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Abstract: We consider a risk-aware multi-armed bandit framework with the goal of avoiding catas-
trophic risk. Such a framework has multiple applications in financial risk management. We introduce
a new conditional value-at-risk (CVaR) estimation procedure combining extreme value theory with
automated threshold selection by ordered goodness-of-fit tests, and we apply this procedure to a
pure exploration best-arm identification problem under a fixed budget. We empirically compare our
results with the commonly used sample average estimator of the CVaR, and we show a significant
performance improvement when the underlying arm distributions are heavy-tailed.
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1. Introduction

In the stochastic multi-armed bandit (MAB) problem, a learning agent is presented
with the repeated task of selecting from a number of choices (arms), each providing
independent and identically distributed rewards/costs. The agent has no prior knowledge
of the underlying arm distributions. Through a combination of exploration and exploitation,
the agent attempts to identify the arm with the most favorable reward/cost distribution as
quickly as possible; see Lattimore and Szepesvári (2020) for a description of such a setting,
which has many applications, such as these detailed in Bouneffouf et al. (2020).

In the traditional MAB framework, the most favorable distribution maximizes the
expected reward. Recent generalizations of this problem replace the expectation objective
with other metrics aimed at measuring risk. For example, Bhat and Prashanth (2019); David
et al. (2018); Galichet et al. (2013); Kagrecha et al. (2019); Sani et al. (2012); Torossian et al.
(2019); Yu and Nikolova (2013) addressed the MAB problem with a risk-averse (risk-aware)
agent.

Such a framework is better suited to applications in finance where a risk-reward trade-
off is sought rather than pure profit maximization. Example of applications of risk-aware
multi-armed bandits in finance include portfolio optimization as in Hoffman et al. (2011),
Shen et al. (2015), Moeini et al. (2016) and Huo and Fu (2017), cryptocurrency investing
as in Yu et al. (2018), hedging as in Cannelli et al. (2020) and energy markets trading as
in Costa and Oliveira (2008) and Ariffin et al. (2016).

Often, the risk measure of interest is the conditional value-at-risk (CVaR). Given a con-
tinuous random variable X representing a cost (i.e., where larger values are less desirable),
the CVaR at a confidence level α ∈ (0, 1) measures the expected value of X given that X
exceeds the quantile at level α. This quantile is referred to as the value-at-risk (VaR). Com-
pared to the VaR, the CVaR captures more information about the weight of a distribution’s
tail, making it a more useful object of study in risk-averse decision making.
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In previous papers on the risk-averse MAB problem, the CVaR is usually estimated by
averaging observations above the estimated VaR. When α is close to 1, these observations
can be very scarce in small samples, leading to imprecise estimates. This is particularly
apparent in heavy-tailed distributions, where extreme events correspond to very large values
that are not readily observed. This is in contrast to light-tailed distributions, where similar
low probability events are closer to the mean and not as catastrophic.

In this paper, we seek to address the CVaR estimation problem described above within
the MAB framework, which has applications in any scenario where the primary goal of
the agent is to avoid a severely unfavourable outcome, such as financial ruin, patient
deaths in clinical trials or the adverse impact of a natural disaster. The MAB problem with
heavy-tailed underlying arm distributions has been analyzed in, for example, Bubeck et al.
(2013) and Prashanth et al. (2020). As in the latter, we consider the problem of identifying
the arm with the lowest CVaR value in a fixed budget (pure exploration) MAB problem.

This paper considers the CVaR for single stages at a time, i.e., not the CVaR on
aggregates of rewards across various stages. Instead of estimating the CVaR by sample
averaging, we consider an alternative estimator based on extreme value theory (EVT),
e.g., (McNeil et al. 2005, Section 7.2.3). EVT has numerous applications in risk management
(see for instance Embrechts et al. 1999 and Embrechts et al. 2013), and the present work is
an attempt to incorporate its benefits to the MAB problem, reinforcement learning and the
machine learning literature.

By selecting a threshold lower than the VaR, it is possible to approximate the tail
distribution of a random variable by using a generalized Pareto distribution (GPD) and
extrapolating beyond the available observations. The major difficulty of this approach is
the bias-variance tradeoff that results from threshold selection: too high of a threshold
results in limited data availability causing high variance, whereas too low of a threshold
can cause a large bias between the GPD and true tail distribution.

Traditionally, threshold selection methods often rely on the visual inspection of graph-
ical plots and apply to a fixed dataset, making them unsuitable for the online learning
framework of the MAB problem. Recently, the work of Bader et al. (2018) presented a
solution to threshold selection by automating the process using ordered goodness-of-fit
tests. This method has recently shown promising experimental results in VaR estimation,
i.e., Zhao et al. (2018), and we propose to use this method in an algorithm for the CVaR
in MABs.

