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Abstract: This study proposes a wavelet procedure for estimating partial correlation coefficients
between stock market returns over different time scales. The estimated partial correlations are
subsequently used in a cluster analysis to identify, for each time scale, groups of stocks that exhibit
distinct market movement characteristics and are therefore useful for portfolio diversification. The
proposed procedure is demonstrated using all the major S&P 500 sector indices as well as precious
metals and energy sector futures returns during the last decade. The results suggest cluster formations
that vary by time scale, which entails different stock selection strategies for investors differing in
terms of their investment horizon orientation.
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1. Introduction

The Pearson correlation coefficient is a frequently used statistic in finance, most
notably in the area of portfolio analysis, in which it facilitates understanding of the linear
associations between various stock market returns. For example, among other applications,
it is frequently used for calculating portfolio variance in the well-known mean-variance
portfolio theory framework (Cuthbertson and Nitzsche 2004, p. 121).

However, despite its popularity and ease of computation, Kenett et al. (2015) empha-
size that the Pearson correlation coefficient is also characterized by an important limitation
when used in the context of financial applications. A high correlation value for stock market
returns does not necessarily imply a direct relationship between two stocks, but rather
a common underlying influence by macroeconomic or psychological factors related to
investors.

To properly understand the true direct correlation structure between stocks in such
settings, it is important to first account for the common factors that influence stock move-
ments and are most represented by the stock market index in the capital asset pricing
model (CAPM) framework. The partial correlation coefficient enables such calculations by
quantifying the correlation between two stock returns while conditioning for the effect of a
third variable that influences both returns.

In this study, we propose a wavelet-based procedure for calculating the partial correla-
tions between stocks using coefficients generated from maximal overlap discreet wavelet
transforms (MODWT) of the stock market returns. Wavelets are classes of orthonormal
basis functions (Nason 2008) that enable the decomposition of time series into different
frequency bands (time scales). This is a very useful property in finance (In and Kim 2013)
since it enables the examination of financial variables over different planning cycles. For
example, take the case with investors who have different tolerances related to investment
horizons (e.g., portfolio managers, brokers, traders, institutional investors). The need
to estimate correlations between assets returns over different time scales was also noted
by Wątorek et al. (2019), who proposed using the detrended cross-correlation coefficient
(Kwapień et al. 2015) for measuring the degree of cross-correlation between two time series
over different time scales.
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In the empirical applications of this study, the proposed method was used to esti-
mate the partial correlations between the main S&P 500 sector indices in the US over
different time scales while conditioning for movements in the returns of the general stock
market index. The estimated partial correlation coefficients were subsequently used in a
clustering procedure to better understand the similarities and differences between the dif-
ferent categories of stock market returns and therefore identify opportunities for portfolio
diversification over different planning cycles.

Consequently, in the remaining sections the following research questions are ad-
dressed: (i) Can the partial correlation index be used to cluster stock market returns from
different economic activity sectors and over different time scales? (ii) How do stock cor-
relations between the different economic activity sectors vary over different time scales,
once movements in the general stock market index have been accounted for? (iii) What are
the implications for investors that differ in terms of their investment horizon orientation
(short-term, medium-term, long-term)?

The rest of the article is organized as follows. Section 2 reviews the relevant literature
concerning the application of correlation, clustering, and wavelet methods in finance.
Section 3 introduces the data and the estimation procedure for the proposed wavelet-based
partial correlation coefficient, which is subsequently used in the clustering applications of
Section 4. Section 5 concludes and provides suggestions for further research.

2. Literature Review

The Pearson correlation coefficient is most commonly associated with two application
areas in finance: portfolio diversification and financial contagion. In portfolio diversification
applications, the principal consideration is the correct estimation of the correlation matrices
between asset returns. However, in addition to the Pearson correlation coefficient, which is
still frequently used in empirical studies (see, for example, Geertsema and Lu 2020), several
other correlation methods have been proposed in the literature, such as time-varying
correlation (Chiang et al. 2007), Fisher correlation (Krishnan et al. 2009), partial correlation
(Kenett et al. 2015), dynamic conditional correlation (Engle and Colacito 2006), detrended
cross-correlation (Wątorek et al. 2019), and partial distance correlation (Creamer and Lee
2019).

Correlation coefficients have also been used in the financial contagion literature, where
the principal aim is to measure cross-market linkages in financial markets following a
shock to one or more countries. Two of the earlier studies in this field that used correlation
coefficients include King and Wadhwani (1990) and Lee and Kim (1993). In a noteworthy
study, Forbes and Rigobo (2002) showed that contagion tests based on the correlation coef-
ficient are biased due to heteroskedasticity since cross-market correlations are conditional
on market volatility. Under certain assumptions, the authors demonstrate the magnitude
of this bias and explain the necessary adjustment to correct it.

More recently, Alqaralleh and Canepa (2021) proposed a wavelet-copula-GARCH pro-
cedure where changes in stock market correlations at higher frequencies are associated with
contagion, and changes at lower frequencies are associated with normal interdependence.
The authors found strong evidence of contagion between six major stock markets after
the start of the COVID-19 pandemic, while before the pandemic the results support the
long-run interdependence hypothesis.

