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Abstract: The number of non-payments is an indicator of delinquent behaviour in credit scoring,
hence its estimation and prediction are of interest. The modelling of the number of non-payments, as
count data, can be examined as a renewal process. In a renewal process, the number of events (such as
non-payments) which has occurred up to a fixed time t is intimately connected with the inter-arrival
times between the events. In the context of non-payments, the inter-arrival times correspond to
the time between two subsequent non-payments. The probability mass function and the renewal
function of the count distribution are often complicated, with terms involving factorial and gamma
functions, and thus their computation may encounter numerical difficulties. In this paper, with the
motivation of modelling the number of non-payments through a renewal process, a general method
for computing the probabilities and the renewal function based on numerical Laplace transform
inversion is discussed. This method is applied to some count distributions which are derived given
the distributions of the inter-arrival times. Parameter estimation with maximum likelihood estimation
is considered, with an application to a data set on number of non-payments from the literature.

Keywords: birth and renewal processes; loan default; non-payments; inter-arrival times; renewal
function; over and under dispersion; Laplace transform

1. Introduction

In credit scoring, default probabilities are often of interest to identify and manage
the risk of bad loans. However, evaluation of default probabilities alone is insufficient
to assess the risk and returns of bank funding (Dionne et al. 1996). Before an accepted
loan is classified as a bad loan, there would have been several non-payments which come
with costs incurred by reminders, collection, and other administrative charges. Therefore,
instead of classification of a loan as either good or bad, a flexible alternative approach
to risk evaluation is through the modelling of the number of non-payments (Karlis and
Rahmouni 2007). The number of non-payments, which is a primary indicator of delinquent
behaviour, are count data. Modelling of the counts of non-payments will be useful for
estimating the probability of default. The basic model for count data is the well-known
Poisson model which exhibits equi-dispersion where the mean is equal to its variance.
As such, the Poisson model is often found to be inadequate in the presence of over- or
under-dispersion. Various approaches have been proposed to extend or generalize the
Poisson distribution. Examples of such approaches are: mixture models for heterogeneity
(Gupta and Ong 2005), such as the negative binomial (NB) (Greenwood and Yule 1920)
and Poisson-inverse Gaussian (P-iG) (Holla 1967; Sankaran 1968), Lagrange expansion
generalization of the Poisson distribution (Consul and Jain 1973), and count distributions
from renewal processes where the time between events are non-exponential distributions
(Winkelmann 1995). In the context of modelling number of non-payments, truncated
count models (Dionne et al. 1996), Poisson finite mixtures (Karlis and Rahmouni 2007) and
non-parametric models (Mestiri and Farhat 2021) have been investigated in the literature.
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It is well-known that, in a renewal process, if the waiting times are exponential and
independent, we obtain the Poisson distribution for the event counts. In the context of
loan non-payments, the inter-arrival times refer to the duration between two subsequent
non-payments. Thomas et al. (2016) used Markov chains to model the payment patterns to
estimate recover rates. This renewal process approach to derive count distributions has
been considered by several researchers. Winkelmann (1995) derived the count distribution
when the inter-arrival time is an Erlang distribution. Other distributions which have been
considered by various authors to model the inter-arrival times are the gamma distribution
(Winkelmann 1995), Weibull distribution (McShane et al. 2008), which is very popular in
the field of reliability studies, Mittag-Leffler (Jose and Abraham 2011), Gumbel Type II
(Jose and Abraham 2013), and generalized Weibull (Ong et al. 2015); see Table 1. The count
distributions were mostly obtained using extensive numerical and analytical methods.
For example, McShane et al. (2008) and Jose and Abraham (2013) used the polynomial
expansion method to derive the count distribution for Weibull and Gumbel inter-arrival
times, respectively. A different approach by From (2004) is to use a family of generalized
Poisson distributions to approximate the renewal counting processes with Weibull, trun-
cated normal and exponentiated Weibull inter-arrival times. Baker and Kharrat (2017)
proposed the use of repeated convolutions of the discretized distributions with Richard
extrapolation as well as an adaptation of De Pril’s method to compute probabilities in event
count distributions from renewal processes. Nadarajah and Chan (2018) derived count
distributions arising from 13 different inter-arrival time distributions and studied their fit
to football home goals data using the algebraic manipulation package Maple. A similar per-
spective in the modelling of non-life insurance claims data was discussed by Maciak et al.
(2021) through infinitely stochastic processes and Lindholm and Zakrisson (2022).

Table 1. Some existing count distributions in renewal theory.