The main contribution of this paper is the design of a CVaR estimation algorithm
that combines the EVT method with automated threshold selection and application of
this algorithm in the MAB context. Such an algorithm is crucial (typo) from a practical
standpoint since it allows rigorously tackling risk-aware MAB problems requiring avoiding
catastrophic risk, a class of problems for which the existing methodologies are ill-adapted
due to the scarcity of data related to extreme outcomes. The present paper also bridges the
gap between the MAB literature and the extreme value theory one which, to the best of
the authors knowledge, have never been previously combined. In our simulation study,
this estimation procedure outperformed the commonly used sample average estimator in
heavy-tailed distributions.

The remainder of this paper is organized as follows. In Section 2, the VaR and CVaR
are formally defined, and the sample average estimator of the CVaR is given. Needed
background from EVT is discussed, and we introduce approximate formulas for the VaR
and CVaR. We present our CVaR estimation procedure using EVT and automated threshold
selection in Section 3, and we introduce the risk-averse successive rejects algorithm for
best-arm identification in Section 4. Numerical experiments are presented in Section 5,
and we conclude in Section 6.
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2. Preliminaries
2.1. Risk Measures

Let X denote a random variable and F its corresponding cumulative distribution
function (CDF). In this paper, we adopt the convention that X represents a cost to the agent,
and thus larger values of X are less desirable.

Definition 1 (Value-at-Risk). The value-at-risk of X at level α ∈ (0, 1) is

VaRα(X) = inf{x ∈ R | F(x) ≥ α}. (1)

VaRα(X) is equivalent to the quantile at level α of F. If the inverse of F exists,
VaRα(X) = F−1(α). The VaR can be estimated in the same way as the standard em-
pirical quantile. Let X1, . . . , Xn be i.i.d. random variables with common CDF F. Denote by
X(1,n) ≤ X(2,n) . . . ≤ X(n,n) the set of order statistics for the sample of size n, i.e., the sample
sorted in non-decreasing order. An estimator for the VaR is

V̂aRn,α(X) = min
{

X(i,n) | i = 1, . . . , n; F̂n

(
X(i,n)

)
≥ α

}
= X(m,n),

where F̂n denotes the empirical CDF and m = dαne with dxe denoting the smallest integer
greater or equal to x. Such an estimate corresponds to the α-level VaR of the empirical
distribution of X based on the sample of size n. We now define the CVaR as in Acerbi and
Tasche (2002).

Definition 2 (Conditional Value-at-Risk). The conditional value-at-risk of a continuous random
variable X at level α ∈ (0, 1) is

CVaRα(X) = E[X |X ≥ VaRα(X)] =
1

1− α

∫ 1

α
VaRγ(X)dγ. (2)

Typical values of α are 0.95, 0.99, 0.999, etc. Without loss of generality, the current
work only considers continuous random variables. For simplicity of notation, we refer
to CVaRα(X) and VaRα(X) by cα and qα, respectively, for the remainder of this paper.
Typically, the CVaR is estimated by averaging observations above V̂aRα(X). This estimator
is given by

ĈVaRn,α(X) =
∑n

i=1 Xi1{Xi≥V̂aRn,α(X)}

∑n
j=1 1{Xj≥V̂aRn,α(X)}

, (3)

which would coincide with E[Z | Z ≥ VaRα(Z)] under the assumption that the distribution
of Z is the empirical distribution of X. The CVaR risk measure has proven extremely popular
in the risk management literature due to its favorable theoretical properties. For instance,
it is a coherent risk measure as defined by Artzner et al. (1999), since it satisfies the
monotonicity, translation invariance, subadditivity and positive homogeneity properties.

The use of Equation (3) can be problematic when the confidence level α is high due to
the scarcity of extreme observations. We now provide tools from extreme value theory to
address this problem.

2.2. Extreme Value Theory and Heavy Tails

Let Fn(x) = P(max(X1, . . . , Xn) ≤ x) denote the CDF of the sample maximum.
Suppose there exists a sequence of real-valued constants an > 0 and bn, n = 1, 2, . . ., and a
nondegenerate CDF H such that

lim
n→∞

Fn(anx + bn) = H(x), (4)

for all x, where nondegenerate refers to a distribution not concentrated at a single point.
The class of distributions F that satisfy (4) are said to be in the maximum domain of attraction
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of H, denoted F ∈ MDA(H). The Fisher–Tippett–Gnedenko theorem (see De Haan and Fer-
reira (2006, Theorem 1.1.3)) states that H must then be a generalized extreme value distribution
(GEVD), which is given in the following definition.

Definition 3 (GEVD). The generalized extreme value distribution (GEVD) with single parameter
ξ ∈ R has the CDF

Hξ(x) =

{
exp

(
−(1 + ξx)−1/ξ

)
if ξ 6= 0,

exp(−e−x) if ξ = 0,

over its support, which is [−1/ξ, ∞) if ξ > 0, (−∞,−1/ξ] if ξ < 0 or R if ξ = 0.

