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Abstract: We present the Generalized Gamma (GG) distribution as a possible risk neutral distribution
(RND) for modeling European options prices under Heston’s stochastic volatility (SV) model. We
demonstrate that under a particular reparametrization, this distribution, which is a member of the
scale-parameter family of distributions with the mean being the forward spot price, satisfies Heston’s
solution and hence could be used for the direct risk-neutral valuation of the option price under
Heston’s SV model. Indeed, this distribution is especially useful in situations in which the spot’s
price follows a negatively skewed distribution for which Black–Scholes-based (i.e., the log-normal
distribution) modeling is largely inapt. We illustrate the applicability of the GG distribution as an
RND by modeling market option data on three large market-index exchange-traded funds (ETF),
namely the SPY, IWM and QQQ as well as on the TLT (an ETF that tracks an index of long-term
US Treasury bonds). As of the writing of this paper (August 2021), the option chain of each of the
three market-index ETFs shows a pronounced skew of their volatility ‘smile’, which indicates a likely
distortion in the Black–Scholes modeling of such option data. Reflective of entirely different market
expectations, this distortion in the volatility ‘smile’ appears not to exist in the TLT option data. We
provide a thorough modeling of the option data we have on each ETF (with the 15 October 2021
expiration) based on the GG distribution and compare it to the option pricing and RND modeling
obtained directly from a well-calibrated Heston’s SV model (both theoretically and also empirically,
using Monte Carlo simulations of the spot’s price). All three market-index ETFs exhibited negatively
skewed distributions, which are well-matched with those derived under the GG distribution as RND.
The inadequacy of the Black–Scholes modeling in such instances, which involves negatively skewed
distribution, is further illustrated by its impact on the hedging factor, delta, and the immediate
implications to the retail trader. Similarly, the closely related Inverse Generalized Gamma distribution
(IGG) is also proposed as a possible RND for Heston’s SV model in situations involving positively
skewed distribution. In all, utilizing the Generalized Gamma distributions as possible RNDs for
direct option valuations under the Heston’s SV is seen as particularly useful to the retail traders who
do not have the numerical tools or the know-how to fine-calibrate this SV model.

Keywords: heston model; option pricing; risk-neutral valuation; calibration; volatility skew;
negatively skewed distribution; market data (SPY; QQQ; IWM; TLT)

JEL Classification: G10; G13

1. Introduction

One of the most widely celebrated option pricing models for equities (and beyond) is
that of Black and Scholes (1973) and of Merton (1973) (abbreviated here as the BSM model).
Their option pricing model was derived under some simple assumptions concerning the
distribution of the asset’s returns, coupled with presumptive continuous hedging, self-
financing, zero dividend, risk-free interest rate, r, and no cost of carry or transactions fees.
In its standard form, the BSM model assumes that the spot’s price process S = {St, t ≥ 0}
evolves with a constant volatility of the spot’s returns, σ, as a geometric Brownian motion
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(under a risk-neutral probability measure Q, say), leading to an exact solution for the price,
C(·), of an European call option. Specifically, given the current spot price Sτ = S and the
risk-free interest rate r, the price of the corresponding call option with price-strike K and
duration T,

CS(K) = S Φ(d1)− K e−rt Φ(d2), (1)

where t = T− τ is the lremaining time to expiry. Here, we use the conventional notation to
denote by Φ(·) and φ(·) the standard normal cumulative distribution function (cd f ) and
density function (pd f ), respectively, and where

d1 :=
− log(K

S ) + (r + σ2

2 )t

σ
√

t
and d2 := d1 − σ

√
t. (2)

Despite its wide acceptability in the retail trading world1, this model hinges on several
incorrect assumptions and hence suffers from some notable deficiencies; see for example
Black (1989) who pointed out ‘the holes in Black–Scholes’. Chief among these deficiencies
is the fact that the volatility of a spot’s returns (i.e., σ) appears not to be constant over the
‘life’ of the option but rather varying at random.

The efforts to incorporate a non-constant volatility term in the option valuation (e.g.,
Wiggins 1987 or Stein and Stein 1991) has culminated with stochastic volatility (SV) model
introduced by Heston (1993) (see (A1)). This SV model incorporates, aside from the
dynamics of the spot’s price process S , also the dynamics of a corresponding, though
unobservable (hence untradeable), volatility process V = {Vt, t ≥ 0}. Instructed by the
form of the exact BSM solution in (1), Heston (1993) obtained that the solution to the system
of PDE he obtained from the stochastic volatility model he constructed is given by

CS(K) = S P1 − K e−rt P2, (3)

where Pj j = 1, 2 are two related (under Q) conditional probabilities that the option will
expire in-the-money, conditional on the given current stock price Sτ = S and the current
volatility, Vτ = V0. However, unlike the explicit BSM solution in (1) which is given in terms
of the normal (or log-normal) distribution, Heston (1993) provided (semi) closed-form
solutions to these two probabilities, P1 and P2, which were both given in terms of their
characteristic functions (c.f.); see (A2). These characteristic functions depend on some
parameters of the SV model, ϑ = (κ, θ, η, ρ), and they may be evaluated numerically for
any choice of the parameters ϑ, in addition to the given S, V0 and r (for more details, see
Appendix A). The components of ϑ have particular meaning in the context of Heston’s SV
model: ρ is the correlation between the random components of the spot’s price and volatility
processes, θ is the long-run average volatility, κ is the mean-reversion speed for the volatility
dynamics and η2 is the variance of the volatility V. It should be noted that different choices
of ϑ will lead to different values CS(K) in (3) and hence, the value ϑ = (κ, θ, η, ρ) must be
appropriately ‘calibrated’ first for CS(K) to actually match the option market data. However,
this calibration process typically involves substantial numerical challenges (largely resulting
from numerical issues involved in the required multi-dimensional optimization, see for
example Bin 2007, or Section 2.1 in Romo and Ortiz-Gracia 2021). These challenges are an
obvious hindrance to the retail option traders who do not have the numerical tools or the
know-how to finely calibrate the Heston (1993) SV model, as needed in the evaluation of
CS(K) in (3).
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On the other hand, as was established by Cox and Ross (1976), the risk-neutral option
valuation (under Q) provides that for T > τ (with t = T − τ), the option price CS(K) must
also satisfy