Similarly, there is a considerable amount of literature concerning the application of
cluster analysis methods in finance. Bennett and Hugen (2016) provide an informative
introduction to the application of clustering methods for portfolio analysis with an emphasis
on the k-means algorithm, which is also used in this study. Tola et al. (2008) used several
clustering algorithms (such as the single and average linkage methods) to show that the
reliability of portfolios in terms of the ratio between predicted and realized risk can be
improved. In another interesting application, Ahn et al. (2009) used a correlation distance
measure in the context of a minimum variance clustering algorithm to construct a set of
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basis assets that characterize an investor’s opportunity set and that are not susceptible to
data-snooping biases.

Other notable applications of clustering methods in finance in recent years include the
use of time-series hierarchical clustering for understating the correlation structure of an
index and therefore building an optimal tracking portfolio (Focardi and Fabozzi 2004); the
application of techniques from network science and linkage algorithms to understand the
clustering of exchange-rate time series (Fenn et al. 2012); the incorporation of a distance
measure based on variance ratio statistics in the complete-linkage algorithm for clustering
international stock market returns (Bastos and Caiado 2014); and the application of a
Gaussian mixture model on the voting shares of mutual funds to identify distinctive groups
(and philosophies) of corporate governance in the US (Bubb and Catan 2021).

Due to their unique time scale decomposition properties, wavelets have been used in
many economic and financial applications. Several studies concentrated on the estimation
of the systematic risk and portfolio variance of assets across different time scales, such as
the articles by Gençay et al. (2005), Kim and In (2010), and Michis (2014a, 2019). Another
stream of research concentrated on the examination of macroeconomic relationships across
different time scales, including money growth and inflation (Rua 2012), wage inflation and
unemployment (Gallegati et al. 2011), productivity and unemployment (Gallegati et al.
2016), the liquidity effect (Michis 2015a), and the comovements exhibited by European
economic sentiment indicators (Michis 2021).

In addition, wavelets have also been used in economic and financial forecasting (see
the studies by Michis 2014b, 2015b; Michis and Guy 2017; Rua 2017; Caraiani 2017; Risse
2019), econometric estimation (Michis and Sapatinas 2007; Gençay and Gradojevi 2011;
Gilles et al. 2009; Jensen 2000) and testing (Hong and Kao 2004; Fan and Gençay 2010;
Gençay and Signori 2015), as well as in filtering-denoising applications (Fleming et al. 2000;
Capobianco 2003; Bruzda 2014; Michis 2011).

Rua and Nunes (2009) analyzed international comovements between economic sector
returns over different time scales. However, their analysis is based on simple correlations
of monthly data in the frequency domain (wavelet coherency) that do not account for
movements in the general stock market index, nor are any clustering applications involved.
In contrast, Kenett et al. (2015) used partial correlation coefficients to estimate economic
activity sector comovements in the US. Even though their authors use daily data, the
analysis is not performed over different time scales, the economic activity sectors are not
grouped into distinguishable clusters, and the long-run implications for investors are not
considered.

Partial correlation coefficients and a cluster analysis were also used by Jung and Chang
(2016), who analyzed data on the main stocks listed in the Korean stock exchange. Although
interesting, their analysis is based on monthly data, the correlations are not evaluated over
different time scales and there are no comparisons with the main US economic activity
sectors. A time scale analysis of daily financial data was also suggested by Nava et al. (2018)
using the empirical mode decomposition and Pearson’s correlation coefficient. However,
no cluster analysis was involved, nor any considerations of the comovements between the
main US economic activity sectors.

This study provides a synthesis of the research streams by incorporating a partial
correlation coefficient distance measure in the k-means clustering algorithm to identify
distinct groups of stock market returns by time scale. Time scale decomposition is achieved
through the application of a wavelet transform to the actual stock market returns and is
important for investors considering improvements in the diversification of their portfolios
over different planning cycles, e.g., a long-term buy-and-hold passive strategy vs. a short-
term active trading strategy.
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3. Materials and Methods
3.1. Wavelet Transforms

In this section, we explain the estimation procedure for the wavelet-based partial
correlation coefficient. First, we present the basic building blocks of wavelets, followed by
the derivation of the MODWT coefficients, which are subsequently used for the estimation
of the partial correlation coefficients between the different S&P 500 sector indices.

Wavelets constitute classes of orthonormal basis functions that enable simultaneous
time-frequency decompositions of time series into different time scales. A two-dimensional
family of wavelet functions can be generated by translating (a shift in the range) and dilating
(an expansion in the range) the (real-valued) father and mother wavelets as follows:

φj,k = 2−j/2 φ

(
t− 2jk

2j

)
and ψj,k = 2−j/2 ψ

(
t− 2jk

2j

)
.

Lower values of the index j capture the high frequency, oscillating features of a signal
(high resolution), while higher values capture the low frequency (low resolution), smooth
components (In and Kim 2013, p. 11).

Wavelets must satisfy the following conditions (Percival and Walden 2000, p. 2):

∞∫
−∞

ψ(t) dt = 0 and
∞∫
−∞

|ψ(t)|2 dt = 1.

While the second condition implies movements of ψ(t) away from zero, the first con-
dition ensures that these movements cancel out (e.g., movements above zero are cancelled
out by movements below zero), thus leading to the formation of small waves. In addition,
the following admissibility condition enables the reconstruction of a function from its
continuous wavelet transform, where Ψ( f ) is the Fourier transform of the wavelet function:

Cψ =

∞∫
0

|Ψ( f )|2

f
d f and 0 < Cψ < ∞.