Inter-Arrival Time Distribution Probability Mass Function (pmf) of Corresponding Count Distribution

Gamma
Pr{N(t) = n} = G(αn, βt)− G(αn + α, βt),

G(αn, βt) = 1
Γ(nα)

∫ βt
0 unα−1e−udu

Weibull
Pr{N(t) = n} = ∑∞

j=n
(−1)j+n(λtc)jαn

j

Γ(cj+1) ,

α0
j =

Γ(cj+1)
Γ(j+1) , j = 0, 1, 2, . . . , αn+1

j = ∑
j−1
m=n αn

m
Γ(cj−cm+1)
Γ(j−m+1) ,

n = 0, 1, 2, . . . , j = n + 1, n + 2, n + 3, . . .

Mittag-Leffler Pr(N(t) = n) =
∞
∑

j=n

(
j
n

)
(−1)j−ntjα/Γ(1 + jα)

Gumble Type II

Pr{N(t) = n} =
∞
∑

j=n

(−1)(j+n)(bt−a)jδn
j

Γ(−aj+1) , a < 0

δ0
j =

Γ(−aj+1)
Γ(j+1) , j = 0, 1, 2, . . . δn+1

j = ∑
j−1
m=n δn

m
Γ(−aj+am+1)

Γ(j−m+1)
n = 0, 1, 2, . . . , j = n + 1, n + 2, n + 3, . . .

Generalized Weibull
Pr{N(t) = n} = (aα)n∑∞

p=0
(−a/λ)p

Γ(α(p+n)+1) tα(p+n)cn(p),

cn(p) = ∑
p
q=0

(
λ− 1

q

)
Γ(α(q + 1))cn−1(p− q), n ≥ 1, c0(p) =

(
λ
p

)
Γ(αp + 1)

The objectives of this paper are to propose the modelling of number of loan non-
payments through the renewal process approach and to examine the computation of the
pmf. Due to the rather involved computation of the probabilities mentioned previously, a
simple, general and efficient method of computing the probabilities of count distributions
arising from non-exponential inter-arrival time distributions of renewal processes is dis-
cussed to facilitate the statistical modelling. We consider the generalized Weibull, inverse
Gaussian and convolution of two gamma distributions due to their greater generality, as
they include, among others, the Weibull and gamma distributions as special cases. These
inter-arrival times’ distributions have flexible hazard functions so that the corresponding
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count distributions are able to cater for under-, equi- and over dispersion. This relationship
between the inter-arrival times’ hazard function and the dispersion of the corresponding
count distribution has been proven by Winkelmann (1995). We propose an easily imple-
mented and efficient method to compute the probabilities of the counts and, subsequently,
the renewal function (expected number of renewals), given the Laplace transform of the
inter-arrival times density function. The computation of the renewal function has been
extensively studied by various authors, for example, in the case of the Weibull renewal
function, see Smith and Leadbetter (1963); Constantine and Robinson (1997).

In Section 2, we briefly describe the relationship between the distribution of the inter-
arrival times and the count distribution, as well as some existing count distributions. We
focus on the case when the sequence of inter-arrival times is independent and identically
distributed, which gives rise to the renewal process. Count distributions arising from
inverse Gaussian and convolution of two gamma distributions as inter-arrival times are
considered. In these sections, we assume that the inter-arrival time Xi is independent and
identically distributed and we drop the index i from the notation, and thus X denotes the
inter-arrival time. The proposed method for the computation of the count probabilities
and its renewal function is discussed in Section 3. Section 4 details the application of the
distributions on a data set on number of non-payments from the literature. We perform pa-
rameter estimation using maximum likelihood estimation. Finally, a concluding discussion
is given in Section 5.

2. Modelling of Loan Non-Payment Counts
2.1. Count Distribution and Inter-Arrival Times Distribution

A counting process is a stochastic point process {N(t), t ≥ 0} where N(t) represents
the total number of events that have occurred by time t. In this paper, the number of events
corresponds to the number of non-payments. Let Sn denote the waiting time to (or arrival
time of) the nth non-payment, and Xn denote the time between the (n − 1)st and the n-th
non-payment of this process, i.e., two subsequent non-payments. In the rest of this paper,
Xn will be referred to as inter-arrival times. Therefore, S0 = 0 and Sn = ∑n

i=1 Xi, n ≥ 1. If
the sequence of inter-arrival times {X1, X2, . . . } is independent and identically distributed
as f (x) with cumulative distribution function (cdf) F(x), the counting process {N(t), t ≥ 0}
is known as a renewal process. In a renewal process, the distribution function of Sn can be
obtained as the n-fold convolution Fn(x) of the distribution of Xi and F0 (t) = 1. In this case,
the renewal function or expected number of non-payments E[N(t)] and the distribution of
N(t) can be obtained from the relationship N(t) ≥ n⇔ Sn ≤ t . As such, the probability
mass function (pmf) of the count distribution is

Pr{N(t) = n} = Pr{Sn ≤ t} − Pr{Sn+1 ≤ t} = Fn(t)− Fn+1(t), (1)

where n = 0, 1, . . . , and Fn(x) is the cdf of Sn. The renewal function is defined as

H(t) = E[N(t)] = ∑∞
i=1 Fi(t). (2)

A d example is, when the inter-arrival times are exponentially distributed, the counting
process is a Poisson process with intensity λ(t) = λ with pmf

Pr{N(t) = n} = e−λt(λt)n

n!
, n = 0, 1, 2, . . . .

