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Abstract: Fractile Graphical Analysis (FGA) was proposed by Prasanta Chandra Mahalanobis in 1961
as a method for comparing two distributions at two different points (of time or space) controlling for
the rank of a covariate through fractile groups. We use bootstrap techniques to formalize the heuristic
method used by Mahalanobis for approximating the standard error of the dependent variable using
fractile graphs from two independently selected “interpenetrating network of subsamples.” We
highlight the potential and revisit this underutilized technique of FGA with a historical perspective.
We explore a new non-parametric regression method called Fractile Regression where we condition
on the ranks of the covariate and compare it with existing regression techniques. We apply this
method to compare mutual fund inflow distributions after conditioning on ranks or fractiles of pre-tax
and post-tax returns and compare distributions of private and public equity returns after controlling
for fractiles of assets under management size using the two sample smooth test.
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1. Prologue

Professor Mahalanobis . . . wondered, “Ramakrishna after my death what will
happen to ISI? Would anything survive of what I created?”

[Ramakrishna Mukherjee] replied, “Professor, your Large Sample Survey will
survive, D2 will live, Fractile Graphical Analysis, though I don’t quite understand
it, will survive if its useful, and some students of yours will spread your message.”

Professor’s eyes lit up, “And ISI?. . . Rabindranath used to say this is a riverine
land, nothing survives in this climate for too long. . . who am I to expect a legacy?”

Sociologist Dr. Ramakrishna Mukherjee reminisced a conversation with Professor
Mahalanobis (ISI 1997).

Fractile Graphical Analysis (FGA) was proposed by Prashanta Chandra Mahalanobis
(Mahalanobis 1958, 1961, 1969, 1970) in a series of papers and seminars as a method
accommodating for the effect of a covariate while comparing two distributions of a response.
Unlike standard linear least squares regression analysis Mahalanobis proposed a non-
parametric way of controlling the covariates (possibly, more than one) using their ranks
into “fractile” groups. The method provides a graphical tool for comparing complete
distributions of the variables of interest (such as income and expenditure) for all values of
the covariate as well as for specific fractiles. Mahalanobis graphically approximated the
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standard error of one variable (say, income) at all the fractiles of the covariate for the same
graph by taking two independently selected “interpenetrating network of subsamples”
and obtained a graph for each of the subsamples in addition to the combined sample.
The method proposed by Mahalanobis for estimating the error area of a fractile graph
through resampling was later hailed as a precursor to the latter day bootstrap methodology
(Efron 1982; Hall 2003). FGA can be used to informally compare, and we can show, formally
test whether two distributions of the fractile graphs of two populations are different.

We explore a new perspective on comparing non-parametric regression models and
propose new simulation-based F-tests of goodness-of-fit in the light of Mahalanobis’ FGA
as a k-nearest neighbor method. This paper, to the best of our knowledge, is the first one that
identifies two strands of literature on quantiles of covariates, namely, concomitant variables
and induced order statistics, that are essentially the same and owe their origin to Mahalanobis’
FGA. We delve into the historical development of the FGA procedure and use FGA meth-
ods in conjunction with the BGX (Bera et al. 2013) test to illustrate empirically how two
conditional distribution functions can be compared non-parametrically. In the exposition
of the tests, we draw on risk management examples in Financial Economics from private
and public equity returns and in comparing distributions of pre- and post- tax mutual fund
inflows. The main advantage of the procedure is its simplicity in implementation where
we can identify the reasons for departure when comparing two conditional distributions,
unlike traditional omnibus tests such as Kolmogorov–Smirnov and Cramér–von Mises
tests. The rest of this paper is arranged in the following way. In Section 2, we provide
a brief history of the statistical thought for FGA, followed by some perspectives on the
method of FGA introduced by Professor Mahalanobis and Professor C. R. Rao in Section 3.
In Section 4, we introduce the theory, methods, and analysis of Fractile Graphs as proposed
by Mahalanobis with some new perspectives, propositions, conjectures, and properties of
FGA. Applications of FGA techniques are discussed in Section 5, including comparison
of conditional distribution between private and public equity return distributions after
controlling for fractiles of assets under management (AUM) size. In Section 6, we motivate
and re-introduce the concept of a non-parametric rank regression technique called Fractile
Regression and discuss its relationship with existing non-parametric (Nadaraya–Watson)
and semiparametric (quantile regression) methods. We provide an illustrative empirical
example in Section 7 on the inflow distribution of mutual funds conditional on pre- and
post-tax returns. We conclude in Section 8.

2. A Brief History of Statistical Thought of Mahalanobis

The genesis of Mahalanobis’ thought on the decomposition of variation due to natural
statistical deviation and due to measurement error came from his work with Sir Gilbert
Walker on upper atmospheric data. His first seminal work on D2 came from anthropometric
data analysis on the “Analysis of the Race Mixture of Bengal,” presented as a part of his
presidential address on anthropology in the 1925 Indian Science Congress held in Benaras.
He and his colleagues worked on the derivation of the exact distribution of the generalized
distance D2 that measures the divergence between two populations. One focus of this line
of research was the identification, classification, and discrimination in terms of variances
and covariances of different populations.

His work on the distribution of probable errors in agricultural experimental designs,
later known as the Fisherian methods of field experiments, made him look deeper into the
procedure of removing the effect of soil heterogeneity as a possible cause of variation in crop
yields using non-linear “graduating curves.” As the elected president of the 1950 Indian
Science Congress in Pune, his address was titled “Why Statistics?” His pioneering effort
to introduce key technology and statistical thinking in a “purpose driven way” in India,
a developing country, just three years after gaining independence depicts how advanced
Mahalanobis must have been for his time (Ghosh 1994, 2001; Ghosh et al. 1999).
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As the chairman of the National Income Committee that was set up in 1949–1950, Profes-
sor Mahalanobis recommended to India’s first Prime Minister Jawaharlal Nehru large scale
sample surveys to fill in gaps in national statistics, leading to the creation of the National
Sample Survey (NSS) in 1950. Fully aware of the possibility of data corruption due to negli-
gence and measurement errors, Mahalanobis introduced the method of interpenetrating
network of subsamples (IPNS) at all stages of collecting and processing of NSS data to
improve its accuracy (Mahalanobis 1953). IPNS was hailed as a precursor to bootstrap
methods (Hall 2003).

The framework of the second Five Year Plan was developed through applied and
theoretical research in economics undertaken at ISI Calcutta, with sustained research on
the preparation of a series on national income using a survey of consumer expenditure.
A macro-econometric model was developed for the Indian economy, and several studies
were carried out on the time trend on the level and distribution of consumption in India,
and methods such as FGA was extensively used to control for covariates.

