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Abstract: This paper studies the self-weighted least squares estimator (SWLSE) of the ARMA model
with GARCH noises. It is shown that the SWLSE is consistent and asymptotically normal when
the GARCH noise does not have a finite fourth moment. Using the residuals from the estimated
ARMA model, it is shown that the residual-based quasi-maximum likelihood estimator (QMLE) for
the GARCH model is consistent and asymptotically normal, but if the innovations are asymmetric, it
is not as efficient as that when the GARCH process is observed. Using the SWLSE and residual-based
QMLE as the initial estimators, the local QMLE for ARMA-GARCH model is asymptotically normal
via an one-step iteration. The importance of the proposed estimators is illustrated by simulated data
and five real examples in financial markets.
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1. Introduction

Time series models have been extensively applied in various areas and many method-
ologies were proposed in the literature; for example, Zhang (2003) proposed a hybrid
methodology that combines both ARIMA and ANN models to improve forecasting ac-
curacy. Since Engle (1982), the ARCH-type models have been widely used in economics
and finance. In particular, the GARCH model proposed by Bollerslev (1986) has been a
benchmark in the risk management. Zhang and Zhang (2020) showed that the GARCH-
based option-pricing models are able to price the SPX one-month variance swap rate, that
is, the CBOE Volatility Index (VIX) accurately. Setiawan et al. (2021) used the GARCH(1, 1)
model to analyze stock market turmoil during COVID-19 outbreak in an emerging and
developed Economy.

However, recent research showed that the usual statistical inference procedure does
not work if the fourth moment of the GARCH process does not exist. To make it clear, let
us consider the AR(1)-GARCH(1, 1) model

yt = φ1yt−1 + εt, (1)

εt = ηt
√

ht and ht = α0 + α1ε2
t−1 + β1ht−1, (2)

where α0 > 0, α1 ≥ 0, β1 ≥ 0, and ηt is a sequence of independent and identically
distributed (i.i.d.) innovations with zero mean and unit variance. For model (1), the least
squares estimator (LSE) of φ1 is

φ̂LSn ≡
( 1

n

n

∑
t=1

y2
t−1

)−1( 1√
n

n

∑
t=1

yt−1yt

)
,
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where n is the sample size. Weiss (1986) and Pantula (1989) showed that φ̂LSn is
√

n-
consistent and asymptotically normal if Eε4

t < ∞. However, Eε4
t = ∞ when the tail index

α of εt is in (0, 4]. In this case, Davis and Mikosch (1998) and Basrak et al. (2002) showed
that εt has a heavy-tailed feature and its sample autocorrelation function is neither

√
n-

consistent nor asymptotically normal. Lange (2011) showed that φ̂LSn is n1−2/α-consistent
and converges to a stable random variable when α ∈ (2, 4). Furthermore, for the AR model
with εt being G-GARCH(1, 1) noise in He and Teräsvirta (1999), Zhang and Ling (2015)
showed that

√
n

log n
(φ̂LSn − φ1) −→L Normal, if α = 4 (i.e. Eε4

t = ∞), (3)

n1− 2
α (φ̂LSn − φ1) −→L Stable, if α ∈ (2, 4) (i.e. Eε2

t < ∞ and Eε4
t = ∞), (4)

log n(φ̂LSn − φ1) −→L Stable, if α = 2 (i.e. Eε2
t = ∞), (5)

φ̂LSn − φ1 −→L Stable, if α ∈ (0, 2) (i.e. Eε2
t = ∞), (6)

when n → ∞, where −→L denotes the convergence in distribution. From (3)–(6), we
find that the LSE not only has a slower rate of convergence but also is not asymptotically
normal when α ∈ (0, 4). Thus, based on the LSE, the classical theory and methodology
(e.g., t-test, Wald test, and Ljung-Box test, among others) do not work in this case. Using
a simulation method, we give the regime of parameter vector (α1, β1) with Eε2ι

t < ∞ in
Figure 1 when ηt ∼ N(0, 1). It can be seen that the regime of (α1, β1) is very small for
Eε4

t < ∞ (i.e., α > 4). In practice, the estimated value of (α1, β1) does not lie in this regime,
usually. Thus, it is very important to study the statistical inference when α ∈ (0, 4]. Zhu
and Ling (2015) studied the self-weighted least absolute deviation estimator (SLADE) of
the ARMA-GARCH model and showed that it is consistent and asymptotically normal
when α ∈ (0, 4].

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α
1

β 1

Parameter region of GARCH(1,1) model

ι=2

ι=1.5

α
1
+β

1
=1 (i.e. ι=1)

ι=0.5

ι=0.05

 strict stationarity

Figure 1. Parameter regime of (α1, β1) with Eε2ι
t < ∞.

This paper studies the self-weighted LSE (SWLSE) of the ARMA model with GARCH
noises. It is shown that the SWLSE is consistent and asymptotically normal when the
GARCH noise does not have a finite fourth moment (i.e., α ∈ (2, 4]). Using the residuals
from the estimated ARMA model, it is shown that the residual-based quasi-maximum
likelihood estimator (QMLE) for the GARCH model is consistent and asymptotically
normal, but if the innovations are asymmetric, it is not as efficient as that when the
GARCH process is observed. Using the SWLSE and residual-based QMLE as the initial
estimators, the local QMLE for ARMA-GARCH model is asymptotically normal via an
one-step iteration.
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This paper is arranged as follows. Section 2 presents the model and assumptions.
Section 3 presents our main results. Section 4 presents simulation results and Section 5
gives real examples. All the proofs are deferred into the Appendix A.

2. Model and Assumptions

Assume that {yt : t = 0,±1,±2, · · · } are generated by the ARMA-GARCH model

yt = µ +
p

∑
i=1

φiyt−i +
q

∑
i=1

ψiεt−i + εt, (7)

εt = ηt
√

ht and ht = α0 +
r

∑
i=1

αiε
2
t−i +

s

∑
i=1

βiht−i, (8)

where αi ≥ 0 and β j ≥ 0, i = 0, · · · , r, j = 1, · · · , s, and ηt is defined as in (2). Denote
γ = (µ, φ1, · · · , φp, ψ1, · · · , ψq)′, δ = (α0, α1, · · · , αr, β1, · · · , βs)′, and λ = (γ′, δ′)′. Let
γ0, δ0, and θ0 be the true values of γ, δ, and θ, respectively. The parameter subspaces
Θγ ⊂ Rp+q+1 and Θδ ⊂ Rr+s+1

0 are compact, where R = (−∞, ∞) and R0 = [0, ∞).
Denote Θ = Θγ × Θδ, m = p + q + r + s + 2, α(z) = ∑r

i=1 αizi, β(z) = 1 − ∑s
i=1 βizi,

φ(z) = 1−∑
p
i=1 φizi, and ψ(z) = 1 + ∑

q
i=1 ψizi. We introduce the following conditions:

Assumption 1. θ0 is an interior point in Θ and for each θ ∈ Θ, φ(z) 6= 0 and ψ(z) 6= 0 when
|z| ≤ 1, and φ(z) and ψ(z) have no common root with φp 6= 0 or ψq 6= 0.