The Laplace transform ϕ(s) of a function f (x) is defined as ϕ(s) =
∫ ∞

0 e−sx f (x)dx,
where s is a complex number. The Laplace transform exists for the function f (x) defined over
(0, ∞), whenever the integral converges. Since the inter-arrival times Xi’s are independent
and identically distributed, the Laplace transform of the arrival time Sn = ∑n

i=1 Xi is simply
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the n-fold convolution of the Laplace transform of Xi. Consequently, the Laplace transform
of the count distribution is derived as

ϕn(s) = L(Pr{N(t) = n}) = L(Fn(t)− Fn+1(t)) =
1− ϕ(s)

ϕ(s)
(ϕ(s))n, (3)

where ϕ(s) is the Laplace transform of the inter-arrival time’s probability density function
(pdf) f (x). On the other hand, the Laplace transform of (2) is L(E[N(t)]) = ϕ(s)

s
1

(1−ϕ(s)) ,
|ϕ(s)|< 1 .

In the existing literature, Poisson distribution and negative binomial distribution have
been proposed for modelling non-payments (Dionne et al. 1996). In the following sections,
we present alternative count distributions for modelling of non-payments examined from
the perspective of their inter-arrival times.

2.1.1. Count Distribution for Generalized Weibull Duration

The pdf of a generalized Weibull distribution is given as

f (x; α, α, λ) = aαxα−1(1− axα/λ)λ−1, (4)

for a, α > 0, x > 0 if λ ≤ 0 and 0 < x < (λ/a)1/α if λ > 0 (Mudholkar et al. 1996). An
important limiting case is the Weibull distribution when λ→∞, with pdf f (x; a, α, λ) =

aαxα−1e−axα
. We shall re-write the Weibull pdf as f (x; a, α, λ) =

(
λ
a

)( x
α

)λ−1e−
( x

α )λ

. The
generalized Weibull distribution has a flexible and closed form hazard function.

Ong et al. (2015) applied the Laplace transform technique and a formal Taylor ex-
pansion to derive the count distribution for generalized Weibull duration. The count
distribution has pmf given by

Pr{N(t) = n} = (aα)n∑∞
p=0

(−a/λ)p

Γ(α(p + n) + 1)
tα(p+n)cn(p), (5)

where cn(p) = ∑
p
q=0

(
λ− 1

q

)
Γ(α(q + 1))cn−1(p− q), n ≥ 1 and c0(p) =

(
λ
p

)
Γ(αp + 1).

When n = 0, Pr{N(t) = 0} = (1− atα/λ)λ. This count model is able to model under-,
equi- and over-dispersion, since the generalized Weibull hazard function can be increasing,
constant or decreasing. Special cases are as follows:

• When λ < 0 and α = 1, we obtain the count distribution with Lomax duration. Its pmf
is given by Ong et al. (2015) as

Pr{N(t) = n) = (at)n∑∞
p=0

(a/Γ)p

Γ(p + n + 1)
tpcn(p). (6)

• When λ→∞, we obtain the Weibull count distribution and Ong et al. (2015) gives its
pmf as

Pr{N(t) = n) = (aα)n∑∞
p=0

(−a)p

Γ(α(p + n) + 1)
tα(p+n)cn(p), (7)

where cn(p) = ∑
p
q=0

Γ(α(q+1))
Γ(q+1) cn−1(p− q), n ≥ 1 and c0(p) = Γ(αp+1)

Γ(p+1) . When n = 0,

Pr{N(t) = 0} = e−atα
. McShane et al. (2008) applied Taylor series approximation in

the derivation of the Weibull count pmf which they have found to be computationally
feasible.

• Furthermore, when α = 1, (5) reduces to the Poisson pmf.
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2.1.2. Count Distribution for Gamma Duration

Let X have a gamma distribution with pdf given by

f (x; α, β) =
βα

Γ(α)
xα−1e−βx (8)

for x > 0 and α, β > 0. It has mean E(X) = α/β and variance Var(X) = α/β2. The hazard
function of the gamma distribution is not available in closed form but its behaviour is
well-known as being monotonic increasing (α > 1), decreasing (α < 1) or constant (α = 1).
When α = 1, we obtain the exponential distribution. The Laplace transform of the gamma

distribution is given as ϕ(s) =
(

β
β+s

)α
. The gamma distribution has the advantage of

having a reproductive property, hence the arrival time Sn is also gamma distributed.
Winkelmann (1995) has studied the count process with gamma inter-arrival times and

gives its pmf as
Pr{N(t) = n} = G(αn, βt)− G(αn + α, βt) (9)

where G(αn, βt) = 1
Γ(nα)