If F ∈ MDA(H), then there exists a unique ξ ∈ R such that H = Hξ . It is important
to note that essentially all common continuous distributions used in applications are in
MDA(Hξ) for some value of ξ, and this value characterizes the speed of the tail decay.
When ξ > 0, then F is a heavy-tailed distribution, which means that moments of order greater
than or equal to 1/ξ do not exist. The tail decreases like a power law, and very large
observations can occur with a non-negligible probability. Otherwise, F is light-tailed with
a tail with exponential decay (ξ = 0), or the right endpoint of F is finite (ξ < 0). If ξ ≥ 1,
then F has infinite mean, and therefore the true CVaR, Equation (2), is also infinite. For the
remainder of this paper, we assume that the following condition is satisfied.

Assumption 1. F ∈ MDA(Hξ) with ξ ∈ [0, 1).

When F ∈ MDA(Hξ), there exists a useful approximation of the distribution of sample
extremes above a high threshold.

Definition 4 (Excess distribution function). For a given threshold u > ess inf X, the excess
distribution function is defined as

Fu(y) = P(X− u ≤ y |X > u) =
F(y + u)− F(u)

1− F(u)
, y > 0.

The y-values are referred to as the threshold excesses. Given that X has exceeded some
high threshold u, this function represents the probability that X exceeds the threshold by at
most y. For large values of u, the Pickands–Balkema–de Haan theorem states that Fu can be
well-approximated by the GPD. We recall this theorem now.

Theorem 1 (Balkema and De Haan 1974; Pickands III et al. 1975). Suppose Assumption 1 is
satisfied. Then, there exists a positive function σ = σ(u) such that

lim
u→∞

sup
0≤y≤∞

|Fu(y)− Gξ,σ(y)| = 0, (5)

where Gξ,σ is the CDF of the generalized Pareto distribution, given by

Gξ,σ(y) =

1−
(

1 + ξy
σ

)−1/ξ
, ξ 6= 0,

1− e−y/σ, ξ = 0,
(6)

over its support, which is [0, ∞) if ξ ≥ 0 or [0,−σ/ξ] if ξ < 0.

Using Theorem 1, it is quite straightforward to derive approximate formulas for the
VaR and CVaR using the definition of the excess CDF and Equations (1) and (2); for example,
see McNeil et al. (2005, Section 7.2.3).
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Corollary 1 (EVT approximations). Suppose that Assumption 1 is satisfied. Fix u > ess inf X
and let σ = σ(u) be a function satisfying Equation (5). Then, the EVT approximations for the VaR
and CVaR at level α > F(u) are given by, respectively,

qu,α =

{
u + σ

ξ

(
sξ

u,α − 1
)

, ξ 6= 0,

u + σ log su,α, ξ = 0,
(7)

cu,α =

u + σ
1−ξ

(
1 + sξ

u,α−1
ξ

)
, ξ 6= 0,

u + σ(log su,α + 1), ξ = 0,
(8)

where su,α = (1− F(u))/(1− α).

The accuracy of the EVT approximations depends on how high of a threshold is
used. When these approximations are used in statistical estimation, a lower threshold is
preferable to make use of as much data as possible; however, this can induce a significant
bias. In the next section, we introduce our algorithm for estimating the CVaR with the EVT
approximations and automated threshold selection.

3. Estimating the CVaR through EVT
3.1. Maximum Likelihood Estimation of the GPD Parameters

In this section, we discuss the estimation of cu,α using Corollary 1 and the maximum
likelihood. This can be done by first selecting a threshold u and then estimating the GPD
parameters using the threshold excesses above u. For brevity, we only present the maximum
likelihood estimators (MLEs) for ξ 6= 0; for the ξ = 0 case, see De Haan and Ferreira (2006,
Section 3.4).

For an i.i.d. sample X1, . . . Xn, the threshold excesses are given by {Xi − u | i =
1, . . . , n; Xi > u}, and we denote them as Y1, . . . , Yk. Assuming k > 0, the MLEs are
obtained by maximizing the approximate log-likelihood function with respect to ξ and σ,

(ξ̂
(n)
u , σ̂

(n)
u ) = arg max

ξ,σ

k

∑
i=1

log gξ,σ(Yi), (9)

where (ξ, σ) ∈ (−1/2, ∞)× (0, ∞) and gξ,σ is the probability density function of the GPD,
which, for ξ 6= 0, is given by

gξ,σ(y) =
1
σ

(
1 +

ξy
σ

)−1/ξ−1
.

Based on partial derivatives of the log-pdf with respect to parameters, the resulting
maximum likelihood first-order conditions are given by

1
k

k

∑
i=1

log
(

1 +
ξYi
σ

)
= ξ,

1
k

k

∑
i=1

Yi
σ + ξYi

=
1

ξ + 1
. (10)

A closed-form solution to Equation (10) does not exist; however, the MLEs can be
obtained numerically through standard software packages, e.g., scipy.stats.genpareto
in Python.