A finite (j = 1, 2, . . . , J) wavelet series approximation of a dyadic length (2j) time series
xt can be represented as follows:

xt ≈ ∑
k

sJ,k φJ,k (t)+∑
k

dJ,k ψJ,k (t)+∑
k

dJ−1,k ψJ−1,k (t) + . . .+

∑
k

dj−1,k ψj−1,k (t) + . . .+∑
k

d1,k ψ1,k (t)

with wavelet transform coefficients sJ,k =
∫

φJ,k(t) xt dt and dj,k =
∫

ψj,k(t) xt dt or more
compactly in terms of wavelet details (Dj = ∑

k
dj,k ψj,k (t)) and smooths (SJ = ∑

k
sJ,k φJ,k (t))

as:
xt ≈ SJ + DJ + DJ−1 + . . . + Dj + . . . + D1.

The scaling coefficients (sJ,k) corresponding to father wavelets capture the (low fre-
quency) long-run trend in the series, while the detail coefficients (dJ,k) corresponding to
mother wavelets capture the high frequency, oscillating characteristics of the series.

Consequently, the wavelet series approximation provides a decomposition of xt into
J = 2j time scale components (a multiresolution analysis). Adding progressively smaller
time scale components (Dj) to the long-run trend (SJ) increases the finer detail characteristics
of the signal until the original time series xt is reconstructed. For a weekly time series
of length 512 (j = 9), the coefficients at time scale D1 capture oscillations over cycles of
2–4 weeks. Accordingly, the coefficients at scales D2 and D3 capture oscillations over cycles
of 4–8 and 8–16 weeks, respectively, and this is the case up to scale 9, which is associated
with long-term cyclical variations in xt.
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Two wavelet transforms frequently used for the analysis of time series with finite
length are the discrete wavelet transform (DWT) and the MODWT. In this study, we will
analyze stock market data using the MODWT, which is characterized by the following
desirable properties (In and Kim 2013, p. 25): it can be used with any sample size (not only
dyadic length series), it is shift invariant (circularly shifting the series does not influence
the multiresolution analysis), and its wavelet details and smooths are associated with zero-
phase filtering (e.g., extreme values in the actual data can be aligned with corresponding
values in the multiresolution analysis).

There are two additional characteristics of the MODWT that are particularly relevant
for estimating partial correlation coefficients: (i) it provides an asymptotically more efficient
variance estimator than the DWT, and (ii) by considering all integer translations of the
series at each frequency resolution, it generates coefficient vectors that have the same length
as the original time series, which facilitates computations. In applied work, the MODWT is
computed using a pyramid algorithm with discrete high-pass and (h0, . . . , hL−1) low-pass
filters (g0, . . . , gL−1).

The first level of the algorithm filters the actual data with the rescaled filters h̃j = hj/2j

and g̃j = gj/2j:

d̃1,t =
L−1

∑
l=0

h̃ xt−lmodN and ṽ1,t =
L−1

∑
l=0

g̃ xt−lmodN .

The second level proceeds by applying the same filtering procedure to the vector of
scaling coefficients produced in level 1 (ṽ1), which gives rise to the second level of wavelet
(d̃2) and scaling coefficient vectors (ṽ2). Level 3 proceeds in the same way by applying the
filtering procedure on the scaling vector ṽ2. The same filtering procedure is repeated for J
levels, each time using as input the scaling vector of the previous level, which gives rise

to the matrix of wavelet coefficient vectors d̃ =
[
d̃1, . . . , d̃J , ṽJ

]′
that will be used for the

calculation of the wavelet-based partial correlation coefficients in the next section.

3.2. Wavelet Based Partial Correlation Coefficients

To estimate the partial correlation coefficient between two time series xt and yt while
conditioning on a third time series zt, it is necessary to first estimate the variances and
covariances associated with the three variables. An unbiased estimator of the wavelet
variance for xt at time scale λj, using the MODWT coefficients, is given by:

σ2
x(λj) =

1
T̃j

T−1

∑
t=Lj−1

(d̃x
j,t)

2

where Lj = (2j − 1)(L + 1) + 1 and T̃ = T − Lj + 1 refer to the length of the wavelet filter
and the number of coefficients unaffected by the boundary, respectively (Gençay et al., p.
241). Accordingly, the wavelet covariance between time series xt and yt can be expressed
as:

σx,y(λj) =
1
T̃j

T−1

∑
t=Lj−1

(d̃x
j,t)(d̃

y
j,t).

It is then straightforward to obtain an expression for the wavelet correlation at scale
λj through normalization of the wavelet covariance with the individual variances:

ρx,y(λj) ≡
σx,y(λj)

σx(λj) σy(λj)
.

The wavelet correlation coefficient bares the well-known property:
∣∣ρ̂x,y(λj)

∣∣ < 1. In
and Kim (2013, pp. 33–34) provided formulas for the computation of confidence intervals
for both the wavelet covariance and wavelet correlation estimators presented above.
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When working with stock market returns, a high correlation value is not always
indicative of a direct association between two stocks. Kenett et al. (2015) emphasize
that movements in both stocks can be associated with movements in a third variable that
influences both stocks, as is, for example, the case with the general stock market index.
In this case, it is necessary to use the partial correlation coefficient, which calculates the
correlation between two variables (xt and yt), while controlling for the effect of a third
variable (zt).

