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Abstract: Deriving loss distribution from insurance data is a challenging task, as loss distribution is
strongly skewed with heavy tails with some levels of outliers. This paper extends the weighted expo-
nential (WE) family to the contaminated WE (CWE) family, which offers many flexible features, in-
cluding bimodality and a wide range of skewness and kurtosis. We adopt Expectation-Maximization
(EM) and Bayesian approaches to estimate the model, providing the likelihood and the priors for all
unknown parameters. Finally, two sets of claims data are analyzed to illustrate the efficiency of the
proposed method in detecting outliers.
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1. Introduction
In many applied areas, particularly in finance and actuarial sciences, data are usually

positive, right-skewed, leptokurtic and multimodal (Cummins et al. 1990). To capture a
wide range of population heterogeneity and tail behavior, one practical way is to conduct
analyses over subsets of claims with distinct claim characteristics. But the approach falls
short of providing a full picture of claim dynamics. Classical distributions are not flexible
enough to cater to heavy-tailed datasets due to extreme values that are far from the other
observed data points. These unusual observations are usually called outliers. The presence
of outliers in the data may distort both the estimated model parameters and the model’s
goodness-of-fit. Recently, many authors have focused on a finite mixture approach that
shares the efficiency of parametric modeling and the flexibility of non-parametric density
estimation techniques. The flexibility of finite mixtures is accommodating various shapes
of insurance and economic data (Bernardi et al. 2012; Hennig and Liao 2013; Maruotti et al.
2016; Punzo et al. 2018).

Okhli and Nooghabi (2021) introduced the contaminated exponential (CE) distribution
as an alternative platform for analyzing positive-valued insurance datasets with some level
of outliers. The pdf of CE distribution with scale parameter λ and contamination factor θ is
defined as follows:

fCE(y; λ, θ, ω) = (1−ω)λe−λy + ωλθe−λθy, y > 0, λ > 0, (1)

where ω ∈ (0, 1) is the proportion of contaminated points. The Bayesian approach is
developed for computing the parameter estimates. It is demonstrated that the effect of
outliers is automatically reflected in the posterior distribution for any sample size. This
way, an outlier observation has the highest posterior probability of outlying, but the main
observations have a relatively small such probability, indicating that the CE model can
detect outliers well.

Weighted distributions are used to adjust the probabilities of events as observed
and recorded (Chung and Kim 2004; Gupta and Kirmani 1990; Larose and Dey 1996);
(Navarro et al. 2006). Patil (1991) proceeded from applications involving statistical ecology
to generate and review many useful general results concerning weighted distributions. Mild
outliers, on which this paper focuses, can be dealt with by using heavy-tailed distributions
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for data. Weighted distributions offer the flexibility needed for achieving mild outlier
robustness, while the usual distributions like exponential, gamma and Weibull models lack
sufficient fit. For more information and applications of weighted distributions see Patil and
Rao (1977).

A two-parameter weighted exponential (WE) distribution (Gupta and Kundu 2009)
was developed as a lifetime model which has been widely used in engineering, medicine
and insurance. The sensitive skewness parameter governs essentially the shape of the
probability density function (pdf) of the WE distribution. A random variable Y is said
to have a weighted exponential distribution with a shape parameter α > 0, and scale
parameter λ > 0, denoted by WE(α, λ), if its pdf is given by

fWE(y; α, λ) =

(
1 +

1
α

)
λe−λy(1− e−αλy), y > 0. (2)

In this paper, we introduce a class of contaminated weighted exponential (CWE)
distributions to account for all possible features of insurance and economic data. Crucially,
the CWE model is a two-component mixture in which one component, with a large prior
probability, represents the reference distribution, and another, with small prior probability
and inflated variability, represents the degree of contamination. For Bayesian inference, we
consider several asymmetric and symmetric loss functions like squared error loss, modified
squared error, precautionary, weighted squared error, linear exponential, general entropy,
and K-loss functions to estimate the parameters of the CWE model. Further, using the
independent prior distributions, Bayesian 95% credible and highest posterior density (HPD)
intervals (see Chen et al. 1999) are provided for each parameter of the proposed model.

The paper is organized as follows. Section 2 presents the CWE model and some illus-
trations of the density, skewness and kurtosis. In Sections 3 and 4, the EM algorithm and
Bayesian inference are respectively developed for CWE parameters. Section 5 illustrates
several simulations of proposed estimation methods of Sections 3 and 4. Sections 6 and 7
illustrates numerical examples for insurance data fitting using proposed estimation meth-
ods of Sections 3 and 4, respectively. Finally, discussions and conclusions are presented in
Section 8.