Assumption 2. α(z) and β(z) have no common root, αr + βs 6= 0, and ∑r
i=1 αi + ∑s

j=1 β j < 1
for each θ ∈ Θ.

Assumption 1 is the stationarity and invertibility condition of ARMA models, under
which it follows that

ψ−1(z) =
∞

∑
i=0

aψ(i)zi and φ(z)ψ−1(z) =
∞

∑
i=0

aγ(i)zi, (9)

where supΘγ
|aψ(i)| = O(ρi) and supΘγ

|aγ(i)| = O(ρi) with ρ ∈ (0, 1). Assumption 2

ensures that {εt} is strictly stationary and ergodic with Eε2
t < ∞, see Ling and Li (1997)

and Ling and McAleer (2002). It is also the identifiability condition for model (2) and, by
Lemma 2.1 in Ling (1999), the condition ∑s

i=1 βi < 1 is equivalent to

0 ≤ ρ(G) < 1, where G =

(
β1 · · · βs

Is−1 O

)
, (10)

Ik is the k × k identity matrix, and ρ(B) is the spectral radius of matrix B. Under this
condition, we have

β−1(z) =
∞

∑
i=0

aβ(i)zi and α(z)β−1(z) =
∞

∑
i=1

aδ(i)zi, (11)

where supΘδ
|aβ(i)| = O(ρi) and supΘδ

|aδ(i)| = O(ρi) with ρ = ρ(G).
Given the observations {yn, · · · , y1} and initial value Y0 ≡ {y0, y−1, · · · }, we can

write the parametric model as

εt(γ) = yt − µ−
p

∑
i=1

φiyt−i −
q

∑
i=1

ψiεt−i(γ), (12)

ηt(λ) = εt(γ)/
√

ht(λ) and ht(λ) = α0 +
r

∑
i=1

αiε
2
t−i(γ) +

s

∑
i=1

βiht−i(λ). (13)
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It is easy to see that ηt(λ0) = ηt, εt(γ0) = εt, and ht(λ0) = ht. In practice, we do not
observe those yi in Y0 and hence they have to be replaced by some constants. This does
not affect our asymptotic results, see Ling and McAleer (2003a). For simplicity, we do not
study this case in details.

3. Main Results

The self-weighted estimation approach was proposed by Ling (2005) and it has been
used to solve the problem on statistical inference of the heavy-tailed ARMA-GARCH model
in Ling (2007) and Zhu and Ling (2011). Using a similar idea, we define the SWLSE as

γ̃n = arg min
γ∈Θγ

n

∑
t=1

ε2
t (γ)

wt
,

where wt = 1 + ∑∞
k=1 k−1/2−1|yt−k|. We can state the following result:

Theorem 1. Suppose that Assumptions 1–2 hold. Then, as n→ ∞,

(i) γ̃n −→p γ0,

(ii)
√

n(γ̃n − γ0) −→L N(0, A−1BA−1),

where −→p denotes the convergence in probability, A = E(w−1
t Mt), B = E(w−2

t ht Mt), and
Mt = [∂εt(γ0)/∂γ][∂εt(γ0)/∂γ]′.

The preceding result holds for any kind of ARCH-type errors only if Eht < ∞, see
the proof in the Appendix A. To easily understand it, we refer to model (1) and (2) again.
In this case, the information function is E(y2

t−1/wt) ≤ E|yt−1| < ∞. The score function is
n−1/2 ∑n

t=1 yt−1εt/wt and E(yt−1εt/wt)2 ≤ O(1)Eht < ∞, which is the condition we need
for the GARCH errors. This result holds when Eε4

t < ∞, but it is not as efficient as the LSE
in this case. When Eε4

t = ∞ and Eε2
t < ∞, the process yt has a heavy tailed feature and the

SWLSE has a faster rate of convergence than that of LSE. The weight function wt can be
replaced by others, see Ling (2007).

Next, we use the residual ε̃t ≡ εt(γ̃n) from ARMA parts as the artificial observation of
εt. The log-quasi-likelihood function based on ε̃t can be written as

L̃δn(δ) =
1
n

n

∑
t=1

l̃t(δ) and l̃t(δ) = −
1
2

log h̃t(δ)−
ε̃2

t

2h̃t(δ)
, (14)

where h̃t(δ) = ht(λ)|γ=γ̃n . We define the residual-based QMLE of δ0 as

δ̃n = arg max
δ∈Θδ

L̃δn(δ).

Denote Hδt(λ) = h−2
t (λ)[∂ht(λ)/∂δ][∂ht(λ)/∂δ′] and Hδt(λ0) by Hδt. We now give the

asymptotic properties of δ̃n as follows.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, as n→ ∞,

(i) δ̃n −→p δ0, i f E|ηt|2+ι̃ < ∞ for some ι̃ > 0,

(ii)
√

n(δ̃n − δ0) −→L N(0, (EHδt)
−1Ωδ(EHδt)

−1), i f Eη4
t < ∞,

where Ωδ = κEHδt + EDt(A−1BA−1)ED′t + κ3Ω̃δ, Ω̃δ = EDt A−1E(w−1
t D̃′t)

+E(w−1
t D̃t)A−1ED′t, κ = Eη4

t − 1, κ3 = Eη3
t , Dt = E{h−2

t [∂ ht(λ0)/∂ δ][∂ ht(λ0)/∂ γ′]},
and D̃t = E{h−1/2

t [∂ ht(λ0)/∂ δ][∂ εt(γ0)/∂ γ′]}.
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When ηt is symmetric and µ = 0, we have Eη3
t = 0, EDt = ED̃t = 0, and hence

Ωδ = κEHδt. When the conditional mean is zero (i.e., yt = εt), model (7) and (8) reduces
to the GARCH model. In this case, the log-quasi-likelihood function based on εt can be
written as

Lδn(δ) =
1
n

n

∑
t=1

lt(δ) and lt(δ) = −
1
2

log ht(δ)−
ε2

t
2 ht(δ)

. (15)

Then, the global QMLE of δ0 is defined as δ̄n = arg maxδ∈Θδ
Lδn(δ). Berkes et al (2003) and

Hall and Yao (2003) showed that δ̄n is consistent and as n→ ∞,
√

n(δ̄n − δ0) −→L N(0, κ(EHδt)
−1), if Eη4

t < ∞. (16)

From Theorem 2, we see that the efficiency of the estimated δ0 is affected by the estimated
parameters in ARMA parts unless ηt has a symmetric density and µ is known to be zero
without estimation. This gives a reminder to practitioners that we need to be careful when
ones use the residuals to estimate the GARCH model.