∫ βt
0 unα−1e−udu, the integral is the lower incomplete gamma

function. Since the pmf is not available in closed form, Winkelmann (1995) suggested
using numerical methods for its computation. The gamma count distribution inherits
the properties of the gamma distribution’s hazard function; thus it is able to model over
dispersion (α < 1) and under dispersion (α > 1). Its expected value is given by E[N(t)] =
∑∞

i=1 G(αi, βt). Special cases are as follows:

• When α = 1, the count distribution simplifies to the Poisson distribution.
• For integer values of α, Winkelmann (1995) has derived the Erlangian count distribu-

tion with pmf given as

Pr{N(t) = n} = e−βt∑α−1
i=0

(βt)αn+i

(αn + i)!
, n = 0, 1, 2, . . . . (10)

2.1.3. Count Distribution for Convolution of Two Gamma Durations

If we represent the inter-arrival time X as a sum of two independent gamma random
variables, then X has a convolution of two gamma distributions. Its density function has
been studied by various authors; see Johnson et al. (2005) for a brief overview. We shall
adapt the density function given by Moschopoulos (1985) for the sum of n independent
gamma random variables, which is derived from the n-convolutions of the moment gen-
erating function. Let X = X1 + X2, where Xi, i = 1, 2, are distributed as gamma with
parameters αi and βi respectively. We obtain the density function of X as

f (x; ρ, β1) =

(
β1

β2

)α2

∑∞
k=0

δkxρ+k−1exp
(
− y

β1

)
Γ(ρ + k)β1

ρ+k (11)

for x > 0, αi > 0, βi > 0 where β1 = min(β1, β2), ρ = α1 + α2, δk+1 = 1
k+1 ∑k+1

i=1 iΓiδk+1−i for k

= 0, 1, 2, . . . , and Γk =

{
α2

(
1− β1

β2

)k
}

. The convolution of two gamma distributions has an

increasing hazard function when its two component distributions have an increasing hazard
function, but convolutions of two distributions, both with decreasing hazard function, may
give rise to a distribution with increasing hazard function. Therefore, we expect the count
distribution to be more flexible in modelling over-dispersed and under-dispersed count
data. As a special case, when α1 = α2 = 1, we obtain the convolution of two exponential
distributions which has an increasing hazard function.
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Proposition 1. If the inter-arrival time (duration) has a convolution of two gamma distributions
with pdf (3.1.1), the count distribution has pmf given by

Pr{N(t) = n} = Cn(t, α1, α2, β1, β2)− Cn+1(t, α1, α2, β1, β2), (12)

where Cn(t, α1, α2, β1, β2) = (βα1
1 βα2

2 )n
{

tn(α1+α2)

Γ(1+n(α1+α2))
Φ2(nα1, nα2; 1 + n(α1 + α2);−β1t,

−β2t)
}

and Φ2(b, b′; c; w, z) = ∑∞
k,l=0

(b)k(b′)l
(c)k+l

wkzl

k!l! .

2.1.4. Count Distribution for Inverse Gaussian Duration

The inverse Gaussian (IG) distribution is also known as the first passage time distri-
bution of Brownian motion with positive drift. Let X have an IG distribution with pdf
given by

f (x; µ, λ) =

√
λ

2π
x−

3
2 exp

{
−λ(x− µ)2

2µ2x

}
, (13)

for x > 0, where µ, λ > 0 (Johnson et al. 2005, p. 261). It is a unimodal distribution and
has applications in modelling survival period, service time, equipment lives, hospital stay
duration, employee service times and duration of strikes. Chhikara and Folks (1977) have
discussed the application of the inverse Gaussian distribution in reliability and showed that
the distribution has a non-monotonic hazard function with an almost increasing failure rate.
There are several parameterizations of the IG distributions, but we adopt this particular
one because it is expressed in terms of its mean E(X) = µ and λ is the scale parameter. The
shape of the distribution is determined by the ratio λ/µ and the pdf is highly skewed for
moderate values of this ratio. The Laplace transform is derived by Seshadri (1999) as

ϕ(s) = exp

{
λ

µ

(
1−

√
1 +

2sµ2

λ

)}
, s ≥ 0 (14)

when µ→∞, we obtain a one-parameter limiting form of IG, known as the distribution
of the first passage time of drift-free Brownian motion. Its pdf is given as f (x; λ) =√

λ
2π x−

3
2 exp

(
− λ

2x

)
with x > 0, where λ > 0 (Johnson et al. 2005). The expected value and

variance of this distribution are infinite. On the other hand, when µ = 1, the distribution is
also known as the Wald distribution.

The count distribution with inverse Gaussian inter-arrival times has also been pro-
posed (Nadarajah and Chan 2018) with the probability mass function given in terms of the
convolution of inter-arrival distributions Fn(x), involving the standard normal cumulative
distribution function. We derive an explicit expression for the inverse Gaussian count
distribution, given in the following proposition.