Using Equation (8) with the MLEs and an appropriate selection of threshold leads to
the following estimator of the CVaR.
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Definition 5 (EVT CVaR estimator). Suppose that (ξ̂(n)u , σ̂
(n)
u ) are obtained from the excesses

above a chosen threshold u. Then, for α > F̂n(u), an estimator for the CVaR is

ĉ(n)u,α ≡ u +
σ̂
(n)
u

1− ξ̂
(n)
u

1 +
1

ξ̂
(n)
u

(1− F̂n(u)
1− α

)ξ̂
(n)
u

− 1

, (11)

with a similar interpretation based on the second line of Equation (8) when ξ̂
(n)
u = 0.

Note that estimates (ξ̂
(n)
u , σ̂

(n)
u ) exhibit asymptotic bias as explained in Troop et al.

(2021). The estimation procedure from the latter paper allowing to remove asymptotic bias
could be explored in the context of multi-bandits in subsequent work.

3.2. Choosing the Threshold

The selection of a suitable threshold u is a difficult problem that has been well-studied
in the EVT literature. For a survey of approaches for setting the threshold, see Scarrott
and MacDonald (2012). Many such approaches involve applying judgment to ultimately
select a value of u. Typically, sensitivity analyses are performed by altering the threshold
values and ensuring results are robust to the choice of u. However, a challenging aspect
of threshold selection in the machine learning context of the current paper is that u must
be decided automatically. We apply the recently developed method of Bader et al. (2018),
which uses a combination of ordered goodness-of-fits tests and a stopping rule to choose
the optimal threshold. This method provides some assurance that the excesses above the
chosen threshold are sufficiently well-approximated the GPD.

The method of Bader et al. (2018) is as follows. Consider a fixed set of thresholds
u1 < . . . < ul , where, for each ui, we have ki excesses. The sequence of null hypotheses for
each respective test i, i = 1, . . . , l, is given by

H(i)
0 : The distribution of the ki excesses above ui

follows the GPD.

For each threshold ui, let θ̂i = (ξ̂
(n)
ui , σ̂

(n)
ui ) denote the MLEs computed from the ki

excesses above ui. The Anderson–Darling (AD) test statistic comparing the empirical
threshold excesses distribution with the GPD is then calculated. Let y(1) < . . . < y(ki)

de-
note the ordered threshold excesses for test i and apply the transformation z(j) = Gθ̂i

(y(j)),
j = 1, . . . ki, where G is from Equation (6). The AD statistic for test i is then

A2
i = −ki −

1
ki

ki

∑
j=1

(2j− 1)
[
log
(

z(j)

)
+ log

(
1− z(ki+1−j)

)]
. (12)

Corresponding p-values for each test statistic can then be found by referring to a
lookup table (e.g., Choulakian and Stephens 2001) or computed on-the-fly. In the present
work, such p-values are obtained with the eva package in R. Using the p-values p1, . . . , pl
calculated for each test, the ForwardStop rule of G’Sell et al. (2016) was used to choose the
threshold. This is done by calculating

ŵF = max
{

w ∈ I
∣∣∣∣ − 1

w

w

∑
i=1

log(1− pi) ≤ γ

}
, (13)

where γ is a chosen significance parameter and I ⊆ {1, . . . , l}, I 6= ∅. Under this rule,
the threshold uv is chosen, where v = min{w ∈ I |w > ŵF}. If ŵF does exist, then no
rejection is made and umin(I) is chosen. If ŵF = max(I), then umax(I) is chosen. The overall
CVaR estimation procedure is summarized in Algorithm 1.
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Remark 1. In the threshold selection procedure of Bader et al. (2018), ŵF is given with I = {1, . . . , l};
however, we make the modification that I is an arbitrary index set in view of CVaR estimation: since
ĉ(n)u,α tends to infinity when ξ̂

(n)
u tends to 1, in order to ensure reasonable estimates of the CVaR, we

use a cutoff parameter ξmax < 1, where the MLE ξ̂
(n)
ui and corresponding threshold ui are discarded if

ξ̂
(n)
ui > ξmax.

Remark 2. Instead of choosing the candidate thresholds u1, . . . , ul directly, it is usually more
convenient to choose threshold percentiles q1, . . . , ql and compute u values via the empirical quantile
function, i.e., ui = F̂−1

n (qi).

Remark 3. It may happen that Algorithm 1 fails if I = ∅, in which case no suitable estimates of ξ
are found. This is an indication that the underlying data distribution does not satisfy the condition
ξ < 1 and that the CVaR does not exist. To make Algorithm 1 robust, the sample average estimate is
used as a fallback when the latter occurs.