In line with the partial correlation formula for continuous observations (Chen and
Popovich 2002, p. 73), the wavelet partial correlation coefficient can be calculated as follows,
where

∣∣ρ̂x,y:z(λj)
∣∣ < 1:

ρx,y:z(λj) ≡
ρx,y(λj)− ρx,z(λj) ρy,z(λj)√[

1− ρ2
x,z(λj)

][
1− ρ2

y,z(λj)
] . (1)

3.3. Data: S&P 500 Sectors

The wavelet partial correlation coefficient in Equation (1) was used to estimate the
partial correlation matrices between the following S&P 500 sector returns on a scale-by-scale
basis: telecom services (SPLRCL), consumer discretionary (SPLRCD), consumer staples
(SPLRCS), energy (SPNY), financials (SPSY), health care (SPXHC), industrials (SPLRCI),
information technology (SPLRCT), materials (SPLRCM), real estate (SPLRCREC), and
utilities (SPLRCU).

The analysis was also augmented with the following precious metals and energy
futures returns that likely exhibit distinct market movement characteristics and are therefore
useful for portfolio diversification purposes: gold, silver, cooper, Brent oil, and natural gas.
For all indices, the data were downloaded from the financial platform www.investing.com
(accessed on 9 September 2021) and concern weekly closing values for the period 1 August
2010–18 July 2021, in the US. Table 1 includes summary statistics for all the indices, and
Figure 1 illustrates the time development of four indices that are representative of the
cyclical variations inherent in the data.

Table 1. Summary statistics of weekly closing values.

Index Mean St. Dev. Min Max

S&P 500 2231.031 768.763 1064.590 4411.800
Telecom services 159.849 27.740 111.340 275.960

Consumer discretionary 668.039 295.562 241.460 1476.620
Consumer staples 496.603 115.494 275.320 737.090

Energy 502.264 100.888 193.930 734.160
Financials 343.244 110.181 157.480 637.750

Health care 806.849 295.128 330.080 1531.580
Industrials 499.735 149.601 248.360 890.440

Informat. technology 946.028 560.319 334.000 2713.400
Materials 310.808 72.275 184.550 551.920

Real estate 183.537 37.984 106.450 289.260
Utilities 238.648 52.496 153.810 356.330

Gold futures 1454.874 209.623 1114.500 2061.400
Silver futures 21.922 6.650 12.523 48.584

Copper futures 31.226 5.982 19.940 47.485
Brent Oil futures 76.140 26.998 21.440 126.650

Natural gas futures 3.106 0.781 1.495 6.135
Note: 573 observations sample size per index.

www.investing.com
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Figure 1. Consumer staples, energy, information technology and gold futures.

For example, the information technology index exhibits a rising exponential trend,
while the energy sector index has a slightly declining trend after 2014, a further drop in
2020, and a small rebound in 2021. In contrast, consumer staples are mostly associated
with a slightly increasing trend and a small increase in volatility after 2018. Furthermore,
even though all indices exhibit short-term fluctuations around their long-term trends, it
can be observed that the gold futures index also exhibits several medium-term cycles, most
notably during the periods August 2010–May 2013, December 2015–December 2016, and
January 2020-February 2021.

Wavelets are particularly well suited for decomposing the cyclical characteristics of
nonstationary time series (Nason 2008, p. 60), such as those frequently encountered in
stock market data. They are also very effective in handling time series with extreme values,
such as spikes and shifts in trends (Michis 2015b), which, in the case of Figure 1, are most
evident in the gold futures and energy sector values of 2 August 2020 and 15 March 2020,
respectively.

For all pairs of stock and futures returns, the wavelet coefficients necessary for esti-
mating the partial correlation coefficient in Equation (1) were generated using the MODWT
with a Daubechies least asymmetric wavelet filter of length 8. This is a frequently used
filter for financial time series (see, for example, Michis 2014a and Kim and In 2010), which
also provided good resolutions of the financial returns analyzed in this study.

The partial correlation matrices for time scales 3, 6, and 8 are presented in Appendix A.
We concentrate on the results for these three time scales mainly because they are charac-
teristic of the investment horizons typically encountered in financial markets (short-term,
medium-term and long-term), and they are also representative of the correlation matrices
estimated for the remaining time scales in the analysis. In several cases, the partial correla-
tions between two financial returns are negative or close to zero, which is consistent with
the findings of Kenett et al. (2015).

As is common for correlation estimates (Obilor and Amadi 2018), Appendix B includes
p-values for the estimated partial correlation coefficients of time scales 3, 6 and 8 that were
generated using the testing procedure proposed by Kim (2015) based on the Student’s
t distribution. Only 14% of the estimated coefficients were not found to be statistically
significant at the 90% confidence level.
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Jung and Chang (2016) note that due to conditioning on general market index returns,
partial correlation coefficients tend to be smaller than Pearson correlation coefficients of the
same stock returns. In addition, not accounting for common factors that have an influence
on stock returns can result in biased Pearson correlation estimates, which are not useful
for investors seeking to diversify risk away from their portfolios. Furthermore, when the
common factor in partial correlation estimates is chosen to be the general market index, the
partial correlation coefficient resembles the CAPM.