Despite being an applied statistician and physicist, Mahalanobis was entrusted with
formulating the draft frame of the second Five Year Plan, with the main objective of eradi-
cating poverty and unemployment in India. He created study groups to examine specific
economic and social problems, such as the impact of increase in income on consumer
behavior. Many researchers worked tirelessly along with others on the analysis of data
from the National Sample Survey on the sampling experiments for the first papers on FGA
(Mahalanobis 1958, 1961). In his role as the chairman of the Income Distribution Committee of
the Government of India, even at an advanced age of 70, Professor Mahalanobis relentlessly
worked through the night analyzing data (Bhattacharya in ISI newsletter, ISI 1997).

Mahalanobis introduced the forward looking two sector Harrod–Domar type model
for growth and development (later expanded to a more realistic four sector model) of the
Indian Economy where the state had to make direct investments to infrastructure building
heavy industries. This investment was widely supported by practitioners, business leaders,
and academicians alike.

3. Dr. C. R. Rao’s Exposition of FGA

Rao (1993a,1993b) described FGA as a “semi-non-parametric method of comparison
of two samples”, which Professor Mahalanobis’ developed in the last 10 years of his life for
the explicit purpose of comparing socioeconomic conditions of two communities either in
different places or points of time. Much earlier, Rao (1974) provided a simple exposition of
FGA, which we reproduce below. It should be noted that FGA is an intriguing statistical
technique, which could be the reason behind its lesser use until now.

“This method was first developed for comparison of socioeconomic conditions of
a group of people at different points of time or two groups at two different places.
Application have been found in other fields such as demography, psychology,
biometry, etc. The Fractile Graph is drawn as follows.

Let (y1, x1), . . . , (yn, xn) be bivariate observations on n individuals. From these
we construct the sequence

(y(1), 1), (y(2), 2), . . . , (y(n), n)

whose second coordinate stands for the rank of the observation on x and the first
coordinate for the corresponding y value. From the second sequence, we obtain a
third sequence

(y(1), 1), . . . , (y(m), m), n = mg

y(1) = (y(1) + · · ·+ y(g))/g

y(2) = (y(g+1) + · · ·+ y(2g))/g

. . . . . . . . . . . .
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The graph obtained by plotting y(j) against j = 1, 2, . . . , k is called the Fractile
Graph.

If there are two bivariate samples from two populations we have two Fractile
Graphs for comparison. Mahalanobis made a series of conjectures about the
sampling distribution of the area between the fractile graphs, which is used in
constructing test criteria” (Rao 1974).

Although the exposition is simple, it does not clearly state the choice of g, where
m = n/g. In some sense, g is a smoothing parameter or degrees of freedom of the sub-
sequent F-test (discussed in Section 4.4). The bigger the value of g, the more fractile
graphs will be compared. We have switched the x and the y variables, and used the no-
tation m = n/g, instead of k used by Rao to be consistent with the subsequent regression
notations (Rao 1974).

4. FGA and Connections to Other Statistical Techniques
4.1. The Starting of FGA to Compare Standards of Living

Mahalanobis used FGA as an instrument for evaluation of standards of living over
different regions and periods of time. Consider the problem of comparing total consump-
tion of households between the 8th round in July 1954–March 1955 and the 16th round in
July 1960–June 1961 of the National Sample Survey (NSS) (Srinivasan 1996). From a purely
economic perspective, if we want to compare different groups of people with different
levels of consumption of goods or services, we must assume that the relative prices of
goods with respect to a numeraire are fixed. If the relative price changes, so does the
real income of individuals; percentiles of individuals by income groups will be different
for different relative prices. For the previously noted example in the 8th round of NSS
when the prices were low compared to that of the 16th round, the fractile graphs were
completely separated (that is, there is significant statistical difference between the real total
consumption expenditure), with the fractile graph for the 8th round being closer to the line
of equal distribution (the 450 line). However, the reverse happened when he looked at the
specific concentration curve for a particular food grain consumption, with the 16th round
fractile graph for the consumption of cereals being closer to the line of equal distribution.
This can be easily explained using the fact that the relative price of cereals actually reduced,
hence even though the price of cereals increased, the poorer section of the population had a
upward effect on their cereal consumption instead of the other commodities (substitution
effect); this in turn increased their real income (income effect).

It is worth noting that the fractile graphs are a more general version of the Lorenz
concentration curves and specific concentration curves where we look at the cumulative rel-
ative sums of the levels of the variable of interest (for example, expenditure or income)
in place of the actual values. Hence, FGA can be used to compare the error in estimating
Lorenz curves or specific concentration curves. However, the purpose of FGA is beyond
comparing inequality measures even in situations of comparing non-parametric regression
functions where Lorenz curves and the Gini coefficient might not be defined (Iyengar and
Bhattacharya 1965). As was pointed out by a referee, there might also be connections to
other problems, such as the optimal transport (OT) problem, where, in the simplest case in
a univariate two sample setting, it is similar to just matching quantiles. The main contribu-
tions of the FGA were twofold. First, it provided a method of using an interpenetrating
network of subsamples to estimate the error region and second, it performed a simple
graphical test of the whole or a range of values of the fractiles where the distributions are
different.
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4.2. Fractile Graphical Analysis and Nonparametric Regression

FGA (Mahalanobis 1961) was probably far ahead of its time, beyond just multivariate
rank based non-parametric regression (Sen 2005; Sen and Chaudhuri 2011). The motivating
problem was to compare two regression functions by non-parametric methods when the
covariates are on different scales.

Let us briefly revisit the three nearest neighbors in the field of regression analysis.
In non-parametric (Kernel-based) regression analysis, we consider Yi ∼ N

(
m(xi), σ2),

i = 1, 2, . . . , n, where conditional mean function m(.) satisfies some regularity or smooth-
ness conditions. Broadly, we can define the Nadaraya–Watson (NW) type location or
regression estimator with the smoothing kernel K(.) and bandwidth hn as

m̂NW(xo) = arg min
βo∈R

n

∑
i=1

(yi − βo)
2K
(

x0 − xi
hn

)
=

n

∑
i=1

WNW
in (x0)yi (1)

where WNW
in is the kernel weighted average coefficients of yi, which is the solution of the

above minimization problem.
We can think of replacing xi by a monotonic rank-score of xi and use the weighted

least squares type method as well. “Bandwidth” can be defined either in terms of actual
width (kernel type) or the number of observations (nearest neighbor type or histogram
type estimator).

In a nearest neighbor (NN) type regression based estimator, we replace x by the
empirical distribution function Fn(x) in Equation (1) to get

m̂NN(xo) = arg min
βo∈R

n

∑
i=1

(yi − βo)
2K
(

Fn(x0)− Fn(xi)

hn

)
=

n

∑
i=1

WNN
in (x0)yi. (2)

The major advantage that k-nearest neighbor type estimator has over the traditional
kernel based estimator is that the former only depends on the ranks of X1, X2, . . . , Xn
(Altman 1992). Hence, if F(x) is continuous, the problem gets transformed to a much
more tractable problem of estimating a regression function at F(x0), with the X-sample
being uniformly distributed over [0, 1]. Its convergence properties in mean square has also
been studied by Yang (1981). Stute (1984) showed that k-nearest neighbor type estimates
are asymptotically normal if E

[
Y2] < ∞, much weaker than the conditions needed for

existence of the Nadaraya–Watson type regression estimates, such as the existence of the
PDF f (.) of X and that E|Y|3 < ∞ (Schuster 1972).