Algorithm 1: EVT CVaR estimation with automated threshold selection
Input: An i.i.d. sample X1, .., Xn. CVaR level α, significance parameter γ, threshold

percentiles 0 < q1, . . . , ql < α, cutoff ξmax < 1.
Output: ĉ(n)u,α if I 6= ∅, otherwise return the sample average CVaR estimate using

Equation (3)

I ← ∅
for i = 1, . . . l do

Set ui = F̂−1
n (qi)

Compute (ξ̂
(n)
ui , σ̂

(n)
ui ) from ki threshold excesses

if ξ̂
(n)
ui ≤ ξmax then
Compute A2

i using Equation (12)
Set pi to p-value for A2

i using lookup table
I ← I ∪ {i}

end
end
if I 6= ∅ then

Set W = {w ∈ I | − 1
w ∑w

i=1 log(1− pi) ≤ γ}
if W 6= ∅ then

Compute ŵF using Equation (13)
if ŵF = max(I) then

v = max(I)
else

v = min{w ∈ I |w > ŵF}
end
u = uv

else
u = umin(I)

end

Compute ĉ(n)u,α using Equation (11)
end

In the next section, we combine Algorithm 1 with an algorithm for best-arm identifica-
tion in the risk-averse MAB framework.

4. Algorithm for Risk-Averse MABs

The MAB framework of this paper involves a finite horizon multi-stage decision
setting, where an agent makes decisions at stages t = 1, . . . , n. Let {1, . . . , K} denote a
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set of arms, which are possible actions that can be taken at each stage. In the risk-averse
setting, we consider the outcome of each draw from an arm to be a cost to the agent. Define
the K-dimensional random vector Xt ≡ (Xt

1, . . . , Xt
K), where Xt

j denotes the cost incurred

if the arm j is selected at stage t. Vectors X1, . . . , Xn are assumed to be independent and
identically distributed.

Therefore, for all arms i = 1, . . . , K, cost variables X1
i , . . . , Xn

i are i.i.d. copies of some
random variable Xi. Let {F1, . . . , FK} denote the respective CDFs of X1, . . . , XK; these
distribution functions are unknown to the agent. Throughout the rest of the paper, it
is assumed that each arm’s cost distribution satisfies Assumption 1. The integrability
assumption that ξi < 1, i = 1, . . . , K is equivalent to the bounded moment condition often
seen when analyzing bandit algorithms under risk criteria in the heavy-tailed domain (e.g.,
Bhat and Prashanth 2019), which is required for the CVaR to be finite.

We consider the problem of identifying the arm with the lowest CVaR value (at a pre-
specified value of α) in a fixed budget of n stages, where the CVaR is measured on single
stage losses instead of on an aggregate of rewards across various stages. The sequence
of selected arms is denoted by a ≡ (a1, . . . , an), where at ∈ {1, . . . , K}. When an arm at is
selected at stage t, its associated cost Xt

at is observed; however, the costs associated with
all other arms {Xt

i | i 6= at} remain unobserved. Let i∗ = arg mini=1,...,K CVaRα(Xi), i.e., the
arm with the lowest CVaR value. At the end of n stages, the bandit algorithm outputs an
arm selection î∗ ∈ {1, . . . , K}, which is perceived to be optimal by the learning agent.

The best-arm identification algorithm we consider is based on the successive rejects
(SR) algorithm of Audibert and Bubeck (2010), modified to select the arm with lowest CVaR
value as in Prashanth et al. (2020). The novel aspect of the proposed algorithm is it inclusion
of the EVT-based estimation of CVaR. The steps of our original algorithm are presented
in Algorithm 2. The algorithm proceeds through K− 1 phases, eliminating the arm with
the highest estimated CVaR value at each phase. The number of samples taken from each
arm at each phase is designed such that the total arm samples does not exceed the given
fixed budget n at the end of K− 1 phases. For arms i = 1, . . . , K, we denote CVaR estimates
using Algorithm 1 by ĉ(m)

u,α (i) (at a sample of size m).

Algorithm 2: EVT CVaR-SR algorithm

Initialize: A1 = {1, . . . , K}, logK = 1
2 + ∑K

i=2
1
i , n0 = 0, nk =

⌈
1

logK
n−K

K+1−k

⌉
.

Output: The single unique element in AK

for k = 1, . . . K− 1 do
Sample nk − nk−1 costs from each arm in Ak.
Compute CVaR estimates ĉ(nk)

u,α (i) for each arm i in Ak using Algorithm 1.

