65 EL JUNIOR PNT Tanker LWC Oiler Filipino Deck Maintenance on Deck 1.43 Chest

66 PROPONTIS Tanker FAC Cadet Greek Accommodation Slip and Fall in his cabin—non-work related 2.80 Ribs

67 PROTEAS Tanker LWC AB Filipino Accommodation Movement in Accommodation—non-work
related 1.70 Shoulder Dislocation

68 PROTEAS Tanker LWC Wiper Filipino Accommodation Movement in Accommodation—non-work
related 3.93 Shoulder Dislocation

69 CAP TALBOT Container FAC BOSUN Ukrainian Deck Maintenance in the DECK 6.80 Fingers

70 IRENES REMEDY Container FAC Electrician Filipino Engine Room Maintenance in the E/R 3.47 Skin Burn

71 IRENES LOGOS Container LWC CADET Filipino Deck Deck Operation 0.93 Fingers

72 IRENES REMEDY Container LWC ASS. ELEC-
TRICIAN Filipino Engine Room Maintenance in the E/R 2.77 Fingers

73 IRENES WISDOM Container FAC ASS. ELEC-
TRICIAN Filipino Deck Deck Operation 1.47 Skin Scratches

74 YIANNIS B Bulk Carrier FAC 2nd Officer Filipino Galley Eating at the galley—non-work related 4.33 Fingers

75 Beijing 2008 Bulk Carrier LWC 3rd Officer Filipino Galley Preparing Coffee at the galley—non-work
related 2.00 Skin Burn

76 Delphi Tanker MTC Wiper Filipino Engine Room Engine maintenance 0.57 Hand/Wrist

77 Elias Tsakos Tanker FAC Wiper Filipino Engine Room Engine maintenance 1.93 Fingers

78 Parthenon TS Tanker FAC AB Filipino Deck Deck Operation 2.17 Fingers

79 Parthenon TS Tanker FAC AB Filipino Accommodation Non-work Related 2.43 Hand/Wrist

80 World Harmony Tanker MTC Oiler Filipino Engine Room Engine Operation 2.60 Fingers

81 Socrates Tanker LWC Fitter Filipino Engine Room Engine maintenance 0.73 Legs

82 Selini Tanker FAC 4th Engineer Filipino Deck Deck Operation 4.40 Head
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83 Ise Princess Tanker FAC Oiler Filipino Engine Room Engine Operation 4.77 Eyes

84 Brasil 2014 Tanker LWC 2nd Engineer Hellenic Engine Room Engine maintenance 3.30 Fingers

85 Salamina Tanker LWC 3rd Engineer Filipino Engine Room Engine Operation 4.17 Burns

86 Didimon Tanker FAC 3rd Officer Filipino Engine Room Engine maintenance 6.07 Fingers

87 Bosporos Tanker FAC AB Filipino Deck Mooring/Unmooring 6.97 Others

88 Delphi Tanker FAC C/E Filipino Engine Room Engine maintenance 8.13 Fingers

89 Didimon Tanker FAC Bosun Filipino Deck Deck Operation 0.77 Head

90 Artemis Tanker FAC OS Brazilian Deck Mooring/Unmooring 0.53 Others

91 Baltic Tanker FAC C/E Hellenic Engine Room Engine Operation 0.77 Fingers

92 Chantal Tanker LWC OS Filipino Deck Deck Operation 7.23 Knees

93 Euronike Tanker FAC 3rd Engineer Filipino Engine Room Engine maintenance 6.20 Eyes

94 Socrates Tanker MTC Pumpman Filipino Cabin Out of working hours 5.00 Eyes

95 Oslo TS Tanker FAC 3rd Engineer Hellenic Engine Room Engine maintenance 0.23 Feet/Ankle

96 Thomas Zafiras Tanker LWC As. Steward Filipino Galley Galley-related Tasks 0.57 Fingers

97 Antarctic Tanker LWC Bosun Filipino Deck Deck maintenance 6.97 Legs

98 Antarctic Tanker LWC OS Filipino Deck Deck maintenance 6.13 Arms

99 Promitheas Tanker FAC AB Filipino Engine Room Engine maintenance 6.30 Feet/Ankle

100 Alaska Tanker MTC 4th Engineer Filipino Engine Room Engine Operation 2.87 Burns

101 Byzantion Tanker FATALITY OS Filipino Deck Mooring/Unmooring 1.47 Head

102 Elias Tsakos Tanker FAC 2nd Officer Hellenic Deck Mooring/Unmooring 5.40 Fingers

103 Triathlon Tanker FAC C/E Hellenic Engine Room Engine maintenance 1.97 Head

104 Arion Tanker FAC AB Filipino Accommodation Out of working hours 0.10 Head

105 Pentathlon Tanker LWC Bosun Filipino Deck Deck Operation 2.60 Torso

106 Nippon Princess Tanker FAC Oiler Hellenic Engine Room Engine maintenance 0.60 Head

107 Eurovision Tanker FAC Engine Cadet Hellenic Engine Room Engine maintenance 0.80 Fingers

108 Asahi Princess Tanker FAC 2nd Engineer Ukrainian Accommodation Out of working hours 0.40 Head

109 Selecao Tanker FAC AB Filipino Deck Mooring/Unmooring 4.47 Fingers
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110 Spyros K Tanker FAC OS Filipino Deck Deck Operation 2.27 Fingers