In quantile regression, we look at the regression counterpart of univariate τth quantile
of the dependent variable y, defined as

α̂(τ) = arg min
a∈R

n

∑
i=1

ρτ(yi − a), (3)

where ρτ(u) = (τ − I(u < 0))u is often referred to as the check function. The τth regression
quantile of y on k (say) x−regressors (Koenker and Bassett 1978) is defined as

β̂(τ) = arg min
β∈Rp

n

∑
i=1

ρτ

(
yi − x

′
i β
)

. (4)

In (Mahalanobis 1958), Mahalanobis was assigned the prestigious duty to formulate
and implement independent India’s second Five Year Plan. The main goal of the plan
was to address the “well being” of rural India, which formed the bottom 5–10% of the
population. The comparison was to be made over time between the six month period during
the 7th round (October 1953 to March 1954) and the 19th round (May 1955 to November
1955) of NSS data. Well-being was measured by a single indicator, namely, the share of
food expenditure in the household budget. This is related to the widely used measure of
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fractional expenditure on daily necessities used as a metric for economic development in
countries.

As a true practical-minded researcher, Mahalanobis analyzed the data from the NSS
surveys he initiated and used the second Five Year Plan as a natural experiment to measure
its impact. His objective was always to get an answer to this very practical problem using
data analytics or modern day Data Science, once again a method that will be appreciated as
much ahead of its time.

Mahalanobis coined the word Fractile to represent fractional groups of covariates,
possibly to relate to design of experiments. This term was quite commonly used later by
researchers across the field, including in financial econometrics, psychology, and develop-
ment economics, in addition to statistics. The covariate x was ordered and divided into g
fractile groups, and the variable of interest (the response) y was averaged for each of these
fractile groups to calculate the g fractile means.

For exposition of data, it is often easier to represent distribution as a histogram
or frequency polygons. However, this is restricted to a unconditional univariate distri-
bution or density function. Mahalanobis’ fractile graphs were a novel extension of the
histogram, where the heights represent the normalized or relative frequencies into condi-
tional means of the response variable in each fractile group, i.e., E(Y|X ∈ X(g)), where
X(g) is the gth fractile group. For the sake of comparison, the usual regression function is
µ(x) = E(Y|X = x), where Mahalanobis proposed m(τ) = E(Y|F(x) = τ), 0 < τ < 1.
Hence, the regression function is now standardized and can be compared even if the origi-
nal scale was different. This is really in the spirit of the Neyman (1937) smooth test where
correctly specified F(x) follows U(0, 1), and any goodness-of-fit test can be converted into
testing uniformity (see Bera and Ghosh (2001)).

One additional advantage of the nearest neighbor (NN) type estimator such as those
based on fractile graphs is the issue of sparsity and bandwidth selection. As bandwidth
selection is through frequency, i.e., 1/gth fraction of the data is in each of the fractile graphs,
sparsity is not a problem, particularly in certain regions of the covariates, which is now
distributed uniformly over [0, 1].

Another additional benefit of FGA is for measuring treatment effects, particularly
if the data are observational or non-experimental. The probability integral transform of
the covariates makes the new covariate uniformly distributed over [0, 1]. Although there
will still be a certain degree of randomness in the covariates, the transformation helps
in narrowing its variation for the purpose of comparison between treatment and control
groups without imposing arbitrary linearity such as a standard regression framework.

Finally, in FGA, we do not need the same covariate X at different points of time. It
can be different Xs at the same time. Extending FGA to multidimensional or univariate
covariates, we might be able to compare consumption with price and consumption with
income under two different scenarios. For example, we can compare elasticities of price
and income separately.

Now, we present an elaboration of Rao’s simple exposition, as discussed in Section 3.

4.3. Analysis of Fractile Graphs

Suppose we have n pairs of observations (x1, y1), (x2, y2), . . . , (xn, yn) that are in-
dependently drawn from a population of the random variables (X, Y). Further, suppose
we rank the observations with respect to the covariate x and define the series of indices
(i1, i2, . . . , in) such that xi1 = x(1), xi2 = x(2), . . . , xin = x(n), hence xi1 ≤ xi2 ≤ · · · ≤ xin .

Therefore, we can write the data as
(

x(1), y[1]
)

,
(

x(2), y[2]
)

, . . . ,
(

x(n), y[n]
)

. We divide the
data into m groups of size g each, i.e., n = mg. Each of the group means of the variables
ranked with respect to X is obtained. We further define
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ui =
1
m

im

∑
r=(i−1)m+1

x(r), i = 1, 2, . . . , g (5)

and

vi =
1
m

im

∑
r=(i−1)m+1

y[r], i = 1, 2, . . . , g. (6)

as the ith fractile group means of the treatment variable x (viz., ui) and the corresponding
ith fractile group means induced on the response variable y (viz., vi) by the fractile group
rank of x.

As an illustration, suppose we obtained two random samples
(
x1

1, y1
1
)
,
(
x1

2, y1
2
)
, . . . ,(

x1
n, y1

n
)

and
(

x2
1, y2

1
)
,
(
x2

2, y2
2
)
, . . . ,

(
x2

n, y2
n
)

independently from the population P12, hence
the combined sample

(
x12

1 , y12
1
)
,
(
x12

2 , y12
2
)
, . . . ,

(
x12

2n, y12
2n
)

is also an independent sample of
size 2n from the same population P12. Similarly, we can obtain two random samples

(
x3

1, y3
1
)
,(

x3
2, y3

2
)
, . . . ,

(
x3

n, y3
n
)

and
(
x4

1, y4
1
)
,
(
x4

2, y4
2
)
, . . . ,

(
x4

n, y4
n
)

independently from the population
P34, hence the combined sample

(
x34

1 , y34
1
)
,
(
x34

2 , y34
2
)
, . . . ,

(
x34

2n, y34
2n
)

is also an independent
sample of size 2n from the same population P34. We can define from Equations (5) and (6)
the group means

(
v1

1, v1
2, . . . , v1

g

)
,
(

v2
1, v2

2, . . . , v2
g

)
of group size m and

(
v12

1 , v12
2 , . . . , v12

g

)
of

group size 2m from the samples drawn from population P12.
Similarly, define from Equations (5) and (6) the group means

(
v3

1, v3
2, . . . , v3

g

)
,(

v4
1, v4

2, . . . , v4
g

)
of group size m and

(
v34

1 , v34
2 , . . . , v34

g

)
of group size 2m from the sam-

ples drawn from population P34. Let G1,G2, and G12 be the plots of the g group means(
v1

1, v1
2, . . . , v1

g

)
,
(

v2
1, v2

2, . . . , v2
g

)
, and

(
v12

1 , v12
2 , . . . , v12

g

)
against the group ranks 1 through

g (see Figure 1A). In addition, define, for population P34, G3,G4, and G34 to be the plots
of the group means

(
v3

1, v3
2, . . . , v3

g

)
,
(

v4
1, v4

2, . . . , v4
g

)
, and

(
v34

1 , v34
2 , . . . , v34

g

)
against the

covariate group ranks 1 through g. Continuing with some notations, define A12 to be the
error area bounded by fractile graphs G1 and G2 between the rank points of the covariate x,
1 and g; A34 to be the error area bounded by graphs G3 and G4 between the rank points of
the covariate x, 1 and g; and A∗ to be the separation area bounded between the combined
graphs G12 and G34 (see Figure 1B).