Set Ak+1 = Ak \ arg max
i∈Ak

ĉ(nk)
u,α (i), i.e., remove the arm with the highest CVaR

estimate (ties broken arbitrarily).
end

5. Numerical Experiments

In this section, two estimation methods for the CVaR are compared within a simulation
study: the sample average estimator of Equation (3) and the EVT estimator of Algorithm 1,
which we denote in this section by CVaR-SA and CVaR-EVT, respectively. First, we consider
a pure statistical estimation problem where i.i.d. costs from a single arm are sequentially
observed, and the cost distribution CVaR estimates are updated at every stage. This allows
evaluating the statistical accuracy of both methods. The second experiment embeds the
two respective CVaR estimation methods within the MAB problem of Algorithm 2 so as to
assess their suitability for sequential action selection. All code to reproduce our results is
provided on the following GitHub repository: https://github.com/dtroop/evt-bandits,
accessed on 1 April 2022.

https://github.com/dtroop/evt-bandits
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5.1. Single-Arm CVaR Estimation Experiment

Distributional parameters as in Section The single-arm problem where all costs are i.i.d.
samples from an unknown distribution is first considered. The estimation performance of
CVaR-SA and CVaR-EVT are compared via the root-mean-square error (RMSE) and absolute
bias on five examples from each of the Burr, Fréchet, half-t, Lognormal, and Weibull class
of distributions.

The Burr, Fréchet, and half-t distributions are all truly heavy-tailed in the sense
that they satisfy Assumption 1 with ξ > 0. The Lognormal and Weibull distributions
can be considered borderline between light and heavy-tailed in the sense that they satisfy
Assumption 1 with ξ = 0; however, their tails can be heavier than exponential depending on
their parameters. The distribution function and CVaR formula for each class of distribution
is given in the Appendix A.

The experiments consist of performing N = 1000 independent runs. Each run consists
of sequentially sampling a total of n = 20,000 independent costs from the single arm,
and the CVaR estimates are updated at every interval of 2000 costs. We fix α = 0.998 as an
example of an extreme risk level. To compute CVaR-EVT, we set γ = 0.1 and ξmax = 0.9
in Algorithm 1, with 20 threshold percentiles q1 = 0.79, q2 = 0.80, . . . , q20 = 0.98. Plots of
the RMSE and the absolute bias from estimating the CVaR across independent runs on
simulated data are given in Figures 1 and 2, respectively. Table A1 of Appendix B provides
the mean CVaR estimates across runs at the last stage and corresponding true CVaR values.
The latter table also contains information related to the percentage of thresholds rejected in
the simulations due to ξ̂

(n)
ui > ξmax, and the average threshold quantile qi selected in the

simulations for each considered distribution.
In terms of RMSE, the performance improvement of CVaR-EVT over CVaR-SA is most

apparent in the Burr, Fréchet, and half-t distributions, where ξ > 0. These distributions have
particularly long tails, and so the few samples used in CVaR-SA do not adequately capture
a good estimate of the CVaR. The average threshold percentile chosen by Algorithm 1 for
these distributions at n = 20,000 ranges from 0.80 to 0.82, which highlights the fact that
CVaR-EVT makes use of a significant portion of data below the 0.998 quantile.

The Lognormal and Weibull distributions have tails that are more distinct from the
GPD, and while we still notice improved overall accuracy from using the additional samples
in CVaR-EVT, this improvement is less significant than in the truly heavy-tailed cases. CVaR-
SA actually outperforms CVaR-EVT in some cases, which occurs most significantly in the
Lognormal(1, 1.5) and Weibull(0.5, 1) distributions. The average threshold percentile chosen
in these distributions at n = 20,000 was 0.84 and 0.90, respectively, indicating that the GPD
model did not fit well unless a higher threshold is used in CVaR-EVT.

In Table A1, we provide the average threshold selected by Algorithm 1 for all dis-
tributions, as well as the average number of thresholds rejected by the cutoff rule (i.e.,
where ξ̂

(n)
ui > ξmax). The latter is reported at a sample size of n = 2000 since extremely few

thresholds were rejected beyond this sample size.
Despite often exhibiting better performance in terms of RMSE, the CVaR-EVT leads

to higher bias than the CVaR-SA for several of the simulations, see for instance the two
rightmost columns of Figure 2. This is unsurprising since, as mentioned earlier, estimates
of the GPD parameters with the maximum likelihood from Equation (9) are known to be
asymptotically biased (De Haan and Ferreira 2006). The use of de-biasing procedures for
the CVaR-EVT estimates, such as that of Troop et al. (2021) could therefore be contemplated
to further improve the estimation performance.
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Figure 1. RMSE of CVaR-EVT and CVaR-SA with α = 0.998.
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Figure 2. Absolute bias of CVaR-EVT and CVaR-SA with α = 0.998.