CS(K) =e−rt
∫ ∞

K
(ST − K) q(ST)dST ,

=e−rt
∫ ∞

K
STq(ST)dST − Ke−rt

∫ ∞

K
q(ST)dST

≡e−rt
∫ ∞

K
STq(ST)dST − Ke−rt · (1−Q(K)),

(4)

where q(·) is the density of some risk-neutral distribution (RND) Q(·), under the probability
Q, reflective of the conditional distribution of the spot price ST at time T, given the spot
price, Sτ at time τ < T, whose expected value is the future value of the spot’s price. Namely,
the RND q(·) must also satisfy,

E(ST |Sτ = S) =
∫

ST · q(ST)dST = S · ert. (5)

This risk-neutral density (or distribution) links together for the option valuation
(under Q) the distribution of the spot’s price ST and the stochastic dynamics governing the
underlying model. As was mentioned earlier, in the case of the BSM model in (2), the RND
is unique and is given by the log-normal distribution. However, since Heston’s SV model
involves the dynamics of two stochastic processes, one of which (the volatility process, V)
is untradeable and hence not directly observable, there are innumerable many possible
choices of RNDs, q(·), that would satisfy (4) and (5), and hence, the general solutions of
Heston’s P1 an P2 in (3) are as given by means of their characteristic functions (A2), per
each possible choice of the structural parameter ϑ = (κ, θ, η, ρ).

1.1. Heston’s RND as a Class of Scale-Parameter Distributions

In the literature, one can find numerous papers dealing with the ‘extraction’, ‘recovery’,
‘estimation’ or ‘approximation’, in parametric or non-parametric frameworks, or even
within an entropy-based pricing framework (e.g., Yu 2020) of the RND, q(·) from the
available (market) option prices. Some comprehensive literature reviews of the subject
can be found in Jackwerth (2004); Figlewski (2010); Girth and Krätschmer (2012) and
Figlewski (2018). In particular, within the parametric approach, one attempts to estimate
by various standard means (maximum likelihood, method of moments, least squares, etc.)
the parameters of some assumed distribution so as to approximate available option data
or implied volatility (cf. Jackwerth and Rubinstein 1996). This type of assumed multi-
parameter distributions includes some mixtures of log-normal distribution Mizrach (2010);
Girth and Krätschmer (2012), generalized gamma Girth and Krätschmer (2012), generalized
extreme value Figlewski (2010), the gamma and the Weibull distributions (Savickas 2005),
among others. While empirical considerations have often led to suggesting these particular
parametric distributions as possible pd f in (4), the motivation for these considerations did
not include any direct link to the governing pricing model and its dynamics especially in
the case of Heston’s SV model in (A1). As was mentioned earlier, in the case in the BSM
model, linking directly the log-normal distribution and the price dynamics reflected by the
geometric Brownian motion led to the BSM formula in (1).

In the case of the Heston (1993) SV model, this direct link between the governing price
and volatility dynamics of (S ,V) in (A1) and the class of distributions that could serve as
RNDs for it has been established in Boukai (2021).

Let ∆(K) be the so-called delta function (or hedging fraction) in the option valuation,
as defined by

∆(K) =
∂CS(K)

∂S
. (6)

It is well-known that for Heston’s solution for the call option price CS(K), P1 ≡ ∆(K) in
(3); see for example Bakshi et al. (1997) or Boukai (2021). Hence, accounting also for (4), it
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follows that under the SV model (A1), Heston’s solution for the option price in (3) can be
written in an equivalent form as

CS(K) ≡ S · ∆(K)− K e−rt · (1−Q(K)), (7)

It was shown in Boukai (2021) that the general class of scale-parameter distributions
that satisfies Assumption 1 below, with the mean being the forward spot’s price, µ := S · ert

would admit the presentation in (7) and hence would satisfy Heston’s solution for the
option price in (3). In fact, it was also shown that the actual RNDs (see (A4)) that may
be calculated directly from Heston’s characteristic functions (A2), of to P1 and P2 (see
Appendix A) are members of this class of distributions as well. Accordingly, the main
results of Boukai (2021) (as are summarized in Theorem 2 there) establish the direct link
through the solution of Heston (1993) in (3) (or (7)) between this class of RNDs and the
assumed stochastic volatility model governing the spot price and volatility dynamics.

To fix ideas, we set µ = S · ert to denote the forward spot’s price, and correspondingly,
we denote by Qµ(·) the RND with a corresponding pd f qµ(·) as in (4) and (5).

Assumption 1. It is assumed that µ is a scale parameter of Qµ(·) so that for any x > 0,
Qµ(x) ≡ Q1(x/µ) and qµ(x) ≡ q1(x/µ)/µ for some cd f Q1(·) with a pd f q1(·) satisfy-
ing
∫ ∞

0 xq1(x)dx = 1 and
∫ ∞

0 x2q1(x)dx = 1 + ν2. Here, ν2 is some exogenous parameter (to be
specified later).

Note that if Qµ(·) satisfies Assumption 1, then, for any k > 0,

cµ(k) :=
∫ ∞

k
(x− k)qµ(x)dx =

∫ ∞

k
(1−Qµ(x))dx

=
∫ ∞

k
(1−Q1(x/µ))dx ≡ µ c1(k/µ).

(8)

Hence, cµ(k) is a homogeneous function2 of degree one in both µ and k, so that for k′ = a k
and µ′ = a µ with a > 0, we have cµ′(k′) ≡ a cµ(k). This property and (8) are the key
elements in the proof of Theorem 1 of Boukai (2021), which establishes that for this class of
scale-parameter distributions satisfying Assumption 1, the delta function (6) may in fact be
written as

∆(K) ≡ ∆µ(K) :=
1
µ

∫ ∞

K
xqµ(x)dx ≡ ∆1(K/µ), (9)

where ∆1(a) :=
∫ ∞

a uq1(u)du for any a > 0. Accordingly, for any member of this scale
parameter (in µ = S · ert) class of distributions defined by Q1(·) as in Assumption 1, the
option price CS(K) in (7) may equivalently be written as

CS(K) ≡ S · ∆1(K/µ)− K e−rt · (1−Q1(K/µ)), (10)

and thus, it could be used for the direct risk-neutral valuation, as RND, of the option
price under Heston’s SV model. The expression in (10) is our ‘working’ formula for the
direct calculations of the option price CS(K) in the case of scale-parameter distribution
defined by Q1(·). This result was illustrated in great detail by Boukai (2021) for several
well-known parametric (scale) distributions which under a particular parametrization
satisfy Assumption 1. These distributions include one-parameter versions of the log-
Normal (i.e., the BSM model), Inverse-Gaussian, Gamma, Inverse-Gamma, Weibull and
the Inverse-Weibull distributions, all which provide explicit RNDs for Heston’s pricing
model in various market circumstances (e.g., negatively skewed RND to match SPX option
data (i.e., Bakshi et al. 1997), or ODAX option data (i.e., Mrá¡zek and Pospíšil 2017), or
positively skewed RND to match AMD (say), option data).
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Remark 1. In the case in which the risk-neutral valuation of the option includes a dividend with a
rate `, then E(ST | S) = S e(r−`)t in (5), in which case, by applying µ = S e(r−`)t to (7), we obtain
from (8) and (10),

CS(K) = e−rt cµ(K) = S e−`t ∆1(K/µ)− K e−rt (1−Q1(K/µ)).