Given {yn, · · · , y1} and the initial value Y0, we can write down the log-quasi-likelihood
function of model (7) and (8) as follows:

Ln(λ) =
1
n

n

∑
t=1

lt(λ) and lt(λ) = −
1
2

log ht(λ)−
ε2

t (γ)

2 ht(λ)
. (17)

Then, the global QMLE of λ0 is defined as the maximizer of Ln(λ) in Θ. Ling and McAleer
(2003a) proved the consistency of this QMLE. But the asymptotic normality of this QMLE
requires Eε4

t < ∞, see also Francq and Zakoïan (2004).
Based on λ̃n ≡ (γ̃′n, δ̃′n)

′, we obtain the local QMLE through an one-step iteration

λ̂n = λ̃n −
[ n

∑
t=1

∂2lt(λ̃n)

∂λ∂λ′

]−1 n

∑
t=1

∂lt(λ̃n)

∂λ
. (18)

As in Ling (2007), we can show that as n→ ∞,
√

n(λ̂n − λ0) −→L N(0, Σ−1ΩΣ−1),

where Σ = E[Ut(λ0)U′t(λ0)], Ω = E[Ut(λ0)JU′t(λ0)], J =
( 1 κ3

κ3 κ

)
, and Ut(λ) =

[h−1/2
t ∂εt(γ)/∂λ, h−1

t ∂ht(λ)/∂λ]. When ηt ∼ N(0, 1), the local QMLE is efficient. So,
Theorems 1 and 2 provide an approach to obtain an efficient estimator for the full ARMA-
GARCH models under the finite second moment condition of εt. When ηt is not normal,
the efficient and adaptive estimators can be obtained by using the results in this section and
following the similar lines as in Drost et al. (1997), Drost and Klaassen (1997), Ling (2003),
and Ling and McAleer (2003b).

4. Simulation Study

In this section, we assess the finite sample performance of λ̃n = (γ̃′n, δ̃′n)
′ and

λ̂n = (γ̂′n, δ̂′n)
′, where γ̃n is the SWLSE, δ̃n is the residual-based QMLE, and λ̂n is the

local QMLE. We generate 1000 replications of sample size n = 1000 and 2000 from the
following model

yt = φ10yt−1 + ψ10εt−1 + εt, (19)

εt = ηt
√

ht and ht = α00 + α10ε2
t−1 + β10ht−1, (20)

where γ′0 = (φ10, ψ10) = (0.4, 0.5), δ′0 = (α00, α10, β10) = (0.1, 0.1, 0.8), and ηt is chosen
to be the standard normal N(0, 1) distribution, re-scaled Laplace L(0, 1) distribution, or
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re-scaled student’s t(5) distribution with Eη2
t = 1. Table 1 reports the sample bias (Bias), the

sample standard deviations (SD), and the average estimated asymptotic standard deviation
(AD) of λ̃n and λ̂n. From this table, we find that (i) each considered estimator has a small
bias, and its value of SD is close to that of AD, demonstrating the validity of its asymptotic
normality; (ii) γ̂n could be slightly more efficient than γ̃n, whereas δ̂n is as efficient as
δ̃n; (iii) all estimators for ηt ∼ N(0, 1) are more efficient than the corresponding ones for
ηt ∼ L(0, 1) or t(5). All these findings are consistent with our theory in Section 3. We
should mention that the QMLE of δ0 is not reliable when the sample size n is less than 800
according to our simulation experiments and hence the results are not reported here.

Table 1. The results of λ̃n and λ̂n.

λ̃n

ηt n φ̃1n ψ̃1n α̃0n α̃1n β̃1n

N(0, 1) 1000 Bias −0.0012 0.0032 0.0189 0.0012 −0.0235
SD 0.0443 0.0423 0.0650 0.0278 0.0839
AD 0.0424 0.0402 0.0524 0.0290 0.0726

2000 Bias −0.0017 0.0015 0.0083 −0.0000 −0.0103
SD 0.0300 0.0293 0.0342 0.0204 0.0471
AD 0.0300 0.0285 0.0332 0.0201 0.0469

λ̂n

φ̂1n ψ̂1n α̂0n α̂1n β̂1n

1000 Bias −0.0010 0.0022 0.0172 0.0015 −0.0210
SD 0.0425 0.0406 0.0657 0.0282 0.0845
AD 0.0405 0.0380 0.0526 0.0291 0.0729

2000 Bias −0.0016 0.0012 0.0073 −0.0000 −0.0087
SD 0.0283 0.0274 0.0340 0.0205 0.0470
AD 0.0286 0.0270 0.0332 0.0202 0.0469

λ̃n

φ̃1n ψ̃1n α̃0n α̃1n β̃1n

L(0, 1) 1000 Bias −0.0032 0.0035 0.0241 0.0020 −0.0304
SD 0.0454 0.0414 0.0806 0.0381 0.1079
AD 0.0456 0.0433 0.0639 0.0385 0.0909

2000 Bias −0.0001 0.0014 0.0116 0.0016 −0.0148
SD 0.0328 0.0307 0.0426 0.0268 0.0599
AD 0.0323 0.0307 0.0397 0.0269 0.0577

λ̂n

φ̂1n ψ̂1n α̂0n α̂1n β̂1n

1000 Bias −0.0027 0.0028 0.0237 0.0028 −0.0296
SD 0.0444 0.0402 0.0918 0.0390 0.1183
AD 0.0443 0.0416 0.0641 0.0387 0.0913

2000 Bias −0.0008 0.0013 0.0109 0.0019 −0.0138
SD 0.0316 0.0296 0.0424 0.0270 0.0598
AD 0.0313 0.0295 0.0397 0.0270 0.0578