Proposition 2. If the inter-arrival time has an inverse Gaussian distribution with pdf (13), the
count distribution has pmf given by

Pr{N(t) = n} = ∑∞
k=0 ∑k

l=0
nk−l

(l + 1)!(k− l)!

(
λ

µ

)k+1

ck(m), (15)

where ck(m) = ∑k+1
m=0

(
k + 1

m

)
(−1)m

(
∑∞

ν=0

(m
2
ν

)
1

Γ(1−ν)

(
2µ2

λt

)ν
)

.

2.2. Computation of the Probabilities of Count Distribution

The computation of the probabilities for most of the count distributions, such as
the generalized Weibull count distribution (5), involves an infinite series and/or gamma
functions Γ(x), which tends to quickly numerically overflow. As such, we propose a



J. Risk Financial Manag. 2023, 16, 150 7 of 14

computational method whereby the probability function of the counts can be recovered by
numerically inverting the Laplace transform (3). Using this method, given the inter-arrival
time distribution and its Laplace transform, we will be able to compute the corresponding
count probabilities.

For some common functions, the inverse Laplace transforms f (x) are readily available
from existing tables (Erdelyi et al. 1953). Otherwise, there are explicit formulae for inverting
a Laplace transform ϕ(s), such as the Bromwich inversion integral formula and the Post-
Widder inversion formula. In most cases, it is difficult to find an analytical expression for
the inverse Laplace transform using these formula and, therefore, a numerical inversion
is necessary. There are numerous methods for numerical inversion of Laplace transforms
in the existing literature; for a comprehensive review, see (Abate and Valkó 2004; Dubner
and Abate 1968). In our study, we use a numerical inversion algorithm which is based
on the Bromwich inversion integral and gives good results for smooth functions. The
algorithm was originally proposed by Dubner and Abate (1968), improved by Abate and
Whitt (1992) and discussed by Abate and Whitt (1995) and Abate et al. (2000) for the
numerical inversion of Laplace transforms of probability distributions. The Bromwich
inversion integral formula is given as

f (x) = L−1(ϕ(s)) = lim
R→∞

1
2πi

∫ a+iR

a−iR
ϕ(s)esxds, (16)

where a is another real number such that a > s0 and i =
√
−1. The numerical inversion

algorithm is developed by first applying the trapezoidal rule to the integral in (16), and
subsequently using a Fourier-series method for approximation. Based on the algorithm,
we obtain the following formula for computing the count probabilities

Pr{N(t) = n} = eA/2

2s
Re
(

ϕn

(
A
2s

))
+

eA/2

s ∑∞
k=1 (−1)kRe

(
ϕn

(
A + 2kπi

2s

))
, (17)

where ϕn(.) is as defined in (3).
The convergence of the infinite sum in (17) can be accelerated by applying the well-

known Euler’s algorithm for alternating series. Therefore, the count probabilities are
approximated using the following formula

Pr{N(t) = n} ≈∑m
k=0

(
m
k

)
2−msp+k(s), (18)

where sp(s) is the pth partial sum

sp(s) =
eA/2

2s
Re
(

ϕn

(
A
2s

))
+

eA/2

s ∑p
k=1 (−1)kRe

(
ϕn

(
A + 2kπi

2s

))
. (19)

The choice of A affects the discretization error which results from using the trapezoidal rule.
We use Abate and Whitt’s (1995) suggestion to set A = 18.4, p = 38 and m = 11. The value of
p may be increased when necessary. The algorithm can be implemented in programming
languages which provide for complex number computation, such as MATLAB©.

2.3. Renewal Function

There are many studies on the approximation of the renewal function. Using a
generalized cubic splining algorithm which provides piecewise polynomial approximations
to recursively defined convolution integrals, Baxter et al. (1982) has tabulated the renewal
function and variance function for renewal processes with gamma, inverse Gaussian,
lognormal, truncated normal and Weibull inter-arrival times. However, they noted that
the convergence of the algorithm is slow for some of the parameter values. Chaudhry et al.
(2013) took a slightly different approach by using the probability function obtained from
numerically inverting the Laplace transform in rational function form to calculate the
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renewal function and variance of several count distributions. They obtained the distribution
function, mean and variance of N(t) using the method of roots for numerically inverting
the Laplace transform when it can be expressed as a rational function. They also studied
the Padè approximation method to obtain an approximate rational function for the Laplace
transform when it is not a rational function. In addition, they used the Padè approximation
method prior to the roots method when the Laplace transform could not be expressed as a
rational function, such as in the case of gamma and inverse Gaussian distribution.