111 Archangel Tanker LWC OS Ukrainian Deck Deck Operation 0.03 Fingers

112 Andes Tanker RWC OS Filipino Accommodation Non-work Related 0.03 Back

113 Archangel Tanker LWC As. Steward Filipino Galley Washing 3.40 Hand/Wrist

114 Elias Tsakos Tanker RWC Electrician Ukrainian Engine Room Engine Operation 4.03 Hand/Wrist

115 Propontis Tanker FAC Oiler Filipino Pump Room Auxiliary tasks 9.10 Hand/Wrist

116 Aris Tanker FAC OS Brazilian Deck Maintenance 5.00 Back

117 Andes Tanker FAC Bosun Filipino Deck Deck Operation 8.60 Fingers

118 Basilis L Tanker FAC OS Georgian Accommodation Deck Operation 6.40 Fingers

119 Euronike Tanker LWC Electrician Romanian Engine Room Engine Maintenance 0.60 Fingers

120 Chantal Tanker FAC AB Filipino Deck Deck Operation 9.10 Eyes

121 Aegeas Tanker FAC 4th Engineer Ukrainian Accommodation Non-work Related 4.70 Fingers

122 Triathlon Tanker FAC 3rd Engineer Hellenic Engine Room Engine maintenance 6.90 Legs

123 Andes Tanker LWC AB Filipino Deck Mooring/Unmooring 4.70 Chest

124 Brasil 2014 Tanker RWC 3rd Engineer Filipino Engine Room Engine Operation 4.60 Fingers

125 El Junior PNT Tanker RWC Oiler Filipino Engine Room Engine maintenance 6.70 Fingers

126 Maya Tanker FAC Deck Cadet Hellenic Deck Deck maintenance 0.40 Eyes

127 Marathon TS Tanker FAC C/E Romanian Engine Room Engine maintenance 1.00 Fingers

128 Socrates Tanker FAC Electrician Romanian Engine Room Engine maintenance 8.50 Head

129 Uraga Princess Tanker FAC C/O Hellenic Deck Deck Operation 1.10 Knees

130 Capt Thanasis Tanker FAC Bosun Filipino Deck Deck Operation 11.10 Head

131 Bosporos Tanker LWC Bosun Hellenic Deck Deck maintenance 3.80 Head

132 Alaska Tanker FAC Wiper Filipino Engine Room Engine Operation 0.50 Shoulder

133 Inca Tanker FAC AB Filipino Galley Galley-related Tasks 2.00 Shoulder

134 Didimon Tanker FAC AB Filipino Deck Deck Operation 2.80 Eyes

135 Triathlon Tanker FAC Electrician Filipino Engine Room Engine maintenance 6.40 Head

136 Parthenon TS Tanker LWC 4th Engineer Filipino Engine Room Engine maintenance 7.00 Fingers
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137 Sakura Princess Tanker FAC AB Filipino Deck Deck Operation 0.50 Head

138 Euronike Tanker FAC AB Filipino Deck Deck Operation 1.20 Head

139 Sunray Tanker MTC Bosun Filipino Deck Deck maintenance 9.50 Fingers

140 Bergen TS Tanker LWC Engine Cadet Hellenic Accommodation Non-work Related 3.80 Fingers

141 Triathlon Tanker FAC OS Filipino Deck Deck maintenance 2.90 Eyes

142 Marathon TS Tanker MTC As. Steward Filipino Galley Galley-related Tasks 0.20 Back

143 Nippon Princess Tanker MTC Engine Cadet Hellenic Engine Room Engine maintenance 2.50 Head

144 Dimitris P Tanker MTC C/O Ukrainian Deck Deck Operation 2.30 Feet/Ankle

145 Arion Tanker MTC 2nd Officer Romanian Deck Deck Operation 4.60 Hand/Wrist

146 Andes Tanker FAC AB Filipino Accommodation Non-work Related 2.10 Others

147 Afrodite Tanker MTC 2nd Officer Filipino Deck Mooring/Unmooring 0.40 Legs

148 Selini Tanker FAC Bosun Filipino Deck Anchoring 2.50 Legs

149 Dimitris P Tanker FAC 2nd Engineer Russian Engine Room Engine Operation 1.10 Burns

150 Sakura Princess Tanker MTC Wiper Ukrainian Engine Room Engine maintenance 4.40 Eyes

151 Sakura Princess Tanker FAC Bosun Filipino Deck Mooring/Unmooring 10.60 Head

152 Andromeda Tanker FAC 2nd Engineer Filipino Deck Engine Operation 1.10 Torso

153 Ajax Tanker MTC 3rd Officer Filipino Deck Deck maintenance 6.00 Eyes

154 Thomas Zafiras Tanker FAC AB Filipino Deck Deck Operation 3.10 Feet/Ankle

155 Decathlon Tanker MTC Wiper Ukrainian Engine Room Engine Operation 0.50 Fingers

156 Rio 2016 Tanker MTC OS Brazilian Deck Receive of Stores 1.00 Feet/Ankle

157 Sakura Princess Tanker RWC OS Latvian Deck Deck Operation 2.70 Knees

158 Chantal Tanker MTC 3rd Engineer Filipino Engine Room Engine maintenance 5.50 Burns

159 Eurovision Tanker FAC 4th Engineer Romanian Engine Room Engine maintenance 4.80 Hand/Wrist

160 Leontios H Tanker FAC 3rd Officer Filipino Bridge Deck Operation 2.70 Feet/Ankle
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161 Arctic Tanker FAC Oiler Romanian S/G Room Engine Operation 5.00 Knees

162 Alaska Tanker FAC AB Filipino Deck Deck Operation 0.10 Arms

163 Marathon TS Tanker FAC Fitter Hellenic Deck Engine maintenance 0.40 Eyes

164 Delphi Tanker FAC Oiler Filipino Engine Room Engine Operation 1.10 Fingers

165 Promitheas Tanker RWC Engine Cadet Hellenic Engine Room Engine Operation 3.10 Shoulder

166 Elias Tsakos Tanker FAC Cook Filipino Galley Galley-related Tasks 7.90 Fingers
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