5.2. Multi-Armed Bandit Experiment

In this section, we compare the performance of CVaR-EVT and CVaR-SA in a best-arm
identification problem. Algorithm 2 is compared with Prashanth et al. (2020, Algorithm 1)
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(i.e., where CVaR estimates are computed using CVaR-SA) in five five-arm MAB settings,
where in each setting, the five underlying arm distributions come from the same distribution
class, either the Burr, Fréchet, half-t, Lognormal or Weibull. Again, we fix α = 0.998 and use
the same distributional parameters as in Section 5.1. In other words, each of the five arms in
the bandits experiment has one of the five parameter sets presented in the first experiment.
Such parameters were chosen to vary the shape of the underlying distributions while
keeping the arm CVaRs relatively close in magnitude, making the task of distinguishing
them more difficult to the agent. Both Algorithm 2 and Prashanth et al. (2020, Algorithm 1)
are executed at fixed budgets of n = 5000, 10,000, . . . , 25,000, and N = 1000 independent
runs are performed at each budget. The performance metric we use to compare the two
methods is the probability of incorrect best-arm identification, i.e., P(î∗ 6= i∗), estimated
empirically at a given fixed budget by

∑N
j=1 1{î∗j 6= i∗}

N
,

where î∗j denotes the estimated optimal arm at the considered stage for independent run
j, j = 1, . . . , N, and i∗ denotes the arm with the lowest CVaR value. Plots of the empirical
estimates of the probability of incorrect best-arm identification using CVaR-EVT and CVaR-
SA are given in Figure 3. Consistently with the results of Section 5.1, the improved accuracy
of CVaR-EVT in these classes of distributions leads to a lower error rate in the MAB setting
for all budgets in our experiments compared to CVaR-SA.
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Figure 3. The empirical probability of incorrect best-arm identification using CVaR-EVT and CVaR-SA
in the successive rejects algorithm.

6. Conclusions

We developed a new algorithm for CVaR estimation combining EVT and automated
threshold selection and used it in a risk-averse, best-arm identification MAB problem. While
the CVaR approximation of Equation (8) exists in the literature, its efficacy in statistical
estimation is limited by the problem of threshold selection, which can be unreliable in
practice.

The novelty of our approach from a computational perspective is to integrate the
sequential goodness-of-fit test of Bader et al. (2018) to develop an automated CVaR es-
timation algorithm using EVT in view of sequential decision making based on extreme
risk. We demonstrated empirically that our algorithm produced more accurate estimates
compared to the more commonly encountered sample average CVaR estimator in certain
distributions, and is a preferable choice in the risk-averse MAB setting when the underlying
arm distributions are heavy-tailed and the confidence level of the CVaR α is large, i.e., close
to one.

The present paper has implications from both the academic and the practitioners’
perspective. First, our work is a useful addition to the risk-aware reinforcement learning
strand of literature, where the key differentiating feature of the present paper is the focus on
extreme risk. Moreover, our results also have implications for practitioners as our algorithm
can readily be deployed by risk managers to optimize the exposure to catastrophic risk in
the context of sequential decision making, for instance in financial contexts.
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Among future potential work, testing the proposed algorithm on real data would be
of interest. Indeed, while the present study establishes that our algorithm provides good
performance in a controlled environment with simulated heavy-tailed data, confirming that
such favorable performance still persists in a realistic context is important. Furthermore,
as a potential extension, the de-biasing procedure for EVT CVaR estimates from Troop
et al. (2021) could be integrated into the multi-armed bandits selection algorithm to further
improve the results. Finally, considering alternative objective functions instead of the CVaR
could also be explored. For instance, despite being harder to interpret, expectiles are a
popular choice in the risk management literature due to their favorable properties, such as
elicitability; see for instance Daouia et al. (2018). The extreme-value-based estimation of
expectiles could thus also be integrated into a risk-aware MAB framework.
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Appendix A. Probability Distributions and Their CVaRs

Appendix A.1. Burr

The Burr distribution with parameters c, d has CDF given by

Fc,d(x) = 1− (1 + xc)−d, c, d, x > 0.

The CVaR for the Burr distribution can be derived from its expression for the condi-
tional moment given in Kumar (2017, Section 2.2). If X ∼ Burr(c, d),

CVaRα(X) =
d[(1/qα)c]d−1/c

(1− α)(d− 1/c) 2F1

(
d− 1

c
, 1 + d, d− 1

c
+ 1;− 1

qα

)
, cd > 1, (A1)

where 2F1 denotes the hypergeometric function and qα = F−1
c,d (α). The Burr distribution is

in MDA(Hξ) with ξ = 1/(cd).

Appendix A.2. Fréchet

The Fréchet distribution with parameter γ has CDF given by

Fγ(x) = e−x−γ
, γ, x > 0.

The CVaR for the Fréchet distribution can be derived from Equation (2). If X ∼
Fréchet(γ),

CVaRα(X) = (1− α)−1[Γ(γ− 1/γ) − Γ(γ− 1/γ,− log(α))], γ > 1, (A2)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete gamma functions, respec-
tively. The Fréchet distribution is in MDA(Hξ) with ξ = 1/γ.