Our first objective is to find out some analytical expressions for areas A12, A34, and
A∗. Noting that A12 and A34 would be similar, we focus on the area A12, without loss of
generality. Let us further define the following quantities of difference of means in the two
groups.

v1
i − v2

i = wi(12), i = 1, 2, . . . , g
v3

i − v4
i = wi(34), i = 1, 2, . . . , g

v12
i − v34

i = wi(∗), i = 1, 2, . . . , g
(7)

We can divide the area between G1 and G2, i.e., A12, into each constituent area between
the ordinates i and i + 1, say, A12(i). Let us summarize the construction of the area as the
following Proposition 1.

Proposition 1. The error area bounded by graphs G1 and G2 is A12 = ∑
g−1
i=1 A12(i) where

A12(i) =
1
2
(|wi|+ |wi+1|)− ∂(wi, wi+1)

|wiwi+1|
|wi|+ |wi+1|

(8)

where ∂(a, b) =
{

0 i f ab ≥ 0
1 i f ab < 0

.

Proof. See (Bera et al. 2021).
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Figure 1A: Fractile Graphs give the individual and combined fractile

group means from samples drawn from the same population. The error

area between the graphs give an indication of the variation while the

solid line G12 give the average estimate with 20 fractile groups.

(A)
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Figure 1B: Interprenetrating subsamples G1 and G2 are drawn from

population 1 and G3 and G4 are drawn from population 2. Combined

fractile graphs G12 represents the fractile means of population 1, while

G34 for population 2. In addition, the eror areas between G1 and G2,

and that between G3 and G4 gives indication of the variation of the

combined graph from each population. The area of separation is the

space between the two combined graphs, which indicates how different

the two populations are after controlling for the rank of some coviarate.

Our first objective is to find out some analytical expressions for areas A12, A34

and A∗. Noting that A12 and A34 would be similar, we focus on the area A12,

without loss of generality. Let us further define the following quantities of difference

of means in the two groups.

v1
i v2

i = wi(12), i = 1, 2, ..., g

v3
i v4

i = wi(34), i = 1, 2, ..., g

v12
i v34

i = wi(∗), i = 1, 2, ..., g

(4.7)

We can divide the area between G1 and G2 i.e., A12 into each constituent area

between the ordinates i and i + 1, say, A12(i). Let us summarize the construction

of the area as the following Proposition 1.

(B)

Figure 1. (A) Fractile graphs give the individual and combined fractile group means from samples
drawn from the same population. The error area between the graphs gives an indication of the
variation, whereas the solid line G12 gives the average estimate with 20 fractile groups. (B) Inter-
prenetrating subsamples G1 and G2 are drawn from population 1, and G3 and G4 are drawn from
population 2. Combined fractile graph G12 represents the fractile means of population 1, whereas
G34 is for population 2. In addition, the error area between G1 and G2, and that between G3 and G4,
gives indication of the variation of the combined graph from each population. The area of separation
is the space between the two combined graphs, which indicates how different the two populations
are after controlling for the rank of some coviarate.

One way of addressing the problem of the difference between two fractile graphs G1

and G2 is to look at a norm in a g-dimensional Euclidean space. The L2—norm can be
defined as

412 =
∥∥∥G1 − G2

∥∥∥
=
∥∥∥(v1

1, v1
2, . . . , v1

g

)
−
(

v2
1, v2

2, . . . , v2
g

)∥∥∥
=
∥∥∥(v1

1 − v2
1, v1

2 − v2
2, . . . , v1

g − v2
g

)∥∥∥
=
√

w2
1(12) + w2

2(12) + · · ·+ w2
g(12) (9)
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Similarly, one can define 434 =
√

w2
1(34) + w2

2(34) + · · ·+ w2
g(34)between G3 and G4,

and finally,4∗ between the combined graphs G12 and G34. Suppose B =
((

bij
))

is a positive
definite matrix; then we can further define a more general class of distance measure as

Γ2
12 =

g

∑
i=1

g

∑
j=1

wi(12)wj(12)bij (10)

between the samples over the entire range of values.

Proposition 2. If (9) represents the distance between fractile graphs G1 and G2, and A12 represents
the area between the two, then

412

6
≤ A12 ≤

412√
g

. (11)

Proof. See (Bera et al. 2021).

4.4. Asymptotic Distributions of the Dispersion Measures in FGA

We summarize the results of the asymptotic distributions of the dispersion of fractile
graphs, initially conjectured by Mahalanobis, that was later proven under certain regularity
conditions by various authors (see Bera et al. 2021).

Let us define the subscripts i and n to represent the ith fractile graph, i = 1, 2 and
with a sample of size n, respectively. For example, ∆in is the error area of the ith fractile
graph for a sample of size n = mg, and we have the following results:

1. The expression m∆2
in converges to a mixture of χ2 variates, whereas mΓ2

in with a
suitably chosen normalization matrix B converges to χ2 with g degrees of freedom.

2. For appropriate B, E
(
Γ2

in
)
' g/m, in general. Furthermore, E

(
∆2

in
)
' constant(g/m)

and E(εin) ' constant
(

g/
√

m
)

if (X, Y) is bivariate normal.
3. The expressions m∆2

in, i = 1, 2 and 2m∆2
∗n are asymptotically independent, therefore

2∆2
∗n(

∆2
1n + ∆2

2n
) → Ratio of mixture of χ2

Similarly, for a suitable normalization matrix B,

2Γ2
∗n(

Γ2
1n + Γ2

2n
) → Fg,2g.

4. The concentration ratios Σin are asymptotically normal.

5. Application of Fractile Graphical Analysis: Comparing Public and Private
Equity Returns

Financial theory predicts that investors in publicly traded securities would assume
more risk if they are compensated with more returns. Naturally, one has to presume that
entrepreneurs who assume more risk in venturing into privately held companies are lured
by the premium commanded by these inherently riskier assets. Although there is substantial
evidence for the conventional wisdom of the risk–return trade-off in publicly traded
assets (Cao et al. 2017 and references therein), recent literature on returns and performance
of private equity suggests that these assets, although riskier than their publicly traded
counterparts, do not have sufficient return to justify the excess risk (Moskowitz and Vissing-
Jorgensen 2002; Kaplan and Schoar 2005; Gottschalg et al. 2003; Cao et al. 2017).