1.2. An Overview

In this paper, we focus attention on a two-parameter version of the Generalized
Gamma (GG) distribution as is especially parametrized to satisfy Assumption 1 and hence,
to serve as an RND under Heston’s SV option valuation model. The particular version
of this distribution we consider here is characterized by two shape parameters α and ξ
say, and it is general enough to admit either positively skewed distributions (ξ < 0) or
negatively skewed distributions (ξ > 0). Aside from this noted ‘elasticity’ to match well
the varying characteristics of different spot’s RNDs under the SV model (A1) implied from
different market scenarios (i.e., with different ϑ = (κ, θ, η, ρ) in (A1)), this distribution is
especially useful in modeling option prices in situations that exhibit put-over-call skew and
and hence admit negatively skewed distribution of the spot’s price, indeed with ξ > 0.

In Section 2, we present the GG distribution and its required reparametrization as a
RND for the SV model (3). Though not of immediate interest, we also present in Section 2.2
the case with ξ < 0 (the so-called Inverse Generalized Gamma (IGG) distribution) as a
possible RND under Heston’s SV model that could be useful in modeling positively skewed
(implied) distributions.

In Section 3, we apply the GG distribution (with ξ > 0) as RND to modeling current3

market option data on three large market-index ETFs, namely the SPY, IWM and QQQ
as well as on the TLT (a large ETF that tracks an index of long-term US Treasury bonds).
The current option chain of each of the three market ETFs exhibits a pronounced skew of
their volatility ‘smile’, which indicates a likely distortion in the Black–Scholes modeling
of such option data. Reflective of entirely different market expectations, this distortion
appears not to exist in the TLT option data (see Figure 1 below). We provide a thorough
modeling of the available option data we have on each ETF (with the 15 October 2021 with
63 days to expiration) based on the GG distribution (with ξ > 0) and compare it to the
option pricing and RND modeling obtained directly from a well-calibrated Heston (1993)
SV model (both theoretically and empirically, using Monte Carlo simulations of the spot’s
price). All three market-index ETFs exhibit negatively skewed distributions, which are
well-matched with those derived under the GG distribution as RND. The inadequacy of
the classical Black–Scholes modeling in such instances which involve negatively skewed
implied distribution is further illustrated by its impact on the hedging factor, delta, and
the immediate implications to the retail trader. In contrast, for the TLT ETF, which exhibits
no such distortion to the volatility ‘smile’, the three pricing models (i.e., Heston’s, Black–
Scholes and Generalized Gamma) appear to yield very similar results. Technical notes are
provided in Section 3.2, and some details on Heston’s SV model and related cf. that are
used in the calculation of (3) are provided in Appendix A.

2. The Generalized Gamma Distribution as an RND for Heston’s SV Model

Introduced by Stacy (1962), the Generalized Gamma (GG) distribution is demonstrably
highly versatile, with a vast number applications, from survival analysis to meteorology
and beyond. It includes among many others the Weibull distribution (α = 1), the Gamma
distribution (ξ = 1), and also the log-normal distribution as a limiting case, (α→ ∞). In this
section, we show that this GG distribution along with its counterpart, the so-called Inverse
Generalized Gamma distribution (IGG), both satisfy under a particular reparametrization,
Assumption 1, and hence could serve as RND (for direct option valuation using (10)) under
the Heston (1993) SV model for option valuation. Though similar, we will present these two
cases of the Generalized Gamma distribution separately as they do present different profiles
of skewness and kurtosis. We will however focus our attention on the GG distribution
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(with ξ > 0), as we will use it for option pricing modeling in a situation that involved
negatively skewed (implied) risk-neutral distributions.

We begin with some standard notations. We write Y ∼ G(α, λ) to indicate that the
random variable Y has the gamma distribution with a scale parameter λ > 0 and a shape
parameter α > 0 (so that its mean is E(Y) = α/λ). We write g(·; α, λ) and G(·; α, λ) for the
corresponding pd f and cd f of Y, respectively,

g(y; α, λ) ≡ λαyα−1e−λy

Γ(α)
and G(y; α, λ) ≡ Γ(yλ; α)

Γ(α)
, (11)

where Γ(α) :=
∫ ∞

0 xα−1e−xdx denotes the gamma function whose incomplete version is
Γ(s; α) :=

∫ s
0 xα−1e−xdx, is defined for any s > 0.

2.1. The GG Distribution

The Generalized Gamma (GG) distribution is typically characterized by three parame-
ters: a scale parameter, λ > 0, and two shape parameters, α > 0 and ξ > 0, and it is defined
as follows. We say that W ∼ GG(λ, ξ, α), if

Y ≡
(

W
λ

)ξ

∼ G(α, 1). (12)

In light of relation (12), the cd f and pd f of W ∼ GG(λ, ξ, α) are readily available in
terms of the Gamma distribution in (11). More specifically, for any w > 0,

FW(w) := Pr(W ≤ w) = G
(
(

w
λ
)ξ ; α, 1

)
,

and
fW(w) =

ξ

λ
(

w
λ
)ξ−1 · g

(
(

w
λ
)ξ ; α, 1

)
.