λ̃n

φ̃1n ψ̃1n α̃0n α̃1n β̃1n

t(5) 1000 Bias −0.0012 0.0016 0.0300 0.0046 −0.0395
SD 0.0460 0.0445 0.0867 0.0432 0.1137
AD 0.0454 0.0431 0.0734 0.0443 0.1038

2000 Bias 0.0014 0.0005 0.0126 0.0025 −0.0164
SD 0.0312 0.0305 0.0463 0.0325 0.0657
AD 0.0323 0.0308 0.0459 0.0316 0.0666

λ̂n

φ̂1n ψ̂1n α̂0n α̂1n β̂1n

1000 Bias −0.0022 0.0018 0.0291 0.0054 −0.0381
SD 0.0472 0.0448 0.0897 0.0444 0.1166
AD 0.0443 0.0417 0.0737 0.0445 0.1042

2000 Bias 0.0006 0.0007 0.0119 0.0030 −0.0155
SD 0.0317 0.0296 0.0462 0.0330 0.0656
AD 0.0315 0.0297 0.0459 0.0317 0.0667

As a comparison, we compute the classical LSE γ̂LSn = (φ̂LSn, ψ̂LSn)
′ for γ0 in model

(19) and (20), where γ̂LSn is computed in a similar way as γ̃n with wt ≡ 1. Table 2 reports
the corresponding results of γ̂LSn. Compared with γ̃n in Table 1, we find that γ̂LSn is less
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efficient than γ̃n for all examined cases. This finding suggests that it seems better to fit
the ARMA model by the SWLSE rather than the LSE method when the data exhibit the
conditionally heteroscedastic effect.

Table 2. The results of γ̂LSn.

ηt ∼ N(0, 1) ηt ∼ L(0, 1) ηt ∼ t(5)

n φ̂LSn ψ̂LSn φ̂LSn ψ̂LSn φ̂LSn ψ̂LSn

1000 Bias 0.0001 0.0012 −0.0034 0.0024 −0.0033 0.0015
SD 0.0441 0.0412 0.0482 0.0473 0.0518 0.0487
AD 0.0437 0.0411 0.0507 0.0474 0.0525 0.0490

2000 Bias −0.0018 0.0015 −0.0009 0.0011 −0.0008 0.0010
SD 0.0307 0.0299 0.0350 0.0325 0.0382 0.0349
AD 0.0311 0.0293 0.0367 0.0344 0.0382 0.0358

5. Real Examples

This section first studies the log returns (×100) of DJIA, NASDAQ, NASDAQ 100,
and S&P 500 from 11 March 2015 to 10 March 2021, with a total of 1764 observations (see
Figure 2). Denote each log return series by {yt}1764

t=1 . Before fitting an AR(1)-GARCH(1, 1)
to {yt}1764

t=1 , we first estimate αy, the tail index of |yt|, and get the following results:

(DJIA) α̂y = 2.3029, (NASDAQ) α̂y = 3.2592,

(0.9285) (0.6830)

(NASDAQ 100) α̂y = 3.6956, (S&P 500) α̂y = 2.5329,

(0.6077) (0.8567)

where α̂y is the proposed estimator of αy in Hill (2010), and the value in parentheses is
the AD of α̂y. From the above results, we can conclude that each |yt| has a finite second
moment, but does not have a finite fourth moment. Hence, it is reasonable to fit four return
series by using the procedure in Section 3, that is, we first obtain the SWLSE γ̃n and the
residual-based QMLE δ̃n, and then obtain the local QMLE λ̂n. The resulting fitted models
are as follows:

(DJIA)


yt = 0.0859− 0.0461yt−1 + εt,

(0.0173) (0.0292)
ht = 0.0416 + 0.2108ε2

t−1 + 0.7532ht−1,
(0.0109) (0.0378) (0.0377)

(NASDAQ)


yt = 0.1009− 0.0663yt−1 + εt,

(0.0216) (0.0275)
ht = 0.0643 + 0.1747ε2

t−1 + 0.7826ht−1,
(0.0178) (0.0335) (0.0367)

(NASDAQ 100)


yt = 0.1125− 0.0654yt−1 + εt,

(0.0225) (0.0276)
ht = 0.0668 + 0.1751ε2

t−1 + 0.7855ht−1,
(0.0180) (0.0325) (0.0351)

(S&P 500)


yt = 0.0910− 0.0838yt−1 + εt,

(0.0171) (0.0289)
ht = 0.0432 + 0.2206ε2

t−1 + 0.7453ht−1,
(0.0117) (0.0422) (0.0414)
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where all estimated parameters are the local QMLE λ̂n, and the values in parentheses are
the ADs of λ̂n. From these fitted models, we can find that all estimated parameters are
significantly different from zero at the level of 5%. In particular, the significant parame-
ters in the fitted AR models imply that the U.S. stock market is not efficient during the
examined period.

500 1000 1500

-10

-5

0

5

10

(a) DJIA

500 1000 1500

-10

-5

0

5

10
(b) NASDAQ

500 1000 1500

-10

-5

0

5

10
(c) NASDAQ 100

500 1000 1500

-10

-5

0

5

10
(d) S&P 500

Figure 2. Log returns (×100) of DJIA, NASDAQ, NASDAQ 100, and S&P 500 from 11 March 2015 to
10 March 2021.

Next, this section considers the log returns (×100) of PHLX Oil Service Index OSX
from 11 March 2015 to 10 March 2021, with a total of 1510 observations (see Figure 3). As
before, we denote this log return series by {yt}1510

t=1 , and obtain its estimate α̂y = 2.7960
with AD = 0.7078. This implies that |yt| has a finite second moment, but does not have a
finite fourth moment. Hence, we apply the local QMLE method to get the following fitted
model for yt:

(OSX)


yt = −0.0377 + 0.0239yt−1 + εt,

(0.0589) (0.0307)
ht = 0.1329 + 0.1076ε2

t−1 + 0.8792ht−1.
(0.0713) (0.0285) (0.0304)

Unlike the fitted results for the four U.S. stock indexes above, the fitted AR coefficient
for the OSX index is not significantly different from zero at the level of 5%, indicating that
the oil market is efficient during the examined period.
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Figure 3. Log returns (×100) of OSX from 11 March 2015 to 10 March 2021.