Although we do reject H0 : F = G that the return distributions for private and public
equity are the same with the BGX smooth test (Bera et al. 2013), there is no indication of the
nature of departure from H0 using the traditional tests such as Kolmogorov–Smirnov or
Cramér–von Mises type tests (see Table 1). We use a modified version of Fractile Graphical
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Analysis method (Mahalanobis 1961) to test the overall distribution of returns conditional
on the size of the fund for private and public equity. We include size of assets under
management (AUM) as a possible covariate, as several studies found an impact of fund size
on return distribution but not the sequence number (Gompers and Lerner 2000; Kaplan and
Schoar 2005; Phalippou and Zollo 2005). Figure 2i–vi depict the kernel density functions
and the empirical distribution functions of public and private equity returns under different
restrictions. More precisely, Figure 2i,iv represent unconditional distributions of public and
private equity returns, Figure 2ii,v show the returns for those public equity with no yield
or dividend distribution and private equity, and Figure 2iii,vi represent distributions for
venture capital (VC) and leveraged buyout (LBO), respectively. Figure 3i–iii represent the
fractile graphs with number of fractile groups g = 10, 20, and 50 and depicts the difference
between private and public equity mutual funds. In Figure 3i–iii, the blue (top) solid line
represents the private equity funds returns for each size fractile group, whereas the red
(bottom) line represents the public equity returns conditioned on fractile groups of fund
size. The shaded area around the line represents the estimation uncertainty or dispersion,
i.e., the bootstrapped standard error at each fractile group mean.

As we observe with higher number of fractile (or rank) groups of sizes, the separation
area between the two graphs, represented by the blue (top) and the red (bottom) lines,
is more fragmented. This also make it increasingly difficult to conclude whether the
distributions are different overall. Hence, we would need some more tangible analytical or
simulation based hypothesis testing methodology to test for separation of the two fractile
graphs. Similar analysis is also done between return distributions of VC and LBO returns in
Figure 3iv–vi. After conditioning for size, the return distributions look increasingly similar,
with neither VC nor LBO seeming to dominate across the fractile groups based on fund
size.

Unfortunately, standard tests of goodness-of-fit like Kolmogorov–Smirnov (K-S) and
Cramér–von Mises (C-vM) (reported in Table 1) do not provide us with the exact nature of
such departures from the null hypothesis of equality of two distributions. The data show
that, not only is there a difference in both the location and scale of the distribution, but
also that the shape parameters of the distribution might be different. In order for us to
numerically compare the returns distribution of private equity funds with public equity
funds, we investigate the summary statistics of each of the groups. Table 2 provides a
sample size of public equity fund to n = 10,103 (full sample after 1996 until 2002) and
n = 5635 for mutual funds with no yields. The size of the sample of private equity funds
are m = 1714 (full sample) and m = 491 (for liquidated funds), respectively. As we apply
the sample size selection methods for comparing distributions, we have restricted our
sample for private equity to only the ones that are more mature or spent some time after
inception. We restrict our attention to only those private equity funds with fund inception
year before 1996 (m = 840). Our working assumption is that private funds that are mature
will start to show some cash flow from 6 years after inception (Kaplan and Schoar 2005).

Table 1. This table shows the omnibus test statistic for distribution comparison (modified
Kolmogorov–Smirnov and Cramér–von Mises statistics) and corresponding 0.1% critical value re-
ported in R.B.D′ Agostino and M.A.Stephens. Goodness-of-Fit Techniques. NewYork: Marcel Dekker,
1986.

Test Modified KS Modified CvM

T* Statistic (All–all) 6.96 16.47
T* Statistic (NoYield–All) 9.12 21.85
T* Statistic (NoYield–liq.) 6.31 9.67

T* Statistic (NoYield–pre96.) 8.7 16.62

T* Statistic(VC-LBO) 2.04 2.38

Critical Upper 0.1% 1.95 1.167
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Table 2. Summary statistics of returns of public and private equity funds with different restrictions.

Variable Obs. Mean Median Std. Dev. 1st Q. 3rd Q. Coef. Skew Excs. Kurt Sharpe Ratio

Public (full) 10,103 10.19 11.51 22.69 −6.63 24.4 0.813 3.93 0.45
Public (No yield) 5635 7.59 6.65 26.58 −12.31 23.19 1.079 3.54 0.29

Private (full) 1714 13.36 6.28 42.25 −1.14 16.28 9.44 137.61 0.32
Private (liq.) 491 11.15 8.79 20.05 1.39 16.13 2.49 13.01 0.56

Private (pre96) 840 15.11 9.85 37.13 2.04 18.4 12.31 238.93 0.41
VC(pre96) 610 15.27 18.7 41.59 1.43 17.07 11.97 208.29 0.38

LBO (pre96) 206 15.27 12.17 22.32 4.225 22.43 1.65 9.13 0.68

We report the results of the individual and group F-tests in Table 3A, if we want to test
all the conditional fractile means jointly. We observe that the results of the overall F-tests
and tests for error areas of the two fractile graphs give similar results for different values of
g. Individually, after adjusting for the ranks of the fund size, the adjusted error areas of the
fractile graphs of both private and public returns are distributed as χ2 with g degrees of
freedom. This signifies that that the FGA model is indeed a good fit for both public and
private equity returns. The test for the area of separation, however, indicates that at a 5%
level of significance, there is a difference between the two fractile graphs. The overall F-test
for fractile graphs helps us to compare the conditional fractile means jointly, and we infer
that at the 5% level, at least one of the size fractile means of returns is different between the
groups. We can conclude that the public and private equity fund distributions are different
using the F-test, or, adjusting for the fractile groups of rank, private and public equity fund
returns are different using a 5% level of significance. This implies that there might be some
abnormal returns at each size fractile, hence, size alone or “money chasing deals” cannot
explain the difference of returns (Gompers and Lerner 2000; Phalippou and Zollo 2005).

Table 3. Hypothesis tests based the FGA using bootstrapped standard errors for private and public
equity and between venture capital and buyout funds with p-values in parentheses for the asymptotic
tests (A). We also look at the actual size of nominal 5% level test to see possible size distortion with
the distribution under H0 on the column header. (A) Asymptotic tests of normalized error area and
the area of separation (p-values in parentheses); (B) actual size of the 5% FGA tests using bootstrap
covariance matrix (repl. = 500, Boots. = 5000).