4. Results: Clustering of Stock Market Returns

Jung and Chang (2016) were among the first to propose the use of partial correlation
coefficients for clustering stock returns using an agglomerative hierarchical clustering
procedure. In this section, we extend these clustering applications by proposing the use
of a wavelet-based partial correlation dissimilarity measure in the context of the k-means
clustering algorithm to identify groups of stocks that exhibit distinct market movement
characteristics.

In addition to being useful for portfolio diversification purposes (Cuthbertson and
Nitzsche 2004), such an analysis enables the exploration of differences between stocks
on a time scale basis, such as variations over short-term, medium-term, and long-term
cycles, and it is therefore particularly well suited for investors that differ in terms of their
investment horizon orientations.

Can the partial correlation coefficient be used to cluster stock market returns from
different economic activity sectors and over different time scales?

For the clustering applications of this section, we will use the following partial correla-
tion dissimilarity measure between stocks xt and yt, which is based on the wavelet partial
correlation coefficient formula presented in Section 3:

δx,y:z(λj) =
[
1− ρx,y:z(λj)

]
/2 (2)

This measure resembles the Pearson correlation dissimilarity measure that is frequently
used for clustering continuous data observations (Everitt et al. 2011, p. 50). However, it
differs in two important aspects: (i) it is based on the partial correlation coefficient that
measures the association between two stocks (xt and yt), while controlling for the effect of
a third variable (the stock market index), and (ii) it can be calculated and used in clustering
applications separately for each time scale.

Consequently, using the dissimilarity measure δx,y:z(λj), the k-means clustering al-
gorithm can be applied separately for each time scale. To see this, first consider a p-
dimensional dataset consisting of the level j wavelet coefficient vectors generated from
the returns series of p separate stocks, as described in Section 3.1. If there are K separate
clusters inherent in the data, total dispersion is provided by the following matrix:

Tj =
K

∑
g=1

Tg

∑
i=1

(
dgi:j − dj

)(
dgi:j − dj

)′

where dgi:j refers to the ith item in cluster g and dj =
1
N

K
∑

g=1

Tg

∑
i=1

dgi;j is the overall mean. Total

dispersion can then be decomposed into within-cluster dispersion W and between-cluster
dispersion B,

Tj = Wj + Bj

where Wj =
K
∑

g=1

Tg

∑
i=1

(
dgi:j − dg:j

)(
dgi:j − dg:j

)′
, Bj =

K
∑

g=1

Tg

∑
i=1

(
dg:j − dj

)(
dg:j − dj

)′
and

dg:j =
1

Tg

Tg

∑
i=1

dgi:j is the cluster g mean value.
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The k-means algorithm used in this study proceeds to group items in a way that
minimizes Wj and therefore most of the variation in the data are accounted for by between
cluster variation Bj. Consequently, it attempts to minimize the following objective function:

Wj =
K

∑
g=1

Tg

∑
i=1

ugi:j δgi:j (3)

where ugi:j is the cluster membership indicator (ugi:j = 1 when item i is assigned to cluster
g) and δgi;j is the distance between item i and cluster g at time scale j. The classic k-means
algorithm is based on Euclidean distances as used in the total dispersion decomposition
above. However, when working with time series data, the Pearson correlation distance
[1− ρPearson] is frequently preferred. Berthold and Höppner (2016) showed that for normal-
ized series with zero mean and unit variance, the Euclidean distance is equal to 2T times
the correlation distance: δEuclidian = 2T δPearson.

In the empirical applications of this study, we will minimize the objective function (3)
using the partial correlation dissimilarity measure presented in Equation (2), which is more
suitable for analyzing stock returns. The k-means algorithm in this case proceeds in four
steps:

1. Define an initial partition of the data into g groups (randomly or using, e.g., a hierar-
chical method with a dendrogram).

2. For this initial partition, compute the score of
∣∣Wj

∣∣.
3. Then, reallocate each item dgi:j separately into other groups until a partition is found

that reduces the criterion
∣∣Wj

∣∣ the most.
4. Repeat the procedure from step 2 until the score of

∣∣Wj
∣∣ cannot be reduced further.

Even though this procedure is successful at finding a local minimum, several repe-
titions with different initial partitions can lead to solutions that are equal or close to the
global minimum (Cox 2005, p. 93).

In applied work, a frequently used method for choosing the number of clusters suitable
for partitioning a dataset first proceeds by calculating and plotting the within-group sum
of squares generated by each separate k-means group solution. Increasing the number
of clusters leads to a reduction in the sum of squares. Therefore, a noticeable “elbow” in
the sum of squares plot provides an indication for the most suitable number of clusters
to form (Everitt and Hothorn 2011, p.180). Using the partial correlation matrices of time
scales 3, 6, and 8 in Appendix A, Figure 2 plots the within-group sum of squares for seven
different cluster numbers, generated using the dissimilarity measure (2) in the context of
the k-means algorithm. The results suggest the following partitions: five clusters for time
scale 3, four clusters for time scale 6, and three clusters for time scale 8.
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To evaluate the consistency of the resulting cluster formations for time scales 3, 6, and
8, we performed a silhouette analysis, which is a frequently used method for validating
cluster formations. For each object, an index is defined that compares the object’s separation
from its cluster against the heterogeneity of the cluster (Everitt et al. 2011). Consequently,
it provides an indication of how similar an observation is with the cluster to which it has
been assigned relative to other clusters.

Values of the index close to 1 suggest that the object is well classified since the cluster’s
heterogeneity is smaller than its separation, while values close to −1 suggest misclassifica-
tion. Borderline cases where the object is not clearly assigned between two neighbouring
clusters are indicated with values close to zero.