6. Concluding Remarks

This paper studied the SWLSE of the ARMA model with GARCH noises and the
residual-based QMLE for the GARCH model. The consistency and asymptotic normality of
SWLSE were established under a little moment condition. The importance of the proposed
estimators was illustrated by simulated data and four major stock indexes and one major
oil index in U.S. The ARMA-GARCH model is very important in the risk management,
see He et al. (2019). In practice, ones need to build the ARMA-GARCH model from the
historical data. The major contribution of our paper is to present a way to build an efficient
and reliable model for this purpose. Several potential future research topics are listed as
follows: first, we may extend our procedure for the hybrid methodology that combines
both ARIMA and ANN models with GARCH errors as in Zhang (2003); second, we could
use our procedure to analyze the energy data and build an ARMA-GARCH model for the
green energy, renewable energy, and bio-energy data as discussing in An and Mikhaylov
(2020); third, we may explore a linear programming or a genetic algorithm to find the
QMLE of ARMA-GARCH model as presented in An et al. (2021).
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Appendix A. Proofs

The following lemma gives two basic properties for model (7) and (8).

Lemma A1. Suppose {εt} is generated by model (8) satisfying Assumption 2. Then (i) {εt} is
strictly stationary and ergodic with Eε2

t < ∞, and has the following causal representation:

εt = ηt
√

ht and ht = α0

[
1 +

∞

∑
j=1

u′
j−1

∏
i=0

Pt−iξt−j

]
a.s.;

https://www.wsj.com/
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and (ii) there exists some ι ∈ (0, 1) such that E|εt|2+ι < ∞ if E|ηt|2+ι̃ < ∞ for some ι̃ > 0, where
ξt = (η2

t , 0, · · · , 0, 1, · · · , 0)
′
(r+s)×1 with the first component η2

t and the (r + 1)th component 1,

and u = (0, · · · , 0, 1, · · · , 0)
′
(r+s)×1 with the (r + 1)th component 1, and

Pt =


α1η2

t · · · αr η2
t β1 η2

t · · · βsη2
t

Ir−1 O O

α1 · · · αr β1 · · · βs
O Is−1 O

.

Proof. The result in (i) is from Theorem 2.1 of Ling and Li (1997). For (ii), we first show
that there exists an integer i0 such that, for some ι̃ ∈ (0, 1),

E‖
i0

∏
k=1

Pt−k‖1+ι̃1 < 1, (A1)

where ‖B‖ =
√

tr(BB′) for a vector or matrix B. Let P = [Π, O]′(r+s)×(r+s) with
Π = (α1, · · · , αr, β1, · · · , βs)′, C be defined as Pt with all the elements of its first row
replaced by 0, and

P(x) = (E|ηt|2(1+x))1/(1+x)P + C.

Since E|ηt|2+ι̃ < ∞, the spectral radius ρ(P(x)) is continuous in terms of x in [0, ι̃). By
Lemma 3.2 in Ling (1999) and Assumption 2, we know that ρ(P(0)) = ρ(EPt) < 1, and
there exists a constant ι̃1 ∈ (0, ι̃) such that

ρ(P(ι̃1)) < ρ(EPt) + [1− ρ(EPt)] < 1. (A2)

By Corollary A.2 in Johansen (1995, p. 220) and (A2),

‖Pi(ι̃1)‖ ≤ c[ρ(P(ι̃1))]i/2 −→ 0, (A3)

as i→ ∞, where c is a constant. Let cj = (0, · · · , 0, 1, 0, · · · , 0)′(r+s)×1 with the jth element
being 1. Since all the elements of Pt are nonnegative, it follows that

‖
i

∏
k=1

Pt‖ ≤
r+s

∑
j1,j2=1

c′j1
i

∏
k=1

Ptcj2 . (A4)

By Minkowskii’s inequality and (A3) and (A4), we have that

E‖
i

∏
k=1

Pt−k‖1+ι̃1 ≤
( r+s

∑
j1,j2=1

{E[c′j1
i

∏
k=1

Pt−kcj2 ]
1+ι̃1}1/(1+ι̃1)

)1+ι̃1

=
[ r+s

∑
j1,j2=1

{E
[
c′j1

i

∏
k=1

(η2
t−kP + C)cj2

]1+ι̃1
}1/(1+ι̃1)

]1+ι̃1

≤
[ r+s

∑
j1,j2=1

(
c′j1

i

∏
k=1

[(E|ηt|2(1+ι̃1))1/(1+ι̃1)P + C]cj2

)]1+ι̃1

=
[ r+s

∑
j1,j2=1

c′j1 Pi(ι̃1)cj2

]1+ι̃1
−→ 0,

as i → ∞. Thus, there is i0 large enough such that (A1) holds. Using (A1) and the
representation in (i), we can show that (ii) holds. This completes the proof.
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Lemma A2. [Lemma A.1 in Ling (2007)] If Assumptions 1 and 2 hold, then there exist constants
C and ρ ∈ (0, 1) such that the following holds uniformly in Θ:

(i) εt−1(γ),
∥∥∥∂εt(γ)

∂γ

∥∥∥, and
∥∥∥∂2εt(γ)

∂γ∂γ′

∥∥∥ are bounded a.s. by ξγt−1,

(ii) ht(λ) is bounded a.s. by ξ2
γt−1,

where ξγt−1 = C(1 + ∑∞
j=1 ρj|yt−j|) with constants ρ ∈ (0, 1) and C.

Proof of Theorem. Let Lsn(γ) = ∑n
t=1[ε

2
t (γ)/wt]/n. First, the space Θγ is compact and γ0

is an interior point in Θγ. Second, Lsn(γ) is continuous in γ ∈ Θγ and is a measurable
function of {ys, s = t, t− 1, · · · } for all γ ∈ Θγ. Third, by Lemma A2(i),

E sup
γ∈Θγ

[ε2
t (γ)/wt] ≤ CE(1 +

∞

∑
i=0

ρi|yt−i|)2 < ∞,

where C is a constant. Moreover, by the ergodic theorem, Lsn(γ) −→p E[ε2
t (γ)/wt] for each

γ. Furthermore, by Theorem 3.1 in Ling and McAleer (2003a), Lsn(γ) −→p E[ε2
t (γ)/wt]

uniformly in Θγ. Fourth,

εt(γ) = εt − [Mt(γ)−Mt(γ0)],

where Mt(γ) = ∑
p
i=1 φiyt−i + ∑

q
i=1 φiεt−i(γ). Thus,

E
[ ε2

t (γ)

wt

]
= E

[ ε2
t (γ0)

wt

]
+ E

{ [Mt(γ)−Mt(γ0)]
2

wt

}
≥ E

[ ε2
t (γ0)

wt

]
,

where the equality holds if and only if Mt(γ) = Mt(γ0), that is, εt(γ) = εt(γ0), which
holds if and only if γ = γ0 under Assumption 1, that is, E[ε2

t (γ)/wt] reaches its unique
minimum at γ = γ0. Thus, we have established all the conditions for consistency in
Theorem 4.1.1 in Amemiya (1985) and hence (i) holds.