(A)

#Fractile Groups Private Equity Public Equity Area of Separation Overall F-Test VC-Buyout F-Test

Under H0 : m1(x) = m2(x) mΓ2
12 ∼ χ2

g mΓ2
34 ∼ χ2

g 2mΓ2
∗ ∼ χ2

2g
2Γ2
∗

(Γ2
12+Γ2

34)
∼ F2g,g

g = 10 8.11 10.11 95.72 *** 10.51 *** 0.774
(0.62) (0.43) (0.0) (0.0) (0.65)

g = 20 19.51 23.97 104.35 *** 4.8 *** 1.53
(0.49) (0.24) (0.0) (0.0) (0.13)

g = 50 56.81 49.4 146.24 *** 2.75 *** 1.84 ***
(0.24) (0.5) (0.0) (0.0) (0.00)

(B)

Size of the Tests Private Equity Public Equity Area of Separation Overall F-Test

Under H0 : m1(x) = m2(x) mΓ2
12 ∼ χ2

g mΓ2
34 ∼ χ2

g 2mΓ2
∗ ∼ χ2

2g
2Γ2
∗

(Γ2
12+Γ2

34)
∼ F2g,g

g = 10 0.05 0.04 0.05 0.06
g = 20 0.05 0.05 0.06 0.04
g = 50 0.05 0.05 0.05 0.05

*** significant at 1%, ** significant at 5%, * significant at 10%.
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Figure 2: Kernel density functions (2(i)-2(ii)) and Empirical Distribution Functions (2(iv)-2(v)) of unadjusted

annual public equity funds returns (1996-2002) and private equity internal rates of returns (inception before 1996).

Figure 2(iii) and 2(vi) are the kernel density estimates of Venture Capital (VC) and Buyout funds (LBO).
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Figure 2(i): Equity Returns.
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Figure 2(iv): Public and Private.
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Figure 2: Kernel density functions (2(i)-2(ii)) and Empirical Distribution Functions (2(iv)-2(v)) of unadjusted

annual public equity funds returns (1996-2002) and private equity internal rates of returns (inception before 1996).

Figure 2(iii) and 2(vi) are the kernel density estimates of Venture Capital (VC) and Buyout funds (LBO).
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Figure 2(i): Equity Returns.
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Figure 2: Kernel density functions (2(i)-2(ii)) and Empirical Distribution Functions (2(iv)-2(v)) of unadjusted

annual public equity funds returns (1996-2002) and private equity internal rates of returns (inception before 1996).

Figure 2(iii) and 2(vi) are the kernel density estimates of Venture Capital (VC) and Buyout funds (LBO).
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Figure 2(i): Equity Returns.
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Figure 2: Kernel density functions (2(i)-2(ii)) and Empirical Distribution Functions (2(iv)-2(v)) of unadjusted

annual public equity funds returns (1996-2002) and private equity internal rates of returns (inception before 1996).

Figure 2(iii) and 2(vi) are the kernel density estimates of Venture Capital (VC) and Buyout funds (LBO).
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Figure 2(i): Equity Returns.
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Figure 2: Kernel density functions (2(i)-2(ii)) and Empirical Distribution Functions (2(iv)-2(v)) of unadjusted

annual public equity funds returns (1996-2002) and private equity internal rates of returns (inception before 1996).

Figure 2(iii) and 2(vi) are the kernel density estimates of Venture Capital (VC) and Buyout funds (LBO).
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Figure 2(i): Equity Returns.
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Figure 2: Kernel density functions (2(i)-2(ii)) and Empirical Distribution Functions (2(iv)-2(v)) of unadjusted

annual public equity funds returns (1996-2002) and private equity internal rates of returns (inception before 1996).

Figure 2(iii) and 2(vi) are the kernel density estimates of Venture Capital (VC) and Buyout funds (LBO).
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Figure 2(i): Equity Returns.
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Figure 3: Fractile Graphs (Mahalanobis, 1961 [26]) for different number fractile groups (g) for public and private

equity (i)− (iii) and between Venture capital (VC) and Buyout Fund (LBO) returns (iv)− (vi) .
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Figure 3: Fractile Graphs (Mahalanobis, 1961 [26]) for different number fractile groups (g) for public and private

equity (i)− (iii) and between Venture capital (VC) and Buyout Fund (LBO) returns (iv)− (vi) .
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Figure 3: Fractile Graphs (Mahalanobis, 1961 [26]) for different number fractile groups (g) for public and private

equity (i)− (iii) and between Venture capital (VC) and Buyout Fund (LBO) returns (iv)− (vi) .
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Figure 3: Fractile Graphs (Mahalanobis, 1961 [26]) for different number fractile groups (g) for public and private

equity (i)− (iii) and between Venture capital (VC) and Buyout Fund (LBO) returns (iv)− (vi) .
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Figure 3: Fractile Graphs (Mahalanobis, 1961 [26]) for different number fractile groups (g) for public and private

equity (i)− (iii) and between Venture capital (VC) and Buyout Fund (LBO) returns (iv)− (vi) .
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Figure 3: Fractile Graphs (Mahalanobis, 1961 [26]) for different number fractile groups (g) for public and private

equity (i)− (iii) and between Venture capital (VC) and Buyout Fund (LBO) returns (iv)− (vi) .
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Figure 3. Fractile graphs (Mahalanobis 1961) for different number fractile groups (g) for public and private equity (i–iii) and between venture capital (VC) and
buyout fund (LBO) returns (iv–vi).
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However, although it adjusts for the fractiles of the covariate size, the overall F-test do
not give us any indication of the directions of departures from the null hypothesis, very
much like the omnibus test (Kolmogorov–Smirnov and Cramér–von Mises tests). We further
note that tests based on fractile graphs provide a non-parametric alternative to tests based
on functions of the first two moments (or Sharpe ratio). Unlike the tests based on moments,
we also adjust for the conditional fractile groups of the fund size (Ledoit and Wolf 2008).

We also compare the actual size of the tests of hypothesis using bootstrap covariance
matrices to normalize the test statistic. We have simulated the test statistic by drawing
the same first and second samples of the X and Y variables and repeated it r = 500 times;
the bootstrap replication was B = 5000 to estimate the covariance matrix. In Table 3B, we
observe that the test sizes of all the tests were pretty close to the 5% nominal level test
(minimum being 0.04 to maximum of 0.06), although there are some finite sample size
distortions.

The results are robust to fatter tailed and potentially skewed distributions (such as
private equity returns, as is shown in Figure 2). This is mainly because we transform the
original data to their probability integral transform, which has a range (0,1). Under the
null hypothesis of equality of distributions, the test statistic would be distributed as U(0,1)
(Bera et al. 2013). One reason for using 1999 data was for comparison purpose with public
and private equity data cited in past research.

A problem with omnibus test methods, such as Kolmogorov–Smirnov and Cramér–von
Mises type tests that have power in all directions, is that they have weak power against
more directional alternatives. Hence, we might fail to reject a hypothesis that is indeed
false. In our case here, we do reject the null hypothesis of equality of the distributions of
private and public equity returns. Therefore, we can believe beyond reasonable doubt the
two distributions are indeed different overall. However, the same thing cannot be said
about all parts of the distributions measured by subsets of fractile means or graphs (see
Figure 3i–iii). It appears that for g = 10 and g = 20 fractile groups, there is a difference
between private and public equity returns after the 40th percentile of net asset for public
equity funds or total commitment size of private equity funds (or top 60% of fund sizes). It
is, however, more difficult to separate out for the bottom 40% of the funds, or when g = 50,
due to the wide variation of the fractile means.