In silhouette plots, the values of the index for each cluster are displayed with horizontal
bars, as shown in Figure 3 for the three clusters of time scale 8. Kaufman and Rousseeuw
(1990), who first proposed the silhouette method, consider silhouette width values higher
than 0.5 to be indicative of a good cluster formation, as is the case with the results of
time scale 8. However, more useful in applied work is the average silhouette width curve
for different cluster sizes, since it enables identification of the optimal group sizes that
maximize silhouette width.

J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 3. Silhouette analysis for time scale 8. 

Appendix C depicts the silhouette width curves for the clustering solutions of time 
scales 3, 6, and 8. In each case, the cluster formations were generated using a random 
starting point of two clusters, followed by a 100 iteration convergence limit. The maxi-
mum point of the average silhouette width curve for timescale 3 suggests that the optimal 
cluster size in this case is five. For time scales 6 and 8, the respective optimal cluster sizes 
are four and three respectively. 

How do stock correlations between the different economic activity sectors vary over 
different time scales once movements in the general stock market index have been ac-
counted for? 

The results of the k-means clustering procedure using the abovementioned cluster 
partitions are presented in Figures 4–6. All data were analyzed using the wavelsim, clus-
ter, factoextra, ppcor, and ggplot2 packages for R available from the CRAN archive. The 
horizontal and vertical axes correspond to the first two principal components that account 
for most of the variability in the partial correlation distance matrix, as represented by the 
respective percentage values. This dimension reduction method is commonly used in ap-
plied work for graphically illustrating clustering results in the space of the first two prin-
cipal components (Everitt and Hothorn 2011). For the purposes of this study, we used the 
visualisation procedure suggested by ufmanra and Kassambara and Mundt (2020). 

It can also be observed that the precious metal (gold, silver, and copper) futures re-
turns are always grouped together, while some indices are always grouped separately 
from precious metals, e.g., “Consumer discretionary” and “Consumer staples”. In con-
trast, the returns associated with the energy futures (Brent oil and natural gas) are 
grouped together only when considering movements over long-term cycles (time scale 8). 
The “Energy” and “Financial” indices are grouped together when considering medium-
term (time scale 6) and long-term cycles, and the “Real estate” and “Utilities” indices are 
grouped separately only when considering long-term cycles. 

 

Figure 3. Silhouette analysis for time scale 8.

Appendix C depicts the silhouette width curves for the clustering solutions of time
scales 3, 6, and 8. In each case, the cluster formations were generated using a random
starting point of two clusters, followed by a 100 iteration convergence limit. The maximum
point of the average silhouette width curve for timescale 3 suggests that the optimal cluster
size in this case is five. For time scales 6 and 8, the respective optimal cluster sizes are four
and three respectively.

How do stock correlations between the different economic activity sectors vary over
different time scales once movements in the general stock market index have been ac-
counted for?

The results of the k-means clustering procedure using the abovementioned cluster
partitions are presented in Figures 4–6. All data were analyzed using the wavelsim, cluster,
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factoextra, ppcor, and ggplot2 packages for R available from the CRAN archive. The
horizontal and vertical axes correspond to the first two principal components that account
for most of the variability in the partial correlation distance matrix, as represented by the
respective percentage values. This dimension reduction method is commonly used in
applied work for graphically illustrating clustering results in the space of the first two
principal components (Everitt and Hothorn 2011). For the purposes of this study, we used
the visualisation procedure suggested by Kassambara and Mundt (2020).
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It can also be observed that the precious metal (gold, silver, and copper) futures
returns are always grouped together, while some indices are always grouped separately
from precious metals, e.g., “Consumer discretionary” and “Consumer staples”. In contrast,
the returns associated with the energy futures (Brent oil and natural gas) are grouped
together only when considering movements over long-term cycles (time scale 8). The
“Energy” and “Financial” indices are grouped together when considering medium-term
(time scale 6) and long-term cycles, and the “Real estate” and “Utilities” indices are grouped
separately only when considering long-term cycles.

Furthermore, the abovementioned cluster analysis results provide some interesting
insights. First, the number of cluster formations necessary for grouping the indices is
reduced as one moves progressively to higher time scales that represent longer duration
cycles in the data. Consequently, in the long term, the cluster formations are larger, consist of
more homogeneous stock returns, and are also more distinct, as represented by the distances
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between them in the configuration for time scale 8 in Figure 6. In such environments,
frequent trading and portfolio changes become less important.
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What are the implications for investors that differ in terms of their investment horizon
orientation (short-term, medium-term, long-term)?

Second, cluster participation varies by time scale. For example, “Information tech-
nology” and “Materials” belong to Cluster 1 at time scale 8, but to different clusters at
time scales 3 and 6. In this case, a different portfolio selection strategy is required for
investors adopting a short-term investment horizon strategy (since the two sectors can add
diversification benefits in the short term, as shown by their negative partial correlation
coefficient) compared to investors adopting a long-term investment horizon strategy.