In addition, the jth, j = 0, 1, 2, . . . , moment of this distribution (see Stacy and Mihram
1965), whenever it exists, (i.e., whenever α + j/ξ > 0) is given by

E(W j) = λj Γ(α + j/ξ)

Γ(α)
:= λj · hj(ξ), with α + j/ξ > 0, and α > 0. (13)

Now, suppose that for a given α > 0, a random variable U has the ’standardized’
version of the GG distribution, with mean E(U) = 1 and a variance Var(U) = ν2, for some
ν > 0 (in fact, we will later take ν = σ

√
t for some σ > 0). Utilizing hj(ξ) as defined in (13),

we let for a given α > 0 and ν > 0, ξ∗ ≡ ξ(ν) be the (unique) solution of the equation

h2(ξ)

h2
1(ξ)

= 1 + ν2, (14)

in which case, h∗j ≡ hj(ξ
∗), j = 1, 2, λ∗ ≡ 1/h∗1 and U ∼ GG(λ∗, ξ∗, α). Accordingly, the

cd f of U is given by

Q1(u) := Pr(U ≤ u) = G
(
(

u
λ∗

)ξ∗ ; α, 1
)

, (15)

for any u > 0, and its pd f is given by,

q1(u) :=
ξ∗

λ∗
(

u
λ∗

)ξ∗−1 · g
(
(

u
λ∗

)ξ∗ ; α, 1
)

, u > 0. (16)
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It follows immediately from (15) that if X ≡ µ ·U for some µ > 0, then the pd f , qµ(·)
of X is the ’scaled’ version of q1(·) above. For this RND, the values of ∆1(s) in (9) can be
calculated using (16) for any a > 0 as,

∆1(a) =
∫ ∞

a
uq1(u)du = 1− G((a/λ∗)ξ∗ ; α + 1/ξ∗, 1), (17)

which, when combined in (10) with the expression of Q1(·) as given in (15) above, provides
the values of

cµ(k) =µ×
[

∆1(k/µ)− k
µ
× (1−Q1(k/µ))

]
,

=µ×
[
1− G((k/µλ∗)ξ∗ ; α + 1/ξ∗, 1)

]
− k×

[
1− G((k/µλ∗)ξ∗ ; α, 1)

] (18)

for any µ > 0. Finally, to calculate under this Generalized Gamma RND the price of a call
option at a strike K when the current price of the spot is S, we will utilize (18) with µ ≡ S ert

(being the forward price), k ≡ K and with λ∗ ≡ 1/h1(ξ
∗) and ξ∗ ≡ ξ(ν) as is determined

by Equation (14) above with ν ≡ σ
√

t to obtain CS(K) = e−rtcµ(K) as

CS(K) = S · [1− G(d; α + 1/ξ∗, 1)]− Ke−rt · [1− G(d; α, 1)], (19)

where

d =

(
Ke−rth1(ξ

∗)

S

)ξ∗

, with ξ∗ ≡ ξ(ν) from (14).

We point out that for given current spot’s price, S, a strike price K, risk-free interest
rate, r, and the remaining option’s duration t, the option value CS(K) in (19) involves,
through Equation (14) (with ν ≡ σ

√
t), with only two parameters, namely α and σ. Their

values can easily be “calibrated” from the available market option data. Indeed, in the
Generalized Gamma case, this calibration task is computationally much simpler than the
direct calibration of four parameters, ϑ = (κ, θ, η, ρ), of Heston’s pricing model, based on
the characteristic functions (see (A2) in Appendix A), which also involves integration over
the complex domain.

2.2. The IGG Distribution

For the sake of completeness, we also present the details of this variant to the Gener-
alized Gamma distribution here as well. With some additional restrictions on ξ, one can
similarly define the Inverse Generalized Gamma distribution (IGG). Namely, we say that
W ∼ IGG(λ, ξ, α), if

Y ≡
(

W
λ

)−ξ

∼ G(α, 1). (20)

The option pricing model under the Inverse Generalized Gamma distribution as RND
for the Heston’s SV for option valuation is constructed similarly to that of the GG in the
previous section. By relation (20), if W ∼ IGG(λ, ξ, α), then its cd f is given, for w > 0,

FW(w) := Pr(W ≤ w) = 1− G
(
(

w
λ
)−ξ ; α, 1

)
.

In this case, too, the ‘standardized’ IGG distribution of U is constrained to have mean
1 and variance ν2, which requires a restriction on the parameter ξ > 2/α. It follows that
with such a restriction, U ∼ IGG(λ∗, ξ∗, α), but now, ξ∗ ≡ ξ(ν) is the (unique) solution of
the equation

h̃2(ξ)

h̃2
1(ξ)

= 1 + ν2, (21)
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where, h̃j(ξ) ≡ hj(−ξ) = Γ(α− j/ξ)/Γ(α), j = 1, 2, provided that α− j/ξ > 0, in which
case, h̃∗j ≡ h̃j(ξ

∗), j = 1, 2, λ∗ ≡ 1/h̃∗1 . Accordingly, the cd f of U is given by

Q1(u) := Pr(U ≤ u) = 1− G
(
(

u
λ∗

)ξ∗ ; α, 1
)

, (22)

for any u > 0, and in similarity to (17), its corresponding delta function is given by

∆1(s) = G((s/λ∗)−ξ∗ ; α− 1/ξ∗, 1), (23)

Again, by combining (22) and (23) in (10), we obtain that for any µ > 0,

cµ(k) = µ× G((k/µλ∗)−ξ∗ ; α− 1/ξ∗, 1)− k× G((k/µλ∗)−ξ∗ ; α, 1). (24)

Accordingly, in order to calculate under this Inverse Generalized Gamma RND the
price of a call option at a strike K when the current price of the spot is S, we will utilize (24)
with µ ≡ S ert, k ≡ K and with λ∗ ≡ 1/h̃1(ξ

∗) and ξ∗ ≡ ξ(ν) as is determined by
Equation (21) above with ν ≡ σ

√
t to obtain, CS(K) = e−rtcµ(K) as,

CS(K) = S · G(d; α− 1/ξ∗, 1)− Ke−rt · G(d; α, 1), (25)

where

d =

(
Ke−rt h̃1(ξ

∗)

S

)−ξ∗

, with ξ∗ ≡ ξ(ν) from (21).

2.3. Skew and Kurtosis

As can be seen from the above construction of the RNDs, both the GG and IGG
distributions depend on two shape parameters (α, ξ∗), or equivalently (α, ν), where
ν ≡ σ

√
t, that affect their features, such as kurtosis and skewness, and hence their suit-

ability as RND for various particular scenarios of the SV model (A1), as is determined
by the structural model parameter ϑ = (κ, θ, η, ρ) (more on this point in the next section).
Unlike the standardized log-normal distribution which has a positive skew only, these two
classes of distributions offer a range of RNDs with positive as well as negative skewness.
This is a critical feature to have when modeling option prices for characteristically different
spots such as an Index (SPX, say) as opposed to modeling option prices for a technology
firm (such as AMD, say).