3. Numerical Results
3.1. Count Probabilities

To illustrate the accuracy of this numerical Laplace transform inversion method,
we apply it in calculating the count probabilities for generalized Weibull duration and
Erlangian duration and compare the values to those obtained using Formulas (5) and
(10), respectively. The formula in Equation (10) is in closed form and simple enough to
compute, hence there is no need to use the method which we propose here, but it serves as
a good example for this comparison. Since the Laplace transform of the generalized Weibull
density function is not available in closed form, we can approximate it using Gaussian
quadrature. The computed probabilities are presented in Table 2. The count probabilities
for generalized Weibull duration are computed when a = 1, α = 1 and λ = −2, t = 0.25 and
t = 1. For the Erlangian count distribution, we compute the probabilities when α = 2, β = 0.8,
t = 0.25 and t = 1. In all cases, we find that our approximation is accurate up to at least
seven decimal places. To illustrate the issue of overflowing which might occur, we present
the count probabilities for generalized Weibull duration when a = 2, α = 1 and λ = −2 and
t = 1 in Table 3. It is clear that, in this case, there is a numerical error in the computation of
the probabilities with Formula (5) when n = 1, 2 due to instability caused by the presence of
an infinite sum in Equation (5) and truncation error.

Table 2. Computation of probabilities for (a) generalized Weibull, and (b) Erlangian count distribu-
tions using the proposed method and pmf formula.

n

Pr{N(t) = n}
t = 0.25

Pr{N(t) = n}
t = 1

Proposed Method Pmf Formula Difference Proposed Method Pmf Formula Difference

0 0.790123462190233 0.790123456790123 5.4001 (−9) 0.444444446077630 0.444444444444444 1.6331 (−9)
1 0.185268558281666 0.185268554955749 3.3259 (−9) 0.341447772405153 0.341447770099717 2.3054 (−9)
2 0.022624019619715 0.022624018469588 1.1501 (−9) 0.152421254574663 0.152421252253988 2.3207 (−9)
3 0.001862447034136 0.001862446759278 2.7486 (−10) 0.047632000079489 0.047631998279757 1.7997 (−9)
4 0.000115528824677 0.000115528774610 5.0067 (−11) 0.011418307350013 0.011418306220399 1.1296 (−9)
5 0.000005746921940 0.000005746914580 7.3600 (−12) 0.002217009636005 0.002217009042290 5.9371 (−10)
6 0.000000238568216 0.000000238567310 9.0600 (−13) 0.000361439244000 0.000361438976100 2.6790 (−10)
7 0.000000008496400 0.000000008496304 9.0600 (−13) 0.000050759289875 0.000050759184107 1.0577 (−10)

(a) Generalized Weibull count distribution

n

Pr{N(t) = n}
t = 0.25

Pr{N(t) = n}
t = 1

Proposed Method Pmf Formula Difference Proposed Method Pmf Formula Difference

0 0.982476912658251 0.982476903693578 8.9647 (−9) 0.808792138560495 0.808792135410999 3.1495 (−9)
1 0.017466257275868 0.017466256065664 1.2102 (−9) 0.182128011589934 0.182128006788847 4.8011 (−9)
2 0.000056765366099 0.000056765332213 3.3886 (−11) 0.008895517173780 0.008895515278950 1.8948 (−9)
3 0.000000074855777 0.000000074855383 3.9400 (−13) 0.000182292662905 0.000182292332810 3.3009 (−10)
4 0.000000000053140 0.000000000053138 2.0000 (−15) 0.000002035889418 0.000002035857392 3.2026 (−11)
5 0.000000000000024 0.000000000000024 0.0000 0.000000014264304 0.000000014262333 1.9710 (−12)
6 0.000000000000000 0.000000000000000 0.0000 0.000000000068513 0.000000000068429 8.4000 (−14)
7 0.000000000000000 0.000000000000000 0.0000 0.000000000000241 0.000000000000239 1.9999 (−15)

(b) Erlangian count distribution
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Table 3. Count probabilities for generalized Weibull count distribution when a = 2, α = 1 and λ = −2
and t = 1.

n
Pr{N(t) = n}

Formula Proposed Inverse Laplace Transform Method

0 0.2500 0.2500
1 63.5982 0.2971
2 2.3327 0.2305
3 0.1839 0.1317
4 0.0604 0.0593
5 0.0220 0.0220
6 0.0069 0.0069
7 0.0019 0.0019

Using this proposed method, the count probabilities for convolution of two gamma
and inverse Gaussian inter-arrival distributions proposed in Section 2.2 can be easily
computed. Chaudhry et al. (2013) used the roots method and a Padè approximation
method for computing the count probabilities for several inter-arrival times distributions.
In Table 4, we compare the probability function of gamma, inverse Gaussian and Weibull
count distributions with those obtained by Chaudhry et al. (2013). We note that the
difference in the probabilities is at most two decimal places. In the case of Weibull count
distribution, we include only the results when t = 0.25, because the algorithm could not
converge for t = 0.60 and t = 1 when λ = 3, which are the other two values included by
Chaudhry et al. (2013). Convergence issues with the Weibull renewal function were also
discussed by Constantine and Robinson (1997) whereby they developed a convergent
damped exponential series by residue calculations of the Laplace transform of the renewal
integral equation for the Weibull renewal function when λ > 1.