2. The CWE Model
The pdf of a CWE model with contamination factor θ can be written as

fCWE(y; α, λ, θ, ω) = (1−ω) fWE(y; α, λ) + ω fWE(y; α, λθ), (3)

where θ > 0 and ω ∈ [0, 1] denotes the proportion of outliers or unusual points and
Θ = (ω, α, λ, θ)> contains all model parameters. The CE model given in (1) is obtained as a
special case of (3) when α→ ∞. The effect of varying each parameter when one varies, but
keeping others fixed, is illustrated by a set of CWE densities shown in Figure 1. The plots
show that the distribution is more likely to be bimodal as ω increases, whereas flatness
parameter vector α controls tail behavior. This implies that the CWE model provides a
component of the WE distribution to capture the vast majority of small losses, whereas the
contaminated component accommodates clusters of larger losses with an enhanced tail
to capture extreme losses. Furthermore, the skewness and kurtosis 3D plots of the CWE
model for numerous values of α and θ with fixed λ = 1 are depicted in the Figure 2. The
fitting of this four-parameter CWE model via the likelihood approach is difficult because of
the log-likelihood function’s complexity. But the EM and Bayesian approaches can help.
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Figure 1. Density plots for different CWE distributions.
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Figure 2. 3D plots of skewness and kurtosis of CWE distribution for two fixed values of ω.
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3. Maximum Likelihood Estimation via EM Algorithm
The EM algorithm (Dempster et al. 1977) and some of its extraordinary variants such

as the expectation conditional maximization (ECM) algorithm (Meng and Rubin 1993) and
the expectation-conditional maximization either (ECME) algorithm (Liu and Rubin 1994)
are broadly applicable methods to carry out ML estimation for mixture distributions and
variety of incomplete-data problems (Aitkin and Wilson 1980; McLachlan and Krishnan
2007; Redner and Walker 1984). Mahdavi et al. (2021a, 2021b) and Cavieres et al. (2022) de-
veloped novel EM-based procedures designed under the selection mechanism to compute
the ML estimates of scale-shape mixtures of flexible generalized skew-normal and multi-
variate flexible skew-symmetric-normal distributions. Here, we develop a novel EM-based
procedure designed under the selection mechanism to compute the ML estimates of the
proposed model.

A random variable Y ∼WE(α, λ) is said to follow WE distribution with shape param-
eter α and scale parameter λ if it has the following stochastic selection representation:

Y d
= X0|U < 1, (4)

where U = X1/(αX0) and X0 and X1 are two independent exponential random variables
with mean 1/λ. To perform an EM-type algorithm for fitting the CWE model, we introduce
a latent variable τ = U|U < 1 based on (4). The joint pdf of (Y, τ)> is given by

fY,τ(y, τ) =
1

P(U < 1)
fX0,U(y, τ) =

(
1 +

1
α

)
fX0(y) fU|X0

(τ)

= (α + 1)λ2ye−λye−λατy, y > 0, 0 < τ < 1. (5)

Dividing (5) by (2) yields

fτ|Y(τ) =
αλye−αλyτ

1− e−αλy , 0 < τ < 1. (6)

Using (6), it is clear that

τ|Y = y ∼ TExp
(
αλy; (0, 1)

)
, (7)

where TExp
(
λ; (0, b)

)
represents the truncated exponential distribution with mean 1/λ on

interval (0, b).
Let us introduce an n-dimensional binary random variable γ = (γ1, . . . , γn)> where a

particular element γi is equal to 1 if Yi belongs to unusual observations and is equal to zero
otherwise. Note that, γi follows a Bernoulli random variable with success probability ω
denoted by γi ∼ Ber(ω).

Now, consider n independent random variables Y1, . . . , Yn, which are taken from a
mixture model (3) and latent variable τ = (τ1, . . . , τn)>, where Θ = (ω, α, λ, θ)> denotes
the unknown vector of parameters. Clearly,

Yi|(γi = 0) ∼WE(α, λ) and Yi|(γi = 1) ∼WE(α, λθ),
τi|(Yi = yi, γi = 0) ∼ TExp(αλyi; (0, 1)),
τi|(Yi = yi, γi = 1) ∼ TExp(αλθyi; (0, 1)).