Third, the partial correlation indices and the degree of homogeneity between the
sector indices in each cluster also vary by time scale. This finding suggests that the
traditional approach to determining the similarity of stocks based on their official industrial
classification and irrespective of the investment horizon under consideration might not be
the most appropriate way to consider adjustments in investment portfolios. Our results
suggest that the similarities between sector indices differ by time scale. Therefore, a data-
driven approach to identifying distinct market movements between sector indices (and
stocks) on a scale-by scale basis could be more beneficial for diversifying risk away from a
portfolio.
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Wavelets can also be used for analyzing shorter time scales, using daily observations
and concentrating on smaller periods of increased volatility in financial markets, as is the
case with the recent COVID-19 pandemic. Consequently, for all the indices considered in
our study, we collected daily observations (closing values) for the period 1 May 2019–8
July 2021 and performed the cluster analysis described in Section 4. Appendix D includes
figures of the resulting cluster formations for time scales 3, 4, and 5 that cover cyclical
movements of length 8–16, 16–32, and 32–64 days respectively.

The results for time scale 3 suggest that the precious metal (gold, silver, and cooper)
and energy futures (oil and gas) returns form two distinct clusters, which are also closely
located to each other. In the case of energy futures, a possible explanation concerns the
unique market movements of energy fuels during the COVID-19 pandemic where an
initial drop in prices was followed by sharp increases due to limitations on production
and increased demand (Camp et al. 2020). Precious metals on the other hand are usually
considered as safe haven assets that many investors prefer during times of financial distress
(Michis 2019). In a recent study, Sifat et al. (2021) found evidence that speculations in the
energy and precious metals futures markets have in fact increased during the COVID-19
pandemic, which could also be related with the distinct behavior of these indices in the
cluster analysis results for time scale 3.

This conclusion (speculative behavior confined to the short-term cycles of time scale 3)
is further supported by the clustering results for time scales 4 and 5 in Appendix D that
concern longer cycles. It can be observed that the precious metal and energy futures returns
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become less distinct and progressively move closer to some other sectors when evaluated
over these longer time scales. In addition, the cluster formations in these time scales are
more similar to the clustering results of Figure 4 that were generated using weekly data.
For example, the “Real estate”, “Consumer staples”, “Health care”, and “Utilities” sectors
are grouped together in these time scales, as is the case for the “Materials”, “Industrials”,
“Energy”, and “Financials” sectors. The same is also true for the “Information technology”
and “Consumer discretionary” sectors.

It is also worth mentioning that, in the daily results for time scale 5, the “Gas futures”
and “Telecom services” indices are grouped together, as is the case with the weekly data
results for time scale 3 in Figure 4. This unique behavior of the “Telecom services” sector
may be explained by the high increase in demand for these services after the beginning
of the COVID-19 pandemic, which is also reflected in the general trend of the index in
Figure 7. However, it is important to emphasize at this stage that a more in-depth analysis
of the sectors that exhibit distinct market behavior during periods of increased volatility
should be combined with an analysis of individual stock returns, since heterogeneity could
exist within the aggregated sector movements. The analysis by Jung and Chang (2016)
provides several useful suggestions in this direction.
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5. Conclusions

This study proposed a data-driven procedure for analyzing associations between
stock market returns using a wavelet-based estimator of the partial correlation coefficient.
A key feature of this coefficient is the ability to estimate the associations between stock
market returns over different time scales (short-term, medium-term, long-term), while
conditioning for the general stock market movements that tend to inflate the Pearson
correlation estimates.

The estimated partial correlation coefficients can also be used for constructing a dissim-
ilarity measure between stock returns, which, when incorporated in the k-means clustering
algorithm, generates separate cluster formations by time scale. This is an important distinc-
tion for investors differing in terms of their investment horizon orientations.

The results of an empirical study using all the major S&P 500 sector indices in the US,
as well as precious metals and energy sector futures returns during the last decade, suggest
that cluster formations (number of clusters, synthesis, and degree of homogeneity) do vary
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by time scale, which entails different implications for investors wishing to diversify risk
away from their portfolios but differ in terms of their investment horizon orientation.

Similarly to Kenett et al. (2015), our findings also suggest that stocks can be correlated
outside their primary sector classification and the correlation levels vary by time scale.
These findings have implications for the stock selection strategies of investors relying on
sectoral diversification in their efforts to diversify risk away from their portfolios. The
degree of comovement between the different economic activity sectors is higher when
considering long-term cycles. Therefore, diversification is less important in the long-run,
a finding also reported by Rua and Nunes (2009). In contrast, more clusters were found
to exist over short-term cycles, suggesting the existence of sectors with distinct market
movements and therefore more opportunities for diversification.

Furthermore, accounting for movements in the general stock market index changes
the correlation levels between the different economic activity sectors, which suggests that
relying on simple Pearson correlation estimates might not be adequate for constructing
well-diversified portfolios. Our proposed method can therefore be used as a supplementary
tool that can reveal previously unobserved correlations between stocks, not dominated by
movements in the general stock market index.

Our research can be extended in several directions that can improve some of the
limitations associated with our proposed method. First, it would be useful to consider
the incorporation of alternative wavelet-based dissimilarity measures in the clustering
algorithm that can potentially improve the within-cluster dispersions when working with
stock market returns. Moreover, the areas of application can be extended to include
additional asset classes such as fixed-income securities. Second, it is worth considering
the use of alternative wavelet transforms for calculating the partial correlations between
stock market returns, such as the discreet wavelet transform and the maximal overlap
discreet wavelet packet transform (Percival and Walden 2000). Similarly, using alternative
wavelet families can potentially improve the resolutions of stock market returns at higher
frequencies. These are fruitful areas for further research, particularly with the aid of
simulation studies that can evaluate the performance of the different methods with varying
sample sizes.