(ii) First, γ̃n is a consistent estimator of γ0. Second,

∂2Lsn(γ)

∂γ∂γ′
=

2
n

n

∑
t=1

1
wt

∂εt(γ)

∂γ

∂εt(γ)

∂γ′
+

2
n

n

∑
t=1

εt(γ)

wt

∂2εt(γ)

∂γ∂γ′

exists and is continuous in Θγ. Third, let

At(γ) ≡
1

wt

∂εt(γ)

∂γ

∂εt(γ)

∂γ′
+

εt(γ)

wt

∂2εt(γ)

∂γ∂γ′
.

By Lemma A2, we can show that E supγ∈Θγ
‖At(γ)‖ < ∞. By the ergodic theorem and

Theorem 3.1 in Ling and McAleer (2003a), we can show that ∂2Lsn(γ)/∂γ∂γ′ converges to
2EAt(γ) uniformly in Θγ in probability. Since EAt(γ) is continuous in terms of γ, we can
show that ∂2Lsn(γn)/∂γ∂γ′ converges to 2A in probability for any sequence γn, such that
γn → γ0 in probability. Fourth,

∂Lsn(γ0)

∂γ′
=

2
n

n

∑
t=1

εt(γ0)

wt

∂εt(γ0)

∂γ
.

By Lemma A2, it follows that

B = E
[ ε2

t (γ0)

w2
t

∂εt(γ0)

∂γ

∂εt(γ0)

∂γ′

]
= E

[ht(λ0)

w2
t

∂εt(γ0)

∂γ

∂εt(γ0)

∂γ′

]
≤ C2Eht < ∞.
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Similar to the proof of Lemma 4.2 in Ling and McAleer (2003a), we can show that A
and B are positive definite. By the central limit theorem, we have that ∂Lsn(γ0)/∂γ −→L
N(0, 4B). Thus, we have established all the conditions in Theorem 4.1.3 in Amemiya (1985),
and hence

√
n(γ̃n − γ0) −→L N(0, A−1BA−1). This completes the proof.

The following Lemma A3(i)–(ii) is Lemma A.2 in Ling (2007) and Lemma A3(iii) is
Lemma A.3(i) in Ling (2007).

Lemma A3. If Assumptions 1 and 2 hold, then it follows that

(i) sup
Θ

∥∥∥ 1
ht(λ)

∂ht(λ)

∂δ

∥∥∥ ≤ ξδt−1,

(ii) sup
Θ

∥∥∥ 1
ht(λ)

∂2ht(λ)

∂δ∂δ′

∥∥∥ ≤ ξδt−1,

(iii) sup
Θ

∥∥∥ 1√
ht(λ)

∂ht(λ)

∂γ

∥∥∥ ≤ ξγt−1,

where ξδt−1 = C(1 + ∑∞
j=1 ρj|yt−j|ι1) with constants ρ ∈ (0, 1) and C for any ι1 > 0.

To prove Theorem 2, we need to introduce another three lemmas. For their proofs,
we need the condition that E|εt|2+ι̃1 < ∞ for some ι̃1 > 0. Here and in the sequel,
lt(δ) = lt(λ)|γ=γ0 and ht(δ) = ht(λ)|γ=γ0 .

Lemma A4. If Assumptions 1 and 2 hold with E|ηt|2+ι̃ < ∞ for some ι̃ > 0, then it follows that

sup
δ∈Θδ

∣∣∣ 1
n

n

∑
t=1

[l̃t(δ)− lt(δ)]
∣∣∣ = op(1).

Proof. Since ξγt in Lemma A2 is strictly stationary with Eξ2
γt < ∞, we have that max1≤t≤n ξγt

/
√

n = op(1). By Taylor’s expansion, Lemma A2(i), and Theorem 1(ii), it follows that

ε̃t = εt + (γ̃n − γ0)
∂εt(γ∗)

∂γ
= εt + op(1), (A5)

where op(1) holds uniformly in t, and γ∗ lies between γ0 and γ̃n. By (A5), we can readily
show that

sup
δ∈Θδ

∣∣∣ 1
n

n

∑
t=1

ε̃2
t − ε2

t

h̃t(δ)

∣∣∣ = op(1), (A6)

since h̃t(δ) ≥ α0 uniformly in δ ∈ Θδ. Note that

h̃t(δ) = ht(δ) + (γ̃n − γ0)
∂ht(λ∗)

∂γ
, (A7)

where λ∗ = (γ∗
′
, δ′)′ and γ∗ lies between γ0 and γ̃n. By Lemma A1(ii), we can show

that E(ε2
t ξ ι̃1

γt−1) < ∞ as ι̃1 is small enough. By Lemma A3(iii) and the ergodic theorem, it
follows that

sup
λ∈Θ

1
n

n

∑
t=1

ε2
t

∥∥∥∂ht(λ)

∂γ

∥∥∥ι̃1
≤ 1

n

n

∑
t=1

ε2
t ξ ι̃1

γt−1 = Op(1),
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as ι̃1 is small enough. Thus,

1
n

n

∑
t=1

ε2
t

∣∣∣ 1
h̃t(δ)

− 1
ht(δ)

∣∣∣ ≤ 2

α1−ι̃1
0 n

n

∑
t=1

ε2
t

∣∣∣ 1
h̃t(δ)

− 1
ht(δ)

∣∣∣ι̃1
≤ 2

α1+ι̃1
0 n

n

∑
t=1

ε2
t

∣∣∣h̃t(δ)− ht(δ)
∣∣∣ι̃1

≤ 2‖γ̃n − γ0‖ι̃1

α1+ι̃1
0 n

n

∑
t=1

ε2
t

∥∥∥∂ht(λ∗)

∂γ

∥∥∥ι̃1
= op(1), (A8)

where op(1) holds uniformly in δ ∈ Θδ. By (A6) and (A8), it follows that

sup
δ∈Θδ

∣∣∣ 1
n

n

∑
t=1

[ ε̃2
t

h̃t(δ)
− ε2

t
ht(δ)