According to (3) and (5), it is clear that

fYi ,τi |γi
(yi, τi) =

{
(α + 1)λ2yie−λyi e−λατiyi

i
}1−γi

{
(α + 1)λ2θ2yie−λθyi e−λθατiyi

}γi .
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The complete log-likelihood function of Θ given yc = (y>, τ>, . . . , γ>)> is

`c(Θ|yc) = ln
{

fY,γ,τ(y, γ, τ)
}
= ln

{
fγ(γ) fY,τ|γ(y, τ)

}
=

n

∑
i=1

{
γi ln ω + (1− γi) ln(1−ω) + ln(α + 1) + 2 ln λ + 2γi ln θ

−(1− γi)λyi − (1− γi)λατiyi − γiλθyi − γiλθατiyi

}
. (8)

To evaluate the Q-function, the necessary conditional expectations include

γ̂
(k)
i = E

(
γi|Yi = yi, Θ̂

(k))
=

ω̂(k) fWE(yi; α̂(k), λ̂(k)Θ̂
(k)

)

fCWE(yi; α̂(k), λ̂(k), Θ̂
(k)

)
,

τ̂
(k)
1i = E

(
(1− γi)τi|Yi = yi, Θ̂

(k))
= (1− γ̂

(k)
i )

(
1

α̂(k)λ̂(k)yi
− 1

eα̂(k)λ̂(k)yi − 1

)
,

τ̂
(k)
2i = E

(
γiτi|Yi = yi, Θ̂

(k))
= γ̂

(k)
i

(
1

α̂(k)λ̂(k) θ̂(k)yi
− 1

eα̂(k)λ̂θ̂(k)yi − 1

)
.

Therefore, the Q-function is given by

Q(Θ|Θ̂(k)
) =

n

∑
i=1

{
γ̂
(k)
i ln ω + (1− γ̂

(k)
i ) ln(1−ω) + ln(α̂(k) + 1) + 2 ln λ̂(k)

+2γ̂
(k)
i ln θ̂(k) − λ̂(k)(1− γ̂

(k)
i )yi − λ̂(k)α̂(k)τ̂

(k)
1i yi

−λ̂(k) θ̂(k)γ̂
(k)
i yi − λ̂(k) θ̂(k)α̂(k)τ̂

(k)
2i yi

}
. (9)

In summary, the implementation of the ECM algorithm proceeds as follows:

E-step: Given Θ = Θ̂
(k), compute γ̂

(k)
i , τ̂

(k)
1i and τ̂

(k)
2i for i = 1, . . . , n.

CM-step 1: Calculate

ω̂(k+1) =
1
n

n

∑
i=1

γ̂
(k)
i .

CM-step 2: Fix λ = λ̂(k), θ = θ̂(k) and update α̂(k) by maximizing (9) over α, which gives

α̂(k+1) =
n

λ̂(k) ∑n
i=1
(
τ̂
(k)
1i yi − θ̂(k)τ̂

(k)
2i yi

) − 1.

CM-step 3: Fix α = α̂(k+1), θ = θ̂(k) and update λ̂(k) by

λ̂(k+1) =
2n

∑n
i=1
{
(1− γ̂(k))yi + α̂(k+1)τ̂

(k)
1i yi + θ̂(k)γ̂

(k)
i yi + α̂(k+1) θ̂(k)τ̂2iyi

} .

CM-step 4: Fix α = α̂(k+1), λ = λ̂(k+1) and update θ̂(k) by

θ̂(k+1) =
2 ∑n

i=1 γ̂
(k)
i

λ̂(k+1) ∑n
i=1
{

γ̂
(k)
i yi + α̂(k+1)τ̂

(k)
2i yi}

.

This process is repeated until a suitable convergence rule is satisfied. The convergence
appears when the relative difference between two successive log-likelihood values is less
than tolerance (ε). In our numerical experiments, ε = 10−6 is used. An R code about EM
algorithm is available in Appendix A.
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4. Bayesian Inference
In this section, we discuss the Bayesian estimation for the CWE distribution parameters

in terms of several symmetric and asymmetric loss functions such as squared error loss
function (SELF), weighted squared error loss function (WSELF), modified squared error
loss function (MSELF), precautionary loss function (PLF) and K-loss function (KLF). The
considered loss functions and their Bayesian estimators with corresponding posterior risks
are reported in Table 1.

Table 1. Bayes estimator and posterior risk under several loss functions.

Loss Function L(ψ, δ) Bayes Estimator ψB Posterior Risk ρψ

SELF = (ψ− d)2 E(ψ|x) Var(ψ|x)
WSELF =

(ψ−d)2

ψ
(E(ψ−1|x))−1 E(ψ|x)− (E(ψ−1|x))−1

MSELF =
(

1− d
ψ

)2 E(ψ−1|x)
E(ψ−2|x) 1− E(ψ−1|x)2

E(ψ−2|x)

PLF =
(ψ−d)2

d

√
E(ψ2|x) 2

(√
E(ψ2|x)− E(ψ|x)

)
KLF =

(√
d
ψ −

√
ψ
d

) √
E(ψ|x)

E(ψ−1|x)
2
(√

E(ψ|x)E(ψ−1|x)− 1
)

For pertinent details about these loss functions, refer to Kharazmi et al. (2021, 2022)
and references therein.