Table 4. Computation of probabilities for (a) gamma, (b) inverse Gaussian, and (c) Weibull count
distributions for selected values of t using (i) proposed method, (ii) method of Chaudhry et al. (2013).

t
Pr(N(t) = 0) Pr(N(t) = 1) Pr(N(t) = 2) Pr(N(t) = 3) Pr(N(t) = 4)

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.1 0.6938 0.6871 0.2341 0.2385 0.0579 0.0602 0.0117 0.0119 0.0021 0.0019
0.4 0.4061 0.4071 0.3092 0.3088 0.1683 0.1677 0.0744 0.0743 0.0283 0.0284

1.25 0.1291 0.1291 0.1952 0.1951 0.2050 0.2050 0.1730 0.1730 0.1249 0.1249

(a) Gamma count distribution

t
Pr(N(t) = 0) Pr(N(t) = 1) Pr(N(t) = 2) Pr(N(t) = 3) Pr(N(t) = 4)

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.25 0.7394 0.7445 0.2497 0.2442 0.0108 0.0112 0.0001 0.0001 0.0000 0.0000
0.7 0.3377 0.3390 0.4070 0.4042 0.2044 0.2062 0.0460 0.0457 0.0047 0.0046
1.0 0.1623 0.1623 0.2865 0.2869 0.2871 0.2867 0.1763 0.1762 0.0681 0.0683

(b) Inverse Gaussian count distribution

t
Pr(N(t) = 0) Pr(N(t) = 1) Pr(N(t) = 2) Pr(N(t) = 3) Pr(N(t) = 4)

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.25 0.9845 0.9841 0.0155 0.0159 0.0000 0.0000 0.0000 - 0.0000 -

(c) Weibull count distribution

We compare the pmf of the two count distributions proposed in Sections 2.1.3 and 2.1.4
with the Poisson distribution. For comparison purposes, the mean for all of the distributions
is set to 2, i.e., E(N) = 2. Figure 1 compares the probability functions of the inverse Gaussian
count distribution with a Poisson distribution.
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Figure 2 compares the probability functions of the convolution of two gamma count
distribution with a Poisson distribution. The convolution of the two gamma count model
can model both over-dispersion and under-dispersion relative to the Poisson distribution.
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The convolution of two gamma distributions nests the special case of convolution
of two exponential distributions, that is, when α1 = α2 = 1. This two-component hypo
exponential count distribution with parameters β1 and β2 can model under-dispersion and
Figure 3 compares its probability function with a Poisson distribution.
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3.2. Renewal Function and Variance

Using the probability of the counts computed using our proposed method, we also
computed the renewal function and variance function for comparison with those obtained
by Chaudhry et al. (2013) and Baxter et al. (1982). The details are presented in Table 5.
In most cases, the values computed using our proposed method are closer to those of
Baxter et al. (1982). We note that Baxter et al. (1982) verified the accuracy of their extended
cubic splining algorithm through comparisons with previous tabulations for the Weibull
count distribution in the literature (see Baxter et al. 1982 for details) and a direct evaluation
of the incomplete gamma integral for the gamma count distribution.
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Table 5. Computation of renewal and variance functions for (a) gamma, (b) inverse Gaussian, and
(c) Weibull count distributions for selected values of t using (i) proposed method, (ii) method of
Baxter et al. (1982), and (iii) method of Chaudhry et al. (2013).

t
Renewal Function Variance Function

(i) (ii) (iii) (i) (ii) (iii)

0.1 0.3953 0.3933 0.4040 0.4580 0.4485 0.4623
0.4 1.0560 1.0550 1.0545 1.3954 1.3901 1.3970
1.25 2.6662 2.6653 2.6663 4.0491 4.0441 4.0487

(a) Gamma count distribution

t
Renewal Function Variance Function

(i) (ii) (iii) (i) (ii) (iii)

0.25 0.2716 0.2715 0.2669 0.2198 0.2200 0.2188
0.7 0.9739 0.9739 0.9736 0.7717 0.7718 0.7732
1.0 1.7636 1.7638 1.7635 1.5290 1.5293 1.5294

(b) Inverse Gaussian count distribution

t
Renewal Function Variance Function

(i) (ii) (iii) (i) (ii) (iii)

0.25 0.0155 0.0156 0.0159 0.0153 0.0154 0.0156

(c) Weibull count distribution

4. Real Data Analysis

Table 6 gives the distribution for the number of monthly non-payments for personal
loan in a sample of 2446 clients in a Spanish bank (Dionne et al. 1996). In personal loans,
small amounts of money are lent with a relatively short repayment or loan period. The
repayment schedule is typically on a monthly basis with a constant amount. The empir-
ical data has a sample mean of 1.109 and variance of 4.860, indicating presence of over
dispersion, hence a simple Poisson process may not be sufficient to model the counts. The
majority (68.1%) of the counts are zeroes, which correspond to clients who never missed
a payment, followed by 11.1% who missed one payment and a cumulative percentage of
11.4% who missed two to four payments. The count distributions are applied to fit this data
set. For the simple Poisson count process, observations with expected frequencies which
are less than 1.0 are grouped in one class. We also include the log-likelihood function and
Akaike information criterion (AIC) values for each fitted model in the tables.