Appendix A.3. Half-t

If X follows the t distribution with ν degrees of freedom, then |X| follows the half-t
distribution, which has a CDF given by

Fν(x) = 2− It(x)

(
ν

2
,

1
2

)
, ν > 0, x ≥ 0,
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where t(x) = ν
x2+ν

and It(a, b) is the regularized incomplete Beta function. The CVaR for
the half-t distribution can be derived from the expression for the CVaR of the t-distribution
given in (Norton et al. 2019, Proposition 12). If X ∼ half-t(ν), then

CVaRα(X) = 2
ν + qα

(ν− 1)(1− α)
gν(qα), ν > 1,

where gν is the probability density function of the standardized t-distribution, and qα =

T−1
(

α+1
2

)
where T−1 is the inverse of the CDF of standardized t-distribution. The half-t

distribution is in MDA(Hξ) with ξ = 1/ν.

Appendix A.4. Lognormal

The Lognormal distribution with parameters µ, σ has a CDF given by

Fµ,σ(x) =
1
2
+

1
2

erf
[

ln x− µ√
2σ

]
, σ, x > 0.

The CVaR for the Lognormal distribution is given in (Norton et al. 2019, Proposition 9).
If X ∼ Lognormal(µ, σ),

CVaRα(X) =
eµ+σ2/2

1− α
Φ
[

σ− Φ−1(α)√
2

]
,

where Φ and Φ−1 are, respectively, the standard normal CDF and its inverse. The Lognor-
mal distribution is in MDA(Hξ) with ξ = 0.

Appendix A.5. Weibull

The Weibull distribution with parameters κ, λ has a CDF given by

Fκ,λ(x) = 1− e−(x/λ)κ
, κ, λ > 0, x ≥ 0.

The CVaR for the Weibull distribution is given in (Norton et al. 2019, Proposition 13).
If X ∼Weibull(κ, λ),

CVaRα(X) =
λ

1− α
Γ
(

1 +
1
κ

,− log(1− α)

)
,

where Γ(a, b) =
∫ ∞

b pa−1e−p dp is the upper incomplete gamma function. The Weibull
distribution is in MDA(Hξ) with ξ = 0.
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Appendix B. Numerical Results

Table A1. Data for all distributions used in the experiments. CVaRα denotes the exact CVaR value
for α = 0.998. Given at a sample size of n = 20,000, CVaR-SA and CVaR-EVT denote the average
estimated CVaR values across N = 1000 independent runs, and threshold pct. denotes the average
threshold percentile chosen by Algorithm 1. The rejection rate denotes the average portion of
candidate thresholds rejected by the cutoff rule in Algorithm 1, i.e., the total number of times where

ξ̂
(n)
ui > ξmax divided by the total number of thresholds tested (i.e., a proportion over all runs and

thresholds). This value is given at a sample size of n = 2000 since extremely few thresholds were
rejected beyond this sample size.

CVaRα CVaR-SA CVaR-EVT Threshold Pct. Rejection Rate

Burr(0.75, 2) 184.5 182.79 221.65 0.8 0.05
Burr(1, 1.5) 187.99 184.29 190.3 0.8 0.03
Burr(2, 1) 44.71 44.08 42.47 0.8 0.0

Burr(3, 0.75) 28.5 28.2 27.41 0.8 0.0
Burr(4, 0.5) 44.72 44.41 44.1 0.8 0.0

Frechet(1.25) 721.25 689.63 713.4 0.8 0.18
Frechet(1.5) 188.96 179.57 185.14 0.8 0.03
Frechet(2) 44.71 45.12 43.55 0.8 0.0

Frechet(2.5) 20.02 20.09 19.62 0.8 0.0
Frechet(3) 11.9 11.86 11.59 0.8 0.0
half-t(1.25) 530.66 503.19 498.46 0.8 0.17
half-t(1.5) 156.58 161.38 145.87 0.8 0.03
half-t(2) 44.7 45.13 41.65 0.81 0.0

half-t(2.5) 23.1 22.91 21.64 0.82 0.0
half-t(3) 15.41 15.28 14.59 0.82 0.0

Lognormal(5, 0.25) 328.63 328.32 326.79 0.84 0.0
Lognormal(4, 0.5) 269.11 268.73 266.18 0.8 0.0

Lognormal(2.5, 0.75) 134.45 133.96 135.32 0.8 0.0
Lognormal(2, 1) 183.83 182.69 192.67 0.8 0.0

Lognormal(1, 1.5) 351.98 350.52 429.49 0.84 0.0
Weibull(0.5, 1) 53.05 52.9 56.26 0.9 0.0

Weibull(0.75, 2) 27.99 27.92 28.71 0.82 0.0
Weibull(1, 3) 21.64 21.61 21.64 0.8 0.0

Weibull(1.25, 4) 19.41 19.41 19.31 0.81 0.0
Weibull(1.5, 5) 18.63 18.6 18.51 0.82 0.0
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