4.1. Joint and Marginal Posterior Distributions
Assume that the parameters of the CWE distribution have independent prior dis-

tributions as follows: α ∼ Gamma(α0, α1), θ ∼ Gamma(θ0, θ1), λ ∼ Gamma(λ0, λ1), and
ω ∼ Beta(ω0, ω1), where all hyper-parameters are positive. Consequently, the joint prior
density is formulated as

π(α, λ, θ, ω) =
ωω0(1−ω)ω1 αα0

1 θθ0
1 λλ0

1
Beta(ω0, ω1)Γ(α0)Γ(θ0)Γ(λ0)

αα0−1θθ0−1λλ0e−(α1α+θ1θ+λ1λ).

For simplicity, we define function ζ as

ζ(α, θ, λ, ω) = αα0−1ββ0−1λλ0e−(α1α+β1β+λ1λ)ωω0(1−ω)ω1 .

From (10) and likelihood function L(data), the joint posterior distribution is

π∗(α, θ, λ, ω|data) ∝ π(α, θ, λ, ω) L(data).

Therefore, the exact joint posterior pdf is given by

π∗(α, θ, λ, ω|x) = K ζ(α, θ, λ, ω) L(x, Ψ), (10)

where

L(x; Ψ) =

[
λ

(
1 +

1
α

)]n n

∏
i=1

{
(1−ω)e−λxi (1− e−αλxi ) + ωθe−θλxi (1− e−αθλxi )

}
, (11)

Ψ = (α, θ, λ, ω) and K is a normalizing constant with form

K−1 =
∫ 1

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
ζ(α, θ, λ, ω)L(x, ξ)∂α∂β∂λ∂ω.
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Moreover, the marginal posterior density of α, θ, λ and ω (assuming Ψ = (Ψ1, Ψ2, Ψ3,
Ψ4) = (α, θ, λ, ω)) can be expressed as

π(Ψi|x) =
{ ∫ 1

0

∫ ∞
0

∫ ∞
0 π∗(Ψ|x)∂Ψj∂Ψk∂Ψ4, i = 1, 2, 3,∫ ∞

0

∫ ∞
0

∫ ∞
0 π∗(Ψ|x)∂Ψ1∂Ψ2∂Ψ3, i = 4,

(12)

where j, k = 1, 2, 3, j 6= k 6= i and Ψi is the ith member of vector Ψ.

4.2. Bayesian Point Estimation
From the marginal posterior pdf in (12) and under framework of the loss functions

listed in Table 1, the Bayesian point estimation for parameter vector Ψ = (Ψ1, Ψ2, Ψ3, Ψ4) =
(α, θ, λ, ω) is formulated via minimizing the expectation of loss function with respect to the
marginal posterior pdf in (12) as follows:

argmin Cδ

∫ ∞

0
L(Ψi, δ)π(Ψi|x)∂Ψi. (13)

In practice, because of the intractable integral in (13), we can use the Gibbs sampler
(Geman and Geman 1984) or Metropolis-Hastings algorithms (Hastings 1970; Metropolis
et al. 1953) to generate posterior samples. We will argue this issue more precisely in
Section 4.5.

4.3. Credibility Interval
In the Bayesian framework, interval estimation is done via credibility interval concep-

tion. Consider parameter vector Ψ = (Ψ1, Ψ2, Ψ3, Ψ4) = (α, θ, λ, ω), which is associated
with CWE distribution and π(Ψj|x) the marginal posterior pdf of parameter Ψj, j = 1, 2, 3, 4,
as in (12). For a given value of η ∈ (0, 1), the (1− η)100% credibility interval CI(LΨj , UΨj)

is defined as ∫ ∞

LΨj

π(Ψj|x)∂Ψj = 1− η

2
, (14)

∫ ∞

UΨj

π(Ψj|x)∂Ψj =
η

2
. (15)

By considering relation (14) and (15), it is not feasible to obtain the explicit marginal pdf
from the joint posterior distribution. To overcome this difficulty, we use the Gibbs sampler
algorithm and generate posterior samples from the CWE distribution. Let Ψ1, . . . , Ψk

(where Ψi = (Ψi
1, Ψi

2, Ψi
3, Ψi

4)) be a posterior random sample of size k which is extracted
from the joint posterior pdf in (10). Using these samples, the marginal posterior pdf of Ψj
given x is defined by

1
K

K

∑
i=1

π∗(Ψj, Ψi
−j|x), j = 1, 2, 3, 4, (16)

where Ψi
−j represents the vector of posterior samples when the jth component is removed.