As discussed before, the choice of number of groups g and group size m are similar to a
bandwidth selection problem. This can also be construed as a bias variance trade-off or the
high or low frequency trade-off. For higher numbers of groups g (as we see in Table 3A,B,
Figure 3), we pick up more local variation and noise. The bigger the sample size is, the
more the number of groups g can be selected.

6. Introducing Fractile Regression

Although we can compare overall unconditional distributions or conditional distribu-
tions on certain covariates using fractile based methods, one of the objectives in this paper
is to look at the age-old problem of the effect of the covariates on distributions. Linear
regression has always been the cornerstone of such an analysis where we investigate the
effects of the x-variables or covariates on the response variable y. A very simple example
of that could be the effect of educational qualification measured in years of education on
income or future income. It could be argued that educational qualification is a proxy for
ability, hence higher educational qualification would lead to higher earnings. However,
performing simple linear regression on this somewhat naive model of “Returns to Educa-
tion” misses some major parts of the story. First, the story of endogeneity, that is to say, it is
very rare that education is randomly assigned, so individuals choose education based on
their ability and opportunity cost. Hence, it would be wrong to assign the credit of higher
income solely to education; there could quite a few omitted variables. In fact, the error
term ε in the population linear regression model, i.e.,

y = β0 + β1x + ε
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where y is, say, log of income and x is the number of years of education, β0 and β1
are the partial regression coefficients. Here, the disturbance term ε might be correlated
with the independent variable x—a problem often times referred to as “endogeneity” in
Econometrics. However, the problem we are trying to address is not directly related to
endogeneity, but the other aspect of the story missed by simple linear regression. It is very
likely that people with high ability or high educational qualification might command a
much higher salary for one extra year of education compared with someone with low ability
or education. Linear regression fails to capture this “differential” treatment of the covariates
or, in particular, “fractiles of the covariates”. Therefore, instead of looking at regression
of y on x, we should be looking at the regression of Y grouped according to fractiles of
X, i.e., we can answer the question for the bottom 10% of educational qualification in the
society—what is the effect of one more year of education, all else remaining the same.

To motivate for fractile regression, let us think of a regression function of Y on X = x
as

m(x) = E[Y|X = x] (12)

Let F(x) be the marginal cumulative distribution function (CDF) of X with a density
function (PDF) f (x).We can show that the regression function is invariant under a strictly
monotonic transformation of the covariate X to its probability integral transform (PIT),
F(x). Following Rao and Zhao (1996), let us define the following regression function of Y
on X as

r(u) = E[Y|F(X) = u]

⇒ r(u) = E
[
Y|X = F−1(u)

]
= m

(
F−1(u)

)
, 0 ≤ u ≤ 1. (13)

The partial regression coefficients of r(u) are given by

∂r(u)
∂u

=
∂m(x)

∂x
.
∂F−1(u)

∂u
= m′(x)

1
f (x)

dx
du

, (14)

where we divide the non-parametric regression coefficients by the density function evalu-
ated at x. One interpretation of that could be the regression coefficients are weighted less
where the density of the covariate is low. As we can imagine now, that FGA is not just the
“Prehistory of Bootstrap” (Hall 2003) but the “Prehistory of Inference on Non-parametric Re-
gression” as well. Several asymptotic properties of fractile regression functions are proved
in Bera et al. (2021). In particular, results in Bera et al. (2021) imply that it is sufficient to
work with the probability integral transforms of the Y variable after conditioning for the
rank of the X variable, where scaled rank (probability intergral transform) of Y conditioned
on the rank of X has been referred to as the induced order statistics (Bhattacharya 1974) or
concomitant of order statistics (David 1973).

7. Fractile Regression: Application on Pre- and Post-Tax Mutual Fund Inflow
Distributions

There are several examples where we can use FGA based techniques. As discussed
previously, examples include male–female or younger–older workers wage gap with respect
to returns to education; productivity gap between large and small firms or productivity
with respect to firm size; difference on returns to equity with firm size; income distribution
of different ethnic groups or countries with respect to age, etc. Our nomenclature, however,
is distinct from the Cumulative Fractile Regression Function proposed by Rao and Zhao (1995),
which deals with empirical cumulative quantile regression functions, although we also
provide area under fractile groups of covariates.

For performing this test of comparison of distributions, we use the two sample version
of the Neyman (1937) smooth test procedure as proposed in Bera et al. (2013) based on Rao
score (RS) principles. If we go to the problem of testing H0 : F = G, we need to modify the
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original smooth test, as both F and G are unknown. If F(.) were known, we can construct a
new random variable Zj = F

(
Yj
)
, j = 1, 2, . . . , m.

For the two sample case with unknown F and G, the smooth test statistic is

Ψ2
k =

k

∑
l=1

u2
l , ul =

1√
m

m

∑
j=1

πl
(
zj
)
, l = 1, 2, . . . , k

zj = F
(
yj
)
=
∫ yj

−∞
f (ω)dω, j = 1, 2, . . . , m.

Under H0 : F = G, Ψ2
k

D→ χ2
k , where πl are normalized Legendre polynomials.

The test has k components. Each component provides information regarding specific
departures from H0 : F = G. However, in practice F(.) is unknown. We use the empirical
distribution function,

Fn(x) =
1
n

n

∑
i=1

I(Xi ≤ x), ẑj = Fn
(
yj
)

Ψ̂2
k =

k

∑
l=1

1
m

[
m

∑
j=1

πl
(
ẑj
)]2

.

We used a cross-validation type procedure to select sample sizes for the two samples
(Bera et al. 2013; Cao et al. 2017).

One of the main problems we would investigate is the distributions of mutual fund
inflows with before and after taxes with returns as covariate (Bergstresser and Poterba 2002).
Tables 4 and 5 show that the mutual fund inflow distributions are different before and after
taxes with past year returns as covariate using Kolmogorov–Smirnov and Cramér–von
Mises tests (Bergstresser and Poterba 2002). This might be because of the well-known
“return chasing” behavior among investors and excessive risk taking among fund managers
(Chevalier and Ellison 1997). We want to investigate how these distributions are different
when we control for the fractiles of returns, hence we can predict the mutual fund inflow
based on pre-tax or post-tax return information. This paper documents that mutual funds
with heavily taxed returns have lower subsequent inflows compared to ones with lower
tax burdens. Our objective is to see if there is evidence in the inflow distributions to show
whether higher moments including volatility or skewness and kurtosis terms of inflow
distributions are affected by tax exposure. Bergstresser and Poterba (2002) considered
US domestic equity mutual funds data on January Releases from Morningstar Principia
database with some conditions from 1993–1999.

For our current illustrative exposition, we will only focus on the 1999 equity mutual
fund returns and inflow data with similar characteristics (Figure 4). The summary statistics
in Table 4 show that there seems to be a difference between the means of the inflow
distributions of mutual funds with high and low tax exposures. Bergstresser and Poterba
(2002) found that after-tax returns do indeed have more influence on cash inflows on
mutual funds; however, they did not test whether higher order moments of the inflow
distribution are affected by after tax returns.