The pmf of the count distributions is evaluated using the numerical inverse Laplace
transform method discussed in Section 2.2. The maximum likelihood (ML) estimates of the
parameters are obtained with numerical global optimization using the simulated annealing
algorithm (Goffe et al. 1994). For numerical stability, we transform the parameters for
the generalized Weibull count distributions to their corresponding reciprocals prior to
performing ML estimation. The ML estimates are given in Table 7.

The count distribution with generalized Weibull as the distribution for inter-arrival
times gives the best fit for the data presented in Table 6. Since the generalized Weibull
distribution does not have a closed form Laplace transform, the model fitting takes up a
significantly longer time. In the case of distributions with closed Laplace transform, the
convolution of two gamma count distribution gives the best fit. We also verify that the
convolution of the two exponentials count distribution gives the same fit as the simple
Poisson distribution, implying that this distribution is not suitable for over dispersed
count data. The inverse Gaussian distribution also gives a poor fit to this data set. This
coincides with the characteristic of inter-arrival time distributions, which has an increasing
hazard function.
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Table 6. Number of monthly non-payments for personal loan (Dionne et al. 1996).

Count Observed

Expected Frequencies

Exponential Gamma Convolution of
Two Exponentials

Convolution of
Two Gamma

Inverse
Gaussian Weibull Generalized

Weibull

0 1665 806.78 1159.28 806.78 1159.18 703.13 1156.51 1172.12
1 271 894.85 610.04 894.85 609.94 614.81 607.38 599.05
2 101 496.26 320.92 496.26 320.89 470.06 319.98 309.55
3 73 183.48 168.77 183.48 168.79 314.25 169.15 162.84
4 106 50.88 88.73 50.88 88.78 183.69 89.74 87.75
5 72 11.29 46.64 11.29 46.68 93.88 47.80 48.58
6 43 2.09 24.51 2.09 24.55 41.96 25.56 27.60
7 31 0.38 12.87 0.38 12.90 16.39 13.72 16.00
8 31 6.76 6.78 5.60 7.39 9.39
9 25 3.55 3.56 1.67 4.00 5.53

10 19 1.86 1.87 0.44 2.17 3.25
11 9 0.98 0.98 0.10 1.18 1.89

12 or
more 0 1.08 1.09 0.02 1.42 2.44

Total 2446.00 2446.00 2446.00 2446.00 2446.00 2446.00 2446.00

χ2 37,242.91 1111.77 37,242.91 1108.75 4057.66 1032.59 838.51

Log-likelihood −4954.79 −3569.93 −4954.79 −3569.49 −4231.06 −3558.13 −3511.39

AIC 9911.57 7143.85 9913.57 7146.99 8466.11 7118.27 7028.77

Table 7. ML estimates of the fitted distributions.

Inter-Arrival Distribution ML Estimates of Parameters

Exponential λ̂ = 1.1092
Gamma α̂ = 0.0136, β̂ = 0.0000

Convolution of two exponentials β1 = 1.1092, β2 → ∞
Convolution of two gamma α̂1 = 0.0097, β̂1 = 0.0000, α̂2 = 0.0000, β̂1 = 4.5611

Inverse Gaussian λ̂ = 0.1358, µ̂→ ∞
Weibull α̂ = 18.2613, λ̂ = 3.0684

Generalized Weibull â = 40.6405; α̂ = 1.0000, λ̂ = −0.2044

5. Discussion and Conclusions

This article examines the modelling of count data commonly encountered in finance
and risk management with count distributions arising from non-exponential inter-arrival
time distributions in a renewal process. A specific application example on modelling
of loan non-payments is presented. Since the number of non-payments and the lapsed
time between payments reflect a lender’s payment behaviour, models which account
for these data can assist in the development of further diagnostic techniques such as
loan default prediction and tools for early warning detection. Due to the complicated
calculations, computation of the probabilities arising from these distributions is investigated
and discussed in this paper. The inversion of the Laplace transform is proposed as a generic
method of computation, since the transforms have relatively simple forms compared to
the probabilities. The proposed method is compared with some existing techniques in
the literature.

When the Laplace transform of the inter-arrival time distribution is not available in
closed form, other methods to approximate the Laplace transform for numerical inversion
can be explored, such as the infinite series, Gaussian quadrature, Laguerre method and the
continued fractions technique. This will be considered elsewhere.
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