Inserting (16) in (15), it is possible to compute the credibility intervals for Ψj, j = 1, 2, 3, 4,
as follows

1
K

K

∑
i=1

∫ ∞

LΨj

π∗
(
Ψj, Ψi

−j|x
)
∂Ψj = 1− η

2
, (17)

1
K

K

∑
i=1

∫ ∞

UΨj

π∗
(
Ψj, Ψi

−j|x
)
∂Ψj =

η

2
. (18)
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4.4. Highest Posterior Density Interval
Highest posterior density (HPD) interval is a credibility interval under a specific

restriction. A (1− η)100% HPD interval for Ψj, j = 1, 2, 3, 4 is the simultaneous solution of
integral equations

1
K

K

∑
i=1

∫ UΨj

LΨj

π∗
(
Ψj, Ψi

−j|x
)
∂Ψj = 1− η, (19)

K

∑
i=1

π∗
(

LΨj , Ψi
−j|x

)
=

K

∑
i=1

π∗
(
UΨj , Ψi

−j|x
)
. (20)

4.5. Generating Posterior Samples
It is clear from Equations (10) and (12) that there are no explicit expressions for the

Bayesian point estimators under the loss functions in Table 1. Because of intractable in-
tegrals associated with joint posterior and marginal posterior distributions, we require
numerical software to solve the integral equations numerically via MCMC methods such as
the Metropolis-Hastings algorithm and Gibbs sampling (Contreras-Reyes et al. 2018). As-
suming general model f (x|ψ) is associated with parameter vector ψ = (ψ1, ψ2, . . . , ψp) and
observed data x, the joint posterior distribution is π(ψ1, ψ2, . . . , ψp|x). We also assume that

ψ0 = (ψ
(0)
1 , ψ

(0)
2 , . . . , ψ

(0)
p ) is the initial vector to start the Gibbs sampler (Quintero et al. 2017).

The steps for any iteration, say iteration k, are as follows:

• Starting with an initial estimate (ψ
(0)
1 , ψ

(0)
2 , . . . , ψ

(0)
p );

• draw ψk
1 from π

(
ψ1|ψk−1

2 , ψk−1
3 , . . . , ψk−1

p , x
)
;

• draw ψk
2 from π

(
ψ2|ψk

1, ψk−1
3 , . . . , ψk−1

p , x
)
; and so on down to

• draw ψk
p from π

(
ψp|ψk

1, ψk
2, . . . , ψk

p−1, x
)
.

In the case of the CWE distribution, by considering parameter vector Ψ = (α, θ, λ, ω)
and initial parameter vector Ψ0 = (α0, θ0, λ0, ω0), the posterior samples are extracted based
on Gibbs sampler where the full conditional distributions are

π
(
α|θk−1, λk−1, ωk−1, x

)
∝
(

α + 1
α

)n
αα0 e−α1α

n

∏
i=1

Υ(xi, Ψ), (21)

π
(
θ|αk−1, λk−1, ωk−1, x

)
∝ βθ0 e−θ1θ

n

∏
i=1

Υ(xi, Ψ), (22)

π
(
λ|αk−1, θk−1, ωk−1, x

)
∝ λλ0+ne−λ1λ

n

∏
i=1

Υ(xi, Ψ), (23)

and

π
(
ω|αk−1, θk−1, λk−1, x

)
∝ ωω0(1−ω)ω1

n

∏
i=1

Υ(xi, Ψ), (24)

where Υ(xi, Ψ) = (1−ω)e−λxi (1− e−αλxi ) + ωθe−θλxi (1− e−αθλxi ).
In practice, simulations related to Gibbs sampling can be done with special software

WinBUGS. This software was developed in 1997 to simulate data of complex posterior
distributions, where analytical or numerical integration techniques cannot be applied.
Moreover, Gibbs sampling processes can be carried out via OpenBUGS software, which is
an open source version of WinBUGS. Since there isn’t any prior information about hyper-
parameters in (10), we follow Congdon (2001) and the hyper-parameter values are set
as αi = θi = λi = ωi = 0.0001, i = 0, 1, so we can use the MCMC procedure to extract
posterior samples of (10) by means of Gibbs sampling process in OpenBUGS software.

5. Simulation Study: Recovery of the True Underlying Parameters
An experiment intends to investigate the ability of the proposed EM algorithm to

recover the true underlying parameters. We generate 5000 synthetic Monte Carlo samples
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of different sample sizes n = 30, 70, 100 and 200 from the CWE distribution and following
three parameter scenarios (each scenario corresponding to density plotted as “dotdash”
line in Figure 1):
Scenario 1: α = 0.5, λ = 1, θ = 2, ω = 0.2.
Scenario 2: α = 2, λ = 1, θ = 0.3, ω = 0.2.
Scenario 3: α = 0.5, λ = 1, θ = 0.3, ω = 0.6.