Table 4. Summary statistics for fund inflows.

Variable Obs. Mean Median Std. Dev.

Low Tax 864 187.43 12.15 782.77
High Tax 812 211.83 0.45 1427.04

Min. 1st Q. 3rd Q. Max. Coef. Skew Excs. Kurt

−3686 −2.325 93.625 10,454.5 7.019 69.15
−3961 −25.6 66.025 28,651.3 11.888 204.738
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Table 5. Goodness-of-fit statistics based on the EDF.

Test KS CvM

Statistic (T*) 5.3560346 9.371912
Critical Upper 0.1% 1.95 1.167
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more influence on cash inflows on mutual funds, however they did not test whether

higher order moments of the inflow distribution are affected by after tax returns.

Figure 4: Inflow of Mutual Funds

Variable Obs. Mean Median Std. Dev.

Low Tax 864 187.43 12.15 782.77

High Tax 812 211.83 0.45 1427.04

Min. 1st Q. 3rd Q. Max. coef. skew excs.kurt

-3686 -2.325 93.625 10454.5 7.019 69.15

-3961 -25.6 66.025 28651.3 11.888 204.738

Table 4. Summary Statistic for Fund Inflows

Figure 4. Inflow of mutual funds.

We tend to reject H0 : F = G with the K-S and C-vM tests in Table 5, but there is
no indication of the nature of departure from H0. Using the BGX smooth test for the full
sample, we observe that pre-tax and post-tax mutual fund inflow distributions are indeed
significantly different for higher order moments (Table 6).

Table 6. Smooth statistics and p-values (whole sample).

Ψ2
4 u2

1 u2
2 u2

3 u2
4

192.33 *** 39.16 *** 111.19 *** 6.74 ** 2.01
(0.0) (0.0) (0.0) (0.0094) (0.1559)

*** significant at 1%, ** significant at 5%, * significant at 10%.

To reduce the effect of the relative sample sizes, we took a random sample of the
inflow distribution from higher tax returns and recomputed the smooth test statistics in
Table 7, with the mutual inflows unadjusted for returns, then residuals from OLS, median
regression, fractile regression and, finally, a median regression on the fractiles of x.

One obvious argument in this case is how to choose the mutual funds that have a
comparatively high tax exposure; the only way to address this problem is to make fractile
or rank groups of the returns. A detailed inspection of Table 7 reveals quite a few facets
of the distribution of mutual fund inflows once adjusted for the covariate, in this case,
past years returns. We also see that the type of regression we use to adjust for the effect of
mutual fund returns does indeed make a difference in the distribution of inflows with high
and low tax exposure. From Table 7, we observe that the unadjusted inflow distribution for
mutual funds with high and low tax exposure differs significantly in the first (u2

1 = 35.81)
and second

(
u2

2 = 34.77
)

moment components. However, past years’ mutual fund returns
is the most important factor in determining mutual fund inflows (regression results not
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shown here, refer to Bergstresser and Poterba 2002). Hence, to compare the explanatory
power of high and low tax exposure of the returns in explaining mutual fund inflows, we
need to adjust for the variation in returns.

Table 7. Smooth statistics and p-values (sample m = 324).

Residuals with Returns Ψ2 u2
1 u2

2 u2
3 u2

4

Unadjusted 72.37 *** 35.81 *** 34.77 *** 0.76 1.04
(0.00) (0.00) (0.00) (0.38) (0.31)

OLS 218.45 *** 5.25 ** 117.84 *** 13.18 *** 82.18 ***
(0.00) (0.02) (0.00) (0.00) (0.00)

Median Regression 21.93 *** 0.00 6.76 *** 12.56 *** 2.62
(0.00) (0.96) (0.01) (0.00) (0.11)

Fractile Regression 170.76 *** 1.46 115.00 *** 8.09 *** 46.22 ***
(0.00) (0.23) (0.00) (0.00) (0.00)

Median-Fractile 45.94 *** 0.01 27.20 *** 13.05 *** 5.68 **
(0.00) (0.93) (0.00) (0.00) (0.02)

*** significant at 1%, ** significant at 5%, * significant at 10%.

If we take ordinary least squares residuals (Bergstresser and Poterba 2002), the distri-
bution of inflows adjusted for returns in the high and low tax exposure groups are distinctly
different from each other in the direction of each of the first four moments (Table 7). This
result could be due to the existence of extreme observations in the data. In order to reduce
the effect of outliers, we can use median regression (quantile regression for the 50th per-
centile). We observe that the two adjusted distributions now only differ in the direction
of the second and third moments ( u2

2 = 6.76 and u2
3 = 12.56). This could be due to the

difference in the risk preference and asymmetric loss function of the investors in those
mutual funds. However, this result could also be an artifact of the possibility that the
distributions of returns are distinctly different between the mutual funds with low tax
exposure and those with high tax exposure.

Therefore, in order to make the two groups comparable, we have to standardize the
covariates. Hence, we look at the residuals using the proposed fractile regression method
without using any smoothing techniques. The returns adjusted inflow distribution differs
in the directions of the second, third, and fourth moments (u2

2 = 115.00, u2
3 = 8.10, and

u2
4 = 46.22), although the departure in the direction of the fourth moment is much reduced

(u2
4 = 5.68) and is only slightly significant if we combine quantile and fractile regressions.

We can apply FGA based methods for determining the nature of departure of wages
across genders or ethnic groups after adjusting for educational qualifications and training.
To account for the endogeneity in schooling, GMM technique has been used in panel data to
investigate how OLS regression might overestimate the gender gap (Hansen and Wahlberg
2005). This, however, does not address the fact that the gap might be different controlling
for percentiles of schooling.

8. Epilogue: Conclusions and Future Research

We re-evaluate Mahalanobis’ FGA and his contribution to the statistics and economet-
rics literature, as a precursor to k-nearest neighbor regression techniques. One of our main
objectives in this paper is to introduce a new form of non-parametric regression, namely,
fractile regression, aimed towards comparing distributions of induced order statistics or
fractiles of concomitant variables. We highlighted how FGA techniques can be used to
compare distribution functions after conditioning for ranks of a covariate to compare across
different regimes, be it in time or space, by standardizing the reference points to the unit
interval, through examples in Empirical Finance, including introducing a new F-test of
goodness-of-fit as an application of FGA for comparing the distributions of private and
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public equity returns (Kaplan and Schoar 2005; Moskowitz and Vissing-Jorgensen 2002)
and distribution of mutual fund inflows with pre-tax and after tax returns (Bergstresser
and Poterba 2002). These illustrative examples demonstrate that we can expand the BGX
smooth test techniques based on the Rao score principle of testing to compare distribu-
tions of returns or inflows by conditioning on concomitant variables without imposing
distribution restrictions or linearity. In ongoing and future research, we want to establish
asymptotic properties of fractile regression estimates and applications in asset pricing and
credit risk modeling with “scores” to accommodate for multiple covariates (Bera et al.
2021).
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