]∣∣∣ = op(1). (A9)

Moreover, we can show that

1
n

n

∑
t=1

[
log h̃t(δ)− log ht(δ)

]
I{h̃t(δ) ≥ ht(δ)}

=
1
n

n

∑
t=1

[
log
[
1 + (γ̃n − γ0)

1
ht(δ)

∂ht(λ∗)

∂γ

]]
I{h̃t(δ) ≥ ht(δ)}

≤ 1
nι̃1

n

∑
t=1

log
[
1 + α−1

0 ‖γ̃n − γ0‖
∥∥∥∂ht(λ∗)

∂γ

∥∥∥]ι̃1
,

where λ∗ = (γ∗
′
, δ′)′ and γ∗ lies between γ0 and γ̃n. Note that there exists an ι̃1 such that

E supλ∈Θ ‖∂ht(λ)/∂γ‖ι̃1 < ∞. For any ε > 0, first taking η small enough such that log[1 +
η ι̃1 α−ι̃1

0 E supλ∈Θ ‖∂ht(λ)/∂γ‖ι̃1 ] < ε2 ι̃1 and then taking n large enough such that P(‖γ̃n −
γ0‖ ≥ η) ≤ ε, it follows that

P
( 1

nι̃1

n

∑
t=1

log
[
1 +

1
α0
‖γ̃n − γ0‖ sup

λ∈Θ

∥∥∥∂ht(λ)

∂γ

∥∥∥]ι̃1
≥ ε
)

≤ P
( 1

nι̃1

n

∑
t=1

log
[
1 +

1
α0
‖γ̃n − γ0‖ sup

λ∈Θ

∥∥∥∂ht(λ)

∂γ

∥∥∥]ι̃1
≥ ε, ‖γ̃n − γ0‖ ≤ η

)
+ε

≤ 1
nι̃1ε

n

∑
t=1

E log
[
1 +

1
α0

η sup
λ∈Θ

∥∥∥∂ht(λ)

∂γ

∥∥∥]ι̃1
+ ε

=
1

ι̃1ε
E log

[
1 +

1
α0

η sup
λ∈Θ

∥∥∥∂ht(λ)

∂γ

∥∥∥]ι̃1
+ ε

≤ 1
ι̃1ε

log
[
1 +

1

αι̃1
0

η ι̃1 sup
λ∈Θ

∥∥∥∂ht(λ)

∂γ

∥∥∥ι̃1]
+ ε ≤ 2ε,

where the last second inequality holds by Jensen’s inequality. Thus, as n is large enough,

P
(

sup
δ∈Θδ

1
n

n

∑
t=1

[log h̃t(δ)− log ht(δ)]I{h̃t(δ) ≥ ht(δ)} ≥ ε
)
≤ 2ε.

Similarly, we can show that

P
(

sup
δ∈Θδ

1
n

n

∑
t=1

[log h̃t(δ)− log ht(δ)]I{h̃t(δ) ≤ ht(δ)} ≥ ε
)
≤ 2ε.

Furthermore, by (A9), the conclusion holds. This completes the proof.
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Lemma A5. If the assumptions of Lemma A3 hold, then it follows that

(i) sup
δ∈Θδ

∥∥∥ 1
n

n

∑
t=1

[∂2 l̃t(δ)
∂δ∂δ

′ −
∂2lt(δ)
∂δ∂δ

′

]∥∥∥ = op(1),

(ii) E sup
δ∈Θδ

∥∥∥∂2lt(δ)
∂δ∂δ

′

∥∥∥ < ∞.

Proof. Denote Ṽt(δ) = h̃−1
t (δ)[∂h̃t(δ)/∂δ] and similarly for Vt(δ). Then

∂2 l̃t(δ)
∂δ ∂δ′

= −1
2

Ṽt(δ)Ṽ′t (δ)
ε̃2

t

h̃t(δ)
+
[ ε̃2

t

h̃t(δ)
− 1
]∂Ṽt(δ)

∂ γ
. (A10)

Similarly, we can have the formula of ∂2lt(δ)/∂δ ∂δ′. By (A5), we have

1
n

n

∑
t=1

Ṽt(δ)Ṽ′t (δ)
ε̃2

t

h̃t(δ)
=

1
n

n

∑
t=1

Ṽt(δ)Ṽ′t (δ)
ε2

t

h̃t(δ)
+

op(1)
n

n

∑
t=1

Ṽt(δ)Ṽ′t (δ)
εt

h̃t(δ)

+
op(1)

n

n

∑
t=1

Ṽt(δ)Ṽ′t (δ)
1

h̃t(δ)
. (A11)

By Lemma A3(i), supδ∈Θδ
‖Ṽt(δ)‖ ≤ supΘ ‖h

−1
t (λ)[∂ht(λ)/∂δ]‖ ≤ ξδt−1. Furthermore, by

Lemma A1, we can take ι1 in ξδt−1 small enough such that the leading factors in the last
terms are bounded uniformly in δ ∈ Θδ. Thus, the last two terms are op(1), and hence it
follows that

1
n

n

∑
t=1

Ṽt(δ)Ṽ′t (δ)
ε̃2

t

h̃t(δ)
=

1
n

n

∑
t=1

Ṽt(δ)Ṽ′t (δ)
ε2

t

h̃t(δ)
+ op(1), (A12)

where op(1) holds uniformly in δ ∈ Θδ. Moreover, by Lemma A3(i), we have

1
n

n

∑
t=1

Ṽt(δ)
∥∥∥Ṽt(δ)−Vt(δ)

∥∥∥ ε2
t

h̃t(δ)

≤ 1
n

n

∑
t=1

Ṽt(δ)
∥∥∥Ṽt(δ)−Vt(δ)

∥∥∥ι[∥∥∥Ṽt(δ)
∥∥∥+ ∥∥∥Vt(δ)

∥∥∥]1−ι ε2
t

h̃t(δ)

≤ 2
n

n

∑
t=1

ξ2−ι
δt−1

∥∥∥Ṽt(δ)−Vt(δ)
∥∥∥ι ε2

t

h̃t(δ)
. (A13)

By Lemma A1 and taking ι and ι1 in ξδt−1 small enough, we have

E max
1≤n<∞

sup
δ∈Θδ

[
ξ2−ι

δt−1

∥∥∥Ṽt(δ)−Vt(δ)
∥∥∥ι ε2

t

h̃t(δ)

]
≤ CE(ξ2

δt−1ε2
t ) < ∞,

where C is a constant. By the dominated convergence theorem, we can show that

lim
n→∞

E sup
δ∈Θδ

[
ξ2−ι

δt−1

∥∥∥Ṽt(δ)−Vt(δ)
∥∥∥ι ε2

t

h̃t(δ)

]
= 0.