The accuracies of the parameter estimates are measured by computing the mean
absolute bias (MAB) and the root mean square error (RMSE), defined as

MAB =
1

5000

5000

∑
i=1
|θ̂i − θA| and RMSE =

√√√√ 1
5000

5000

∑
i=1

(θ̂i − θA)2,

where θ̂i denotes the prediction of a specific parameter at the i-th replication and θA
denotes the actual specific parameter value. Table 2 shows the simulation results for the
CWE distribution. As expected, the MAB and RMSE tend toward zero when the sample
size increases, showing empirically the consistency of the ML estimates obtained via the
EM algorithm.

Table 2. Simulation results, based on 5000 replications, to evaluate the EM algorithm under three
scenarios.

Sample Size
n = 30 n = 70 n = 100 n = 200

Parameter MAB RMSE MAB RMSE MAB RMSE MAB RMSE

Scenario 1

α 0.357 0.419 0.270 0.329 0.232 0.284 0.171 0.213
λ 0.204 0.259 0.139 0.176 0.118 0.150 0.083 0.104
θ 1.906 7.158 1.176 2.943 0.955 1.825 0.645 1.003
ω 0.094 0.148 0.073 0.109 0.065 0.093 0.050 0.069

Scenario 2

α 1.749 2.892 1.165 1.626 0.959 1.286 0.697 0.898
λ 0.308 0.419 0.197 0.259 0.163 0.213 0.115 0.148
θ 0.189 0.282 0.102 0.151 0.080 0.115 0.052 0.069
ω 0.118 0.158 0.098 0.126 0.088 0.112 0.069 0.087

Scenario 3

α 0.449 0.665 0.359 0.508 0.306 0.412 0.236 0.310
λ 0.366 0.564 0.229 0.323 0.187 0.252 0.132 0.172
θ 0.092 0.121 0.059 0.075 0.050 0.064 0.036 0.045
ω 0.169 0.204 0.126 0.155 0.109 0.135 0.082 0.102

6. Numerical Examples for Insurance Data Fitting
In this section, we evaluate the performance and various aspects of the proposed

model using insurance claims data. The proposed distribution is fitted to the data by
implementing the ECM algorithm described in Section 3. For the sake of comparison,
the reduced WE, CE and exponential (Exp) models are also fitted as sub-models of CWE
distribution. To compare how well the models fit the data, we adopt the Akaike information
criterion (AIC) (Akaike 1973) and the Bayesian information criterion (BIC) (Schwarz 1978),
defined as AIC = 2p− 2`max and BIC = p log n− 2`max, where p is the number of free
parameters in the model and `max the maximized log-likelihood value. For both AIC and
BIC, a smaller value indicates a better model fit.

The first dataset (DS1) comprises Danish fire losses analyzed in McNeil (1997). This
dataset is frequently used for comparison of methods; see Eling (2012) and references
therein. These data represent Danish fire losses in million Danish Krones and were collected
by a Danish reinsurance company. The dataset contains individual losses above 1 million
Danish Krones, a total of 2167 individual losses, covering the period from 3 January 1980 to
31 December 1990. Data are adjusted for inflation to reflect 1985 values and are available in
R packages evir and fExtremes.

The second dataset (DS2), analyzed by Cummins and Freifelder (1978), contains 80 fire
losses from 500 buildings a large university owned from 1951 to 1973. Cummins et al.
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(1990) found that the log-normal and gamma distributions did not have sufficient heavy
tails to model the data, so they considered the generalized beta of the second kind (GB2)
distribution.

Figure 3 presents two histograms for the considered datasets. Both histograms reveal a
typical feature of insurance claims data: a large number of small losses and a small number
of very large losses. Table 3 reports parameter estimates, standard error and model fit
criteria for all fitted models. Observing the Table 3, it is evident from the AIC and BIC
values that the CWE model provides better fit than other fitted models. The posterior
probability of each observation belonging to unusual observations is depicted in Figures 4
and 5, those reveal that the unusual data have the highest posterior probability and the
original data have small posterior probability, showing clearly the impact of outliers.
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Figure 3. Data histograms corresponding to DS1 and DS2 datasetes.
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(Left) panel is for the first 2060 observations and (right) panel for the 107 last observations.
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Figure 5. Posterior probability that each observation is unusual, corresponding to the DS2 dataset.
Left panel is for the first 74 observations and right panel for the six last observations.