For a given (α, ξ∗), we denote these two measures as γ1(ξ
∗) for skew and γ2(ξ

∗) for
the kurtosis. Then, with hj(ξ) := Γ(α + j/ξ), we have in the GG case that with ξ∗ = ξ(ν)
which satisfies (14),

γ1(ξ
∗) =

h3(ξ
∗)− 3ν2 − 1

ν3

and

γ2(ξ
∗) =

h4(ξ
∗)− 4ν3γ1(ξ

∗)− 6ν2 − 1
ν4 .

For the IGG case, these two measure are similar and are given by γ1(−ξ∗) and γ2(−ξ∗),
provided that ξ∗ = ξ(ν) as is determined by (21) satisfies that ξ∗ > 4/α.

3. Calibration, Validation and Examples
3.1. Observing the Skew

In this section, we demonstrate the usefulness of the Generalized Gamma distribution
to serve as an RND under Heston’s Stochastic Volatility model in cases that exhibit a high
put–call skew (i.e., OTM puts in the option series are far more expensive than equidistant
OTM calls) and hence expressing a pronounced skew in the so-called “volatility smile” of
the series. Cases in point are traded market indexes such as the S&P 500 (SPX), Russel 2000
(RUT) or Nasdaq 100 (NDX), which all are (along with their corresponding ETF surrogates,
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SPY, IWM and QQQ) currently at (or near) their all time high levels4. Market expectations
of an eminent ‘correction’ are often seen as the culprits that affected the implied volatility
surface associated with the corresponding option series of the index (see for example
Bakshi et al. 1997).

Figure 1 below displays the calculated implied volatility smile of the 15 October 2021
option series for these three ETFs, SPY, IWM and QQQ, as quoted on 13 August 2021,
(EOD), each with 63 days to expiration (DTE). Several days later, on 18 August 2021, we
obtained the corresponding quote for the TLT, but now with 57 DTE. For each ETF, the EOD
option’s market prices (for puts and calls) at the corresponding strikes were recorded along
with the BSM-based calculated delta and implied volatility as provided by the brokerage
firm.5 As a reference, we also marked on these plots (in red) the current spot’s (ETF) price
S along with the ATM (BSM-based) calculated implied volatility (IV) for each ETF. As can
be seen from these figures, the options of the three market index ETFs exhibit a highly
pronounced skew in their volatility ‘smile’, whereas the option on the TLT ETF does not
(likely only reflective of market’s expectations of actions by the Federal Reserve).

However, since typically in the retail world, the calculated option’s implied volatility
(as well as other associated quantities, such as the option’s delta) is calculated based on
the Black–Scholes formula in (1), the noted distortion in the volatility smile (or surface)
is nonetheless also indicative that the assumed underlying log-normal distribution of the
Black–Scholes model (with its distinctive positive skew measure) is a poor choice to serve
as RND in such instances involving a stochastic volatility structure as that of Heston (1993)
(see (A1) below), particularly in those instances that admit a negatively skewed RND. To
illustrate the extent of the “inaptness” of using the log-normal distribution as RND (the
BSM formula in (1)) for the option valuation in such skewed cases, we have calibrated for
each of these four ETFs the appropriate Heston’s SV model to fit the observed market option
data (i.e., on 15 October 2021 option series for each) and derived from it the implied RND
of Heston’s model (HS). This RND, which is obtained both theoretically, using (A2) and (3),
and also via Monte Carlo simulations of (A1), will serve as a benchmark for comparison.
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Figure 1. The volatility ‘smiles’ of the the 15 October 2021 option series (calls) as observed and
calculated on 13 August 2021 (EOD) for the three market index ETFs, SPY, IWM and QQQ and on
18 August 2021 (EOD) for the TLT ETF.

For each option series, the available market data consist of the N strikes, K1, . . . , KN

with corresponding call option (market) prices C1, . . . , CN
6. As a standard measure of the
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goodness-of-fit between the model-calculated option prices CModel(Ki), i = 1, . . . , N and the
given option market price Ci, i = 1, . . . , N, we used the Mean Squared Error, MSE,

MSE(Model) =
1
N

N

∑
i=1

(CModel(Ki)− Ci)
2.

Clearly, it is expected that within the scope of the SV model described in (A1), the well-
calibrated Heston model will result with a smaller MSE as compared to the Black–Scholes
model, so that MSE(HS) ≤ MSE(BS). However, as we will see below for the available
ETF data, pricing the options by a well-calibrated Generalized Gamma (GG) model (19)
also resulted with a smaller MSE. In fact, in all four cases, MSE(GG) ≤ MSE(BS). To
demonstrate this, we have taken for each ETF the following steps (conditional of course on
the current spot’s price S and volatility V0):

• Model Calibration

– For a given model’s parameter, ϑ = (κ, θ, η, ρ) in (A1), we use the callHestoncf
function of the NMOF package (see Gilli et al. 2019 and Schumann 2011–2021)
and the R software (R Core Team 2017) to calculate the Heston model’s option
prices CHS

i for each Ki.
– To calibrate the Heston SV model, we used the optim(·) function R to minimize

MSE(HS) over the model’s parameter, ϑ = (κ, θ, η, ρ).
– For a given (α, ν) with ν = σ

√
t, we use (19) to calculate the Generalized Gamma

model option prices CGG
i for each Ki.

– To calibrate the GG model, we used the optim(·) function of R to minimize
MSE(GG) over the model’s parameters, (α, ν).

– For a given ν (where ν = σ
√

t), we use (1) and (2) to calculate the Black–Scholes
model option prices CBS

i for each Ki.
– To calibrate the BS model, we used the optimize(·) function of R to minimize

MSE(BS) over the single model’s parameter ν (namely σ).

• Validation

– Using the calibrated Heston parameters, ϑ̂, we drew, utilizing a discretized
version of Heston’s stochastic volatility process (A1), a large number (M = 30,000)
of Monte Carlo simulations, observations on (ST , VT) to obtain the simulated
rendition of the Heston’s RND of St (conditional on S and V0, with t = T − τ).

– Using the calibrated Heston’s parameters, ϑ̂, in (A4), we obtain the calculated
rendition of the Heston’s theoretical RND of St (conditional on S and V0, with
t = T − τ) directly from the characteristics function of P2 (see Appendix A).

– Finally, we compared all three calibrated risk-neutral distributions of the
standardized spot’s price (the rescaled spot priced, S∗t = St/µ, where µ = Sert) as
obtained under the Black–Scholes (BS), Generalized Gamma (GG) and
Heston (1993) option pricing models (HS).