Thus, we can show that (A13) is op(1) uniformly in δ ∈ Θδ. Furthermore, by (A12),

1
n

n

∑
t=1

Ṽt(δ)Ṽt(δ)
ε2

t

h̃t(δ)
=

1
n

n

∑
t=1

Ṽt(δ)Vt(δ)
ε2

t

h̃t(δ)
+ op(1). (A14)
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Similarly, we can show that

1
n

n

∑
t=1

Ṽt(δ)Vt(δ)
ε2

t

h̃t(δ)
=

1
n

n

∑
t=1

Vt(δ)Vt(δ)
ε2

t

h̃t(δ)
+ op(1). (A15)

Similar to (A8), we can show that

1
n

n

∑
t=1

Vt(δ)Vt(δ)
ε2

t

h̃t(δ)
=

1
n

n

∑
t=1

Vt(δ)Vt(δ)
ε2

t
ht(δ)

+ op(1). (A16)

The op(1) in (A14)–(A16) hold uniformly in δ ∈ Θδ. By (A12) and (A14)–(A16), we have that

1
n

n

∑
t=1

Ṽt(δ)Ṽt(δ)
ε̃2

t

h̃t(δ)
=

1
n

n

∑
t=1

Vt(δ)Vt(δ)
ε2

t
ht(δ)

+ op(1).

We can show that a similar equation holds for other terms in (A10). Thus, (i) holds.
By Lemmas A2 and A3, it is straightforward to show that (ii) holds. This completes
the proof.

Lemma A6. [Lemma A.7 in Ling (2007)] If the conditions in Theorem 1 holds and√
n‖λ− λ0‖ ≤ M, then it follows that

1
n

n

∑
t=1

∂2lt(λ)
∂λ∂λ

′ =
1
n

n

∑
t=1

∂2lt(λ0)

∂λ∂λ
′ + op(1),

for any fixed constant M.

Proof of Theorem. Let L̃n(δ) = ∑n
t=1 l̃t(δ)/n. First, the space Θδ is compact and δ0 is an

interior point in Θδ. Second, L̃n(δ) is continuous in δ ∈ Θδ and is a measurable function of
{ys, s = t, t− 1, · · · } for all δ ∈ Θδ. Third, by Lemma A2(ii), there exist constants C and
ρ ∈ (0, 1) such that

1 ≤ ht(δ)

α0
≤ C(1 +

∞

∑
i=1

ρi|εt−i|)2,

uniformly in δ ∈ Θδ. By Jensen’s inequality, E supδ∈Θδ
| log h(δ)| ≤ E supδ∈Θδ

log [h(δ)/α0] +

| log α0| < ∞. Thus, we can show that E supδ∈Θδ
|lt(δ)| < ∞. By the ergodic theorem,

∑n
t=1 lt(δ)/n −→p Elt(δ) for each δ. Furthermore, by Theorem 3.1 in Ling and McAleer

(2003a), ∑n
t=1 lt(δ)/n −→p Elt(δ) uniformly in Θδ. By Lemma A4, L̃n(δ) −→p Elt(δ)

uniformly in Θδ. Fourth, similar to the proof of Lemma A.10 of Ling (2007), we can show
that Elt(δ) reaches its unique maximum at δ = δ0. Thus, we have established all the
conditions for consistency in Theorem 4.1.1 in Amemiya (1985) and hence (i) holds.

For (ii), we first have a consistent estimator δ̃n of δ0. Second, ∂2 L̃n(δ)/∂δ∂δ′ exists
and is continuous in Θδ. Third, by Lemma A5(ii), E supδ∈Θδ

‖∂2lt(δ)/∂δ∂δ′‖ < ∞. By
the ergodic theorem and Theorem 3.1 in Ling and McAleer (2003a), we can show that
∑n

t=1[∂
2lt(δ)/∂δ∂δ′]/n −→p E[∂2lt(δ)/∂δ∂δ′] uniformly in Θδ. Since E[∂2lt(δ)/∂δ∂δ′] is

continuous in terms of δ, we can show that ∑n
t=1[∂

2lt(δn)/∂δ∂δ′]/n −→p −EHδt/4 for any
sequence δn, such that δn −→p δ0. Furthermore, by Lemma A5(i), ∂2 L̃n(δn)/∂δ∂δ′ −→p
−EHδt/4 for any sequence δn, such that δn −→p δ0. Fourth, by Taylor’s expansion, it
follows that

1√
n

n

∑
t=1

∂l̃t(δ0)

∂δ
=

1√
n

n

∑
t=1

∂lt(δ0)

∂δ
+

1√
n

n

∑
t=1

[∂2lt(λ∗)
∂δ∂γ′

]
(γ̃n − γ0),
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where λ∗ = (γ∗
′
, δ′0)

′ and γ∗ lies between γ0 and γ. By Lemma A6, we have

1
n

n

∑
t=1

[∂2lt(λ∗)
∂δ∂γ′

]
= E

[∂2lt(λ0)

∂δ∂γ′

]
+ op(1) = −

1
2

EDt + op(1).

Furthermore, by Theorem 1, we can show that

1√
n

n

∑
t=1

∂l̃t(δ0)

∂δ
=

1√
n

n

∑
t=1

∂lt(δ0)

∂δ
+

EDt A−1

2
√

n

n

∑
t=1

εt(γ0)

wt

∂εt(γ0)

∂γ
+ op(1).

By Lemma A4, we can see that E‖Hδt‖ < ∞ and E‖∂lt(δ0)/∂δ‖2 < ∞. Thus, Ωδ is finite.
Similar to the proof of Lemma 4.2 in Ling and McAleer (2003a), we can show that EHδt and
Ωδ are positive definite. By the central limit theorem, we have that n−1/2∂L̃n(δ0)/∂δ −→L
N(0, Ωδ/4). Thus, we have established all the conditions in Theorem 4.1.3 in Amemiya
(1985), and hence

√
n(δ̂n − δ0) −→L N(0, E−1HδtΩδE−1Hδt). This completes the proof.
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