Table 3. Summary results from fitting various models to the data. The bold entries highlight the
smallest AIC and BIC values for each model.

Dataset Model λ̂ θ̂ α̂ ω̂ p `max AIC BIC

DS1

Exp 0.295 – – – 1 −4809.396 9620.792 9626.474
WE 0.350 – 4.420 – 2 −4576.327 9160.655 9183.379
CE 0.401 0.107 – 0.043 3 −4556.646 9119.292 9136.335

CWE 0.818 0.113 0.194 0.064 4 −4119.475 8246.950 8269.675

DS2

Exp 0.590× 10−5 – – – 1 −859.0414 1720.083 1722.465
WE 0.596× 10−4 – 103.667 – 2 −858.548 1725.096 1734.624
CE 0.223× 10−3 0.033 – 0.096 3 −796.815 1599.630 1606.776

CWE 0.258× 10−3 0.035 9.112 0.104 4 −793.087 1594.175 1603.703

7. Bayesian Numerical Results
We used an MCMC procedure based on 10,000 replicates with 1000 samples discarded

as burn-in to compute the Bayesian estimators. The corresponding Bayesian point esti-
mation and posterior risk based on DS1 and DS2 datasets are provided in Table 4. It can
be seen that for the both datasets, the resulting log-likelihood values (`max) are close to
the obtained ones by the EM-algorithm given in Table 3, indicating the efficiency of the
Bayesian approach to estimate the model parameters. It is noteworthy to mention that
the KLF and PLF loss functions yields the highest log-likelihood values for DS1 and DS2
datasets, respectively.

Table 5 provides 95% credible and HPD intervals for the parameters of the CWE
distribution. The posterior samples are extracted using Gibbs sampling technique. More-
over, we provide the posterior summary plots in Figures 6–8. These plots confirm that the
convergence of the Gibbs sampling process occurred.
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Table 4. Bayesian estimates and their posterior risks of the CWE distribution parameters under
different loss functions based on DS1 and DS2 datasets. The bold entries highlight the highest `max

values for each model.

Data DS1

Bayesian Estimation

Loss Function λ̂ (r
λ̂
) θ̂ (rθ̂) α̂ (rα̂) ω̂ (rω̂) `max

SELF 0.74215 (0.00119) 0.10790 (0.00006) 0.48874 (0.02041) 0.06219 (0.00004) −4120.942
WSELF 0.74054 (0.00160) 0.10734 (0.00056) 0.44265 (0.04609) 0.06150 (0.00068) −4120.876
MSELF 0.73894 (0.00216) 0.10677 (0.00527) 0.38906 (0.12106) 0.06081 (0.01121) −4121.926
PLF 0.74296 (0.00161) 0.10818 (0.00056) 0.50920 (0.04090) 0.06253 (0.00067) −4121.245
KLF 0.74135 (0.00217) 0.10762 (0.00525) 0.46513 (0.10154) 0.06184 (0.01109) −4120.797

Data DS2

Bayesian Estimation

Loss Function λ̂ (r
λ̂
) θ̂ (rθ̂) α̂ (rα̂) ω̂ (rω̂) `max

SELF 0.000275 (1.889× 10−9) 0.0366
(3.6× 10−5) 6.90240 (1.0208) 0.1038 (0.0019) −793.234

WSELF 0.000268 (6.411× 10−6) 0.0356 (0.0010) 6.75207 (0.1503) 0.0824 (0.0214) −793.4759
MSELF 0.000262 (0.022395) 0.0345 (0.0309) 6.60050 (0.0224) 0.0605 (0.2651) −794.104
PLF 0.000278 (6.821× 10−6) 0.0371 (0.0009) 6.97590 (0.1471) 0.1128 (0.0179) −793.208
KLF 0.000271 (0.023714) 0.0361 (0.0285) 6.82680 (0.0221) 0.0925 (0.2448) −809.881
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Figure 6. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Trace plots
of each CWE distribution parameter.
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Table 5. Credible and HPD intervals of parameters λ, θ, α and ω for DS1 and DS2 datasets.

Data DS1

Credible Interval HPD Interval

λ (0.7184, 0.7645) (0.6740, 0.8108)
θ (0.1025, 0.1132) (0.09299, 0.12300)
α (0.3901, 0.5777) (0.2336, 0.7923)
ω (0.05767, 0.06658) (0.04907, 0.07438)

Data DS2

Credible Interval HPD Interval

λ (0.00024, 0.00030) ( 0.00019, 0.00035)
θ (0.03269, 0.04018) (0.02322, 0.04958)
α (6.16500, 7.68300) (5.04200, 8.76500)
ω (0.07135, 0.12980) (0.03289,0.19750)
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Figure 7. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Autocorre-
lation plots of each CWE distribution parameter.