3.2. Calculating the Implied RND under the Volatility Skew

As we mentioned earlier, the data on the 15 October 2021 option series of the SPY,
IWM and QQQ were retrieved as of the closing of trading on Friday 13 August 2021 with
63 days to expiration, so that t = 63/365 and the prevailing (risk-free) interest rate at that
time is r = 0.0016. There will be common values for these three highly liquid ETFs. The
15 October 2021 option series of the TLT was retrieved on 18 August 2021 with 57 days to
expiration, so that t = 57/365 for that ETF. However, we begin our exposition with the
details of the largest (volume-wise) of them, namely the SPY. The cases of the IWM, QQQ
and TLT will be treated similarly below.

On that day, the closing price of the SPY was S = 445.92, and the dividend it pays
is at a rate of ` = 0.0123. We incorporate the dividend in our calculations along the
lines of Remark 1. The reported (BS-based) implied volatility was IV = 16.15%, which
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we will use as our initial value for V0 and for σ. This option series has N = 211 pairs
of strike-price (Ki, Ci), which were all used to calibrate Heston’s SV model over the
model’s parameter, ϑ = (κ, θ, η, ρ), with the initial values of (15, (0.1)2, 0.1,−0.65) and with
V0 = IV2 = (0.1615)2. The results of the calibrated values are

ϑ̂ = (15.03132587, 0.02793781, 2, −0.77469470).

This calibrated parameter, ϑ̂, was then used to calculate, using Heston’s character-
istic function (i.e., (A2)), the option prices according to Heston’s SV model (3). This
resulted with MSE(HS) = 0.2226429. The calibrated (least squares estimate) value of σ
that minimizes the MSE for the BS model is σ̂ = 0.137348, so that MSE(BS) = 1.781981.
Accordingly, ν̂BS = 0.137348

√
t = 0.0570619 is to be used for the calculation of the pd f of

the N (−ν2/2, ν2) distribution, which leads to the BS formula in (1) (see Example 3.1 in
Boukai 2021 for more details). Next, we calibrated the General Gamma distribution accord-
ing to the pricing model in (19), with initial values of α = 0.5 and σ = 0.1615, which resulted
with calibrated value of α̂ = 0.1554312 and σ̂ = 0.1483843 and an MSE(GG) = 0.339441.
Clearly, in this case of the SPY, the MSE of the GG pricing model is substantially smaller
than the MSE of the Black–Scholes model and is similar to that of Heston’s SV pricing
model. Indeed, the MSE of the BS model is over 500% as large as those of the GG and the
HS models.

To compare the actual distributions, as were calculated under each of these three
pricing models, we present in Figure 2 the three implied distributions (as RNDs), which
were calculated based on their respective calibrated parameter values. As an added
validation, we plotted these three density curves against the histogram of the Monte Carlo
simulation of the standardized SPY prices using a discretized version of the pricing model
in (A1) (using the calibrated Heston parameters with a seed = 452361). This figure clearly
demonstrates the ‘inaptness’ of the standard BSM Formula (1) and hence the log-normal
distribution for the direct (risk-neutral) modeling of option prices in cases which involve
negatively skewed price distributions. In fact, the calculated values of the kurtosis and
skewness measures of each of these distributions (see Table 1) are also indicative of the
noted lack-of-fit of the BS model in these cases and the apparent close agreement of the
GG distribution to the exact risk-neutral distribution of the Heston’s model and that of the
simulated price data.
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Figure 2. The SPY case: the calculated HS, GG and BS implied RNDs along with the Monte Carlo
distribution of the spot’s price S∗ and the corresponding values of the MSEs.
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Table 1. Calculated (excess) kurtosis and skewness measures for the three distributions depicted in
Figure 1 for the SPY option data.

Measure HS GG BS

Kurtosis 7.302674 3.536461 0.05234164
Skewness −2.050771 −1.580122 0.1715114

The impact of this model’s misspecification on the calculated delta values associated
with the option series is also of interest. It is a standard practice of the retail brokerage
houses to provide, along with the market prices for the option chain, also the BS-base
calculated delta for each strike (using some ATM implied volatility value). For example,
for the ATM strike of K = 445, the quoted delta is ∆∗ = 0.497 with a quoted IV of
0.1489, whereas under the BS model we calibrated here with σ̂ = 0.137348, we obtained
∆BS = 0.506. However, accounting for stochastic volatility in the pricing model, we
calculate for this same strike, K = 445, ∆HS = 0.663 by the (better fitting) Heston SV model,
and ∆GG = 0.638, by its close proxy, the GG model. Thus, in this case, the BS modeling
at the ATM strikes will result with grossly understated delta values (of nearly 25.0%).
Without doubt, the impact of this model’s misspecification would have profound hedging
implications for the retail trader. To fully appreciate the extent of this impact, we present
in Figure 3 the values of the delta function (9) as was calculated for the HS model (using
P1 and (A1)), for the GG model (using (17)) and for the BS model (using Φ(d1) from (1)),
along with quoted delta values for the SPY chain.
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Figure 3. The SPY case—the calculated delta functions under each of the pricing models, HS, GG and
BS, along with the quoted delta per each strike K in the 15 October 2021 option series.

Needless to say, the noted understatement of the quoted (BS -based) delta values
as compared to those derived from the SV model also impact the trading strategies. For
example, a trader that would sell a 25-delta strangle based on the quoted values will sell
the k1 = 424 put for $5.215 and the k2 = 460 call for $2.685, collecting a total of $7.90 for it,
which amounts to 21.9% of the spread between the strikes (for a discussion of this ratio,
see Boukai 2020). On the other hand, if the trader would have priced the 25-delta strangle
according to the GG model (which accounts for the skew), she will sell the k1 = 435 put for
$7.205 and the k2 = 466 call for $1.435, collecting a total of $8.64 for it, which amounts to
27.9% of the spread between the strikes, clearly collecting a higher premium for the same
25-delta strangle.

The situation with the other two market index ETFs, IWM and QQQ, is very similar to
the one describing the SPY—see the corresponding depiction of their volatility ‘smiles’ in
Figure 1. Following a similar calibration and validation approach, we present (implied) the
price distributions derived from the IWM option data shown in Figure 4a and the QQQ
option data shown in Figure 5a. The calculated values of the corresponding delta functions
are displayed in Figures 4b and 5b. Furthermore, to serve as a contrasting illustration,



J. Risk Financial Manag. 2022, 15, 238 13 of 18

we present in Figure 6 the three implied price distributions derived from the TLT ETF
option series, along with the corresponding calculated delta functions for that ETF. The
situation with the TLT ETF is clearly different, as compared to the three market index
ETFs (SPY, IWM and QQQ) which exhibit a pronounced skew of their volatility ‘smile’.
In the case of the TLT) ETF, with a relatively intact volatility ‘smile’ (see Figure 1), the
implied RNDs are relatively symmetric, and the three option pricing models (HS, GG and
BS) yield very similar results. In Table 2, we provide a summary of the goodness-of-fit of
each of the pricing models as measured by the respective MSE for each of the four ETFs. A
corresponding comparison of the ATM delta calculations under each of the option price
models is presented in Table 3. In Table 3, we provide a summary of the goodness-of-fit as
measured by the respective MSE for each of the ETFs. Some of the technical details are
provided in Section 4.1 below.

Table 2. Model’s goodness-of-fit as measured the respective MSE for each of the four ETFs.

ETF HS GG BS

SPY 0.2226429 0.339441 1.781981
IWM 0.001900968 0.01419628 0.3750478
QQQ 0.02418013 0.06561134 1.193867
TLT 0.03423748 0.04618725 0.04341321

Table 3. Comparison of the the quoted ATM delta ∆∗ of the four market ETF to those calculated
under each of the three option pricing models.

ETF S ATM K ∆∗ ∆BS ∆GG ∆HS

SPY 445.92 445 0.497 0.506 0.638 0.663
IWM 221.13 221 0.510 0.516 0.598 0.610
QQQ 368.82 369 0.507 0.503 0.625 0.632
TLT 149.35 150 0.511 0.453 0.477 0.467
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Figure 4. The IWM case: (a) the HS, GG and BS implied RNDs along with the Monte Carlo distribution
of the Spot’s price S∗, and (b) the corresponding delta functions along with the quoted delta per each
strike K in the option series.
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The RND of S* for the QQQ
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Figure 5. The QQQ case: (a) the HS, GG and BS implied RNDs along with the Monte Carlo distribution
of the Spot’s price S∗, and (b) the corresponding delta functions along with the quoted delta per each
strike K in the option series.
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Figure 6. The TLT case- (a) the HS, GG and BS implied RNDs along with the Monte-Carlo distribution
of the Spot’s price S∗, and (b) the corresponding delta functions along with the quoted delta per each
strike K in the option series.

4. Summary and Discussion

As was illustrated in all the above examples, the Heston (1993) option pricing model
(as given in (A1) and (3)), which accounts for the presences of stochastic volatility, pro-
duces as expected the best results overall as compared to the Black–Scholes option pricing
model (1) with its presumed constant volatility. Clearly, a well-calibrated Heston model
will always result in a better fit to realistic market option data (indeed, resulting with
MSE(HS) < MSE(BS)) and would be the default modeling choice for the practitioner. Un-
fortunately, however, the numerical challenges involved in the calculations and calibration
(or optimization of ϑ = (κ, θ, η, ρ)) process of the Heston’s option pricing model (see for
example Romo and Ortiz-Gracia 2021 or Lemaire et al. 2020) render it largely inaccessible
to many of the retail option traders who do not possess the prerequisite skills or know-how
to meet these numerical challenges. In comparison, the calculations and calibration process
involved with the two-parameter Generalized Gamma distribution as RND for Heston’s SV
option valuation are substantially simpler and more straightforward (and could potentially
be accomplished within an Excel spreadsheet). As was demonstrated earlier, the GG model
is significantly more accurate than the Black–Scholes model for the pricing of the options
in a skewed stochastic volatility environments as those exhibited (at present times) by the
three markets ETFs, SPY, IWM and QQQ. In fact, in situations that imply negatively skewed
price-distributions as RND, the Black–Scholes pricing model, and hence the log-normal
distribution as RND, will surely be inferior to the GG distribution as an RND and surely
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to Heston’s SV pricing model in fitting realistic option market data. In such situations,
one would realize (as we did in these examples) MSE(GG) < MSE(BS) and would want
to adopt the GG RND for the underlying pricing model. In contrast, in situations such
as the one exhibited by the TLT ETF, one would realize MSE(GG) ≈ MSE(BS), as all
three option pricing models (including Heston’s) produce similar results. Although not
expressly covered by the examples we included here, we have grounds to believe that
the same conclusion could be arrived upon using the Inverse Generalized Gamma (see
Section 2.2) in situations involving positively skewed (implied) RND in the option pricing
model. Although the two-parameter versions of the GG and IGG distribution are similar,
they differ in their implied parameter space (see restrictions in (13) and Section 2.3) and
thus should be treated separately. In all, both of these versions of the Generalized Gamma
distribution could serve as useful proxies to the exact Heston’s RND given in (A4) and
hence produce superior results to those obtained by the Black–Scholes model in an environ-
ment involving stochastic volatility. Thus, given the market option data, one could simply
calculate MSE(BS), MSE(GG), and if appropriate also MSE(IGG), and adopt the RND
for the option pricing model, which produces the smaller MSE and hence the better fit to
the market data.

4.1. Some Technical Notes

• The 15 October 2021 option series data files SPY_63.csv, IWM_63.csv, and QQQ_63.csv
as were obtained on the EOD of 13 August 2021 and that of TLT_57.csv obtained at the
EOD of 18 August 2021 are available from the author upon request. Their basic summary
information is provided in Table 4 below.

Table 4. Summary information of the four ETFs.

ETF S DTE N Quoted IV Div. Rate

SPY 445.92 63 211 16.15% 1.23%
IWM 221.13 63 93 24.30% 0.63%
QQQ 368.82 63 160 18.13% 0.43%
TLT 149.35 57 66 15.71% 1.46%

• The standard R function dgamma and pgamma were used to calculate the pd f and cd f
in (11) and hence used in the calculation of (19); see Appendix B.

• The cfHeston and callHestoncf functions of the NMOF package of R were used in
the calculation of (A2) and (3).

• A modification of the callHestoncf function of the NMOF package of R was used to
calculate (A4).

• The optim and optimize functions of R were used in the calibration of the three
models (HS, GG and BS) for the available option data.

• The initial and the calibrated values of ϑ = (κ, θ, η, ρ) of the Heston’s model were:

SPY: (15, (0.1)2, 0.1,−0.65) and (15.03132587, 0.02793781, 2, −0.77469470).
IWM: (5, (0.1)2, 0.6, 0) and (4.97834286, 0.04032166, 1.09837930,−0.59905916).
QQQ: (3.5, (0.2)2, 0.5,−0.5) and (3.47635183, 0.06382197, 1.13505528,−0.69137767).
TLT: (3, (0.1)2, 0.1, 0.1) and (2.99997881, 0.01459405, 0.10011507, 0.10007980).