In order to avoid repetition in evaluation of the MCMC procedure in Bayesian analysis,
we just reported the Gelman–Rubin and Geweke–Raftery–Lewis diagnostics measures for
checking the convergence based on data set DS1 in Table 6. For more details on these
indexes see Lee et al. (2014). The Gelman–Rubin diagnostic is equal to 1 for parameters
λ, θ, α and ω. Hence, the chains could be accepted, and this indicates the estimates come
from a state space of the parameter, as depicted in Figure 9.



J. Risk Financial Manag. 2022, 15, 500 14 of 18

Table 6. Diagnostics using the Gelman-Rubin and Geweke-Raftery-Lewis methods for parameters α,
β and λ based on DS1 dataset.

Parameter Gelman-Rubin Geweke (Z0.025 = ±1.96) Raftery-Lewis

λ 1 −0.5880 5.1
θ 1 0.3205 4.8
α 1 0.7607 5.01
ω 1 0.3679 4.632
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Figure 8. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Histogram
plots of each CWE distribution parameter.
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Figure 9. Gelman plot diagnostic for each CWE distribution parameter based on DS1 dataset.
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From Table 6, Geweke–Raftery–Lewis test statistics for parameters λ, θ, α and ω
are −0.588, 0.320, 0.761 and 0.368, respectively. Therefore, also in this case, the chain is
acceptable, as shown in Figures 10 and 11. Moreover, the reported diagnostics statistics for
parameters α, β and λ based on the Geweke–Raftery–Lewis measure don’t show significant
correlations between estimates. Hence, the estimated values have good mixing.
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Figure 10. Geweke plot diagnostic (chain1) for each CWE distribution parameter based on
DS1 dataset.
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Figure 11. Geweke plot diagnostic (chain2) for each CWE distribution parameter based on
DS1 dataset.

8. Conclusions
This paper extended the WE distribution to a richer family, the CWE distribution, to

deal with data displaying large and positive skewness as well as a wide right tail. This
four-parameter model is a mixture of two WE distributions in which one has an enhanced
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scale and hence a thicker tail to capture extreme losses. EM and Bayesian computational
techniques were used to estimate parameters. The effectiveness and efficiency of the
EM algorithm were evaluated by conducting one simulation study. By analyzing two
real insurance claims datasets, we found that the CWE distribution outperformed the CE
distribution in terms of model fit. The result show that both EM and Bayesian approaches
are appropriate tools to estimate the model parameters. In addition, it is possible to consider
proposed distribution to fit lifetimes, and how the suggested algorithms will be adjusted in
case of truncated or censored data. Another application could be done in actuarial science
context; specifically, how CWE distribution could be employed to calculate the VaR and
TVaR (Bargès et al. 2009).
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Appendix A. R Code to Fit the CWE Distribution Using EM-Algorithm
EM.CWE <- function(y, om, al, la, th, iter.max = 500, tol=10^-6){
f.CWE <- function(y,om,al,la,th)
(1-om)*(al+1)/al*la*exp(-la*y)*(1-exp(-la*al*y))+om*(al+1)/al*th*la
*exp(-th*la*y)*(1-exp(-th*la*al*y))
n <- length(y); LL <- 1 ; dif <- 1 ; count <- 1
while ((dif > tol) & (count <= iter.max)) {
# E steps
gam <- om*(al+1)/al*th*la*exp(-th*la*y)*(1-exp(-th*la*al*y))/
f.CWE(y,om,al,la,th)
ta1 <- (1-gam)*(1/(la*al*y)-1/(exp(la*al*y)-1) )
ta2 <- gam*(1/(th*la*al*y)-1/(exp(th*la*al*y)-1) )
# M steps
om <- sum(gam)/n
al <- n/(la*sum(ta1*y+th*ta2*y))-1
la <- 2*n/sum((1-gam)*y+al*ta1*y+th*gam*y+al*th*ta2*y)
th <- (2*sum(gam))/(la*sum(gam*y+al*ta2*y))
LL.new <- sum(log(f.CWE(y,om,al,la,th)))
count <- count +1
dif <- abs(LL.new/LL-1)
}
print.foo <- function(x) print(x[1:8])
aic <- -2 * LL.new + 2 * 4
bic <- -2 * LL.new + log(n) * 4
Ret <-list(omega=om, alpha=al, lambda=la, theta=th, loglik=LL.new,
AIC=aic, BIC=bic, iter=count, out.prob=gam)
class(Ret) <- "foo"
return(Ret)
}
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