• For the Monte Carlo simulation of (A1), we employed the (reflective version of)
Mil’shtein (1975) discretization scheme (see also Gatheral 2006) with seeds = 4569
(QQQ), = 777999 (IWM), = 452361 (SPY) and = 121290 (TLT).
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Appendix A. Heston’s 1993 Solution

Heston (1993) considered the stochastic volatility model describing the price-volatility
dynamics (of S = {St, t ≥ 0} and V = {Vt, t ≥ 0}) as described via a system of stochastic
deferential equations (SDE) given by

dSt =rStdt +
√

VtStdW1,t

dVt =κ(θ −Vt) + η
√

VtdW2,t,
(A1)

where r is the risk-free interest rate, κ, θ and η are some constants (as discussed in
Section 1) and where W1 = {W1,t, t ≥ 0} and W2 = {W2,t, t ≥ 0} are two Brownian motion
processes (under the risk neutral probability Q) with d(W1W2) = ρdt for some ρ2 ∈ (0, 1)).
Heston (1993) offered CS(K) in (3) as the solution to the option valuation under the above
SDE and provided (semi) closed form expressions to the probabilities P1 and P2 that com-
prise it. These closed form expressions are given for j = 1, 2 by

Pj =
1
2
+

1
π

∫ ∞

0
Re

[
e−iωkψj(ω, t, v, x)

iω

]
dω, (A2)

where with x := log (S), k := log (K), b1 = κ − ρη, b2 = κ and ψj(·) is the characteristics
function

ψj(ω, t, v, x) :=
∫ ∞

−∞
eiωs pj(s)ds ≡ eBj(ω,t)+Dj(ω,t)v+iωx+iω rt.

Here, pj(·) is the pd f of sT = log(ST) corresponding to the probability Pj, j = 1, 2 and

Bj(ω, t) =
κθ

η2 {(bj + dj − iωρη)t− 2 log(
1− gje

djt

1− gj
)}

Dj(ω, t) =
bj + dj − iωρη

η2 (
1− edjt

1− gje
djt

)

gj =
bj − iω ρη + dj

bj − iωρη − dj

dj =
√
(iωρη − bj)2 − η2(2iωuj −ω2).

Now, by a standard application of the Fourier transform, we obtain (see for example
Schmelzle 2010) that the pd f pj(·) of sT = log(ST) can be computed, for any s ∈ R, as

pj(s) =
1
π

∫ ∞

0
Re
[
e−iωsψj(ω, t, v, x)

]
dω. (A3)

Hence, it follows immediately that the pd f p̃j(·) of ST is given, for any u > 0, by

p̃j(u) =
1
u
× pj(log(u)) ≡ 1

π

∫ ∞

0
Re

[
e−iω log(u)ψj(ω, t, v, x)

u

]
dω.

Further, since the c. f ., ψj, above are affine in x + rt = log(S) + rt ≡ log(µ), we may rewrite
p̃j(u) as

p̃j(u) =
1

µπ

∫ ∞

0
Re

[
e−iω log(u/µ)ψ̃j(ω, t, v)

u/µ

]
dω, (A4)

where log(ψ̃j(ω, t, v)) := log(ψj(ω, t, v, x) − iωx − iω rt. Note that p̃2(·) in (A4) is the
p.d. f corresponding to the RND, Qµ(·), of ST (under Q) for Heston’s (1993) model with
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P2 ≡
∫ ∞

K p̃2(u)du = Q(ST > K) ≡ Qµ(K), in (3) and (7). In addition, note that this
Qµ(·), constitutes a scale-family of distributions in µ = Sert, so that it satisfies the terms of
Assumption 1. As was mentioned in Section 4.1, the cfHeston and callHestoncf functions
of the NMOF package of R are readily available to accurately compute the values of ψj and
hence of Pj (as well as p̃j(u)) as well as the call option values CS(K) in (3) for given t, s and
v and any given choice of ϑ = (κ, θ, η, ρ).

Appendix B. R Code for the GG Model

The following is the simple R code for calculating the option call price under the GG
model as given in (19).

##
# s0 #= c u r r e n t spo t ’ s p r i c e
# k #= s t r i k e
# t e #= days / 365
# r #= i n t e r e s t r a t e
# q #= d i v i d e n d r a t e
# s i g #= v o l a t i l i t y ( s igma )
# a l p h a #= f i r s t s h a p e paramet e r , a l p h a
##
GG. value<−function ( s0 , k , te , r , q , s ig , alpha ) {

nu<− s i g * sqr t ( t e )
k<−k* exp ( − r * t e )
s0<−s0 * exp ( −q* t e )
s1<−k / s0
f0<−GG. c a l l ( s1 , nu , alpha )
return ( f0 )

}
###
GG. c a l l <−function ( s , v , alpha ) {

x i <−seq ( 0 . 1 , 100 , length =10000)
yy<− (gamma( alpha ) *gamma( alpha+2 / x i ) ) / (gamma( alpha+1 / x i ) ) ^2
x i0<−min ( x i [ yy<1+v ^ 2] ) # s e c o n d s h a p e p a r a m e t e r
lam0<−gamma( alpha ) /gamma( a ) # t h e s c a l e p a r a m e t e r

s1<− ( s / lam0 ) ^ ( x i0 )
d e l t a <−1−pgamma( s1 , alpha+1 / xi0 , 1 )
prob<−1−pgamma( s1 , alpha , 1 )
cc0<−del ta −s * prob
f0<−cbind ( s , cc0 , del ta , prob , xi0 , lam0 )

return ( f0 )
}
##

Notes
1 Nowadays, many of the retail brokerage houses operate entirely within the ‘Black–Scholes world’ and provide, aside from market

option bid–ask prices, the ‘theoretical price’ and related ‘Greeks’, and implied volatility values as are derived from and calculated
under the BSM Formula (1) and (2).

2 Note that cµ(·) is merely the undiscounted version of CS(·) in (4). For the linear homogeneity property of the European options, in
general, see for example Theorems 6 & 9 of Merton (1973).

3 As of the original draft of this paper, 14 August 2021.
4 As of the writing of this paper, 14 August 2021.
5 Option chain quotes were retrieved from TD Ameritrade using the TOS platform.
6 These prices could be the actual market prices or the average between the bid and ask prices of the market.
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