Third, financial markets constitute complex environments influenced by the activities
of multiple agents interacting over different cycles. In such environments, it is highly likely
that correlations between stock market returns are influenced by many common factors
and not just the general stock market index. Developing alternative methods for clustering
stock returns over different time scales, while conditioning for multiple common factors in
the analysis, is an interesting area for further research.

Finally, the partial correlation coefficient between stock returns, much like the Pearson
correlation coefficient, is not static and could change periodically, particularly during times
of extreme market volatility. Therefore, it is important to update the estimated coefficients
frequently and in line with changes in the market conditions, especially when working with
individual stock returns, which are more directly influenced by changes in the individual
strategies of companies.
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Appendix A. Partial Correlation Matrices for Time Scales 3, 6 and 8
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SPLRCT -0.158 0.377 -0.563 -0.502 -0.413 0.170 -0.196 -0.498 1.000 -0.190 -0.339 -0.365 -0.023 -0.332 -0.228 -0.363
SPLRCM 0.516 -0.048 0.217 -0.243 0.388 0.680 -0.235 0.467 -0.190 1.000 0.466 0.104 0.664 0.159 0.316 0.282
BV1 0.205 -0.226 0.803 0.330 0.510 0.068 -0.446 0.446 -0.339 0.466 1.000 -0.176 0.248 -0.364 0.099 -0.049
SPLRCREC 0.038 -0.602 0.180 0.046 -0.010 0.171 0.191 0.019 -0.365 0.104 -0.176 1.000 -0.006 0.675 0.694 0.742
ZIU1 0.449 0.186 -0.019 -0.481 0.571 0.734 -0.123 0.002 -0.023 0.664 0.248 -0.006 1.000 -0.011 0.232 -0.076
SPLRCS -0.146 -0.195 -0.214 -0.191 -0.190 0.133 0.252 0.233 -0.332 0.159 -0.364 0.675 -0.011 1.000 0.395 0.848
SPLRCL 0.194 -0.399 0.282 -0.095 0.165 0.295 -0.141 0.029 -0.228 0.316 0.099 0.694 0.232 0.395 1.000 0.459
SPLRCU -0.154 -0.523 0.161 -0.026 -0.092 0.108 0.158 0.388 -0.363 0.282 -0.049 0.742 -0.076 0.848 0.459 1.000

HGU1 SPLRCD SPNY SPSY NGU1 ZGQ1 SPXHC SPLRCI SPLRCT SPLRCM BV1 SPLRCREC ZIU1 SPLRCS SPLRCL SPLRCU
HGU1 1.000 -0.635 0.286 -0.159 0.553 0.856 -0.979 0.139 0.517 0.699 0.672 0.219 0.848 -0.512 0.393 -0.592
SPLRCD -0.635 1.000 -0.083 -0.274 -0.416 -0.336 0.706 -0.374 -0.492 -0.807 -0.236 0.216 -0.430 0.607 0.060 0.492
SPNY 0.286 -0.083 1.000 0.583 0.664 -0.013 -0.156 0.723 -0.639 -0.033 0.809 0.317 -0.003 -0.087 -0.308 0.226
SPSY -0.159 -0.274 0.583 1.000 0.584 -0.618 0.166 0.796 -0.589 -0.018 0.279 -0.444 -0.544 -0.248 -0.801 0.152
NGU1 0.553 -0.416 0.664 0.584 1.000 0.131 -0.496 0.557 -0.158 0.295 0.779 -0.251 0.123 -0.559 -0.339 -0.356
ZGQ1 0.856 -0.336 -0.013 -0.618 0.131 1.000 -0.847 -0.223 0.625 0.575 0.394 0.494 0.967 -0.163 0.781 -0.457
SPXHC -0.979 0.706 -0.156 0.166 -0.496 -0.847 1.000 -0.111 -0.609 -0.769 -0.560 -0.131 -0.849 0.514 -0.425 0.621
SPLRCI 0.139 -0.374 0.723 0.796 0.557 -0.223 -0.111 1.000 -0.564 0.360 0.357 0.075 -0.062 0.054 -0.338 0.178
SPLRCT 0.517 -0.492 -0.639 -0.589 -0.158 0.625 -0.609 -0.564 1.000 0.510 -0.152 -0.177 0.591 -0.470 0.439 -0.677
SPLRCM 0.699 -0.807 -0.033 -0.018 0.295 0.575 -0.769 0.360 0.510 1.000 0.092 0.086 0.726 -0.207 0.393 -0.497
BV1 0.672 -0.236 0.809 0.279 0.779 0.394 -0.560 0.357 -0.152 0.092 1.000 0.186 0.307 -0.477 -0.115 -0.159
SPLRCREC 0.219 0.216 0.317 -0.444 -0.251 0.494 -0.131 0.075 -0.177 0.086 0.186 1.000 0.530 0.585 0.649 0.351
ZIU1 0.848 -0.430 -0.003 -0.544 0.123 0.967 -0.849 -0.062 0.591 0.726 0.307 0.530 1.000 -0.074 0.795 -0.459
SPLRCS -0.512 0.607 -0.087 -0.248 -0.559 -0.163 0.514 0.054 -0.470 -0.207 -0.477 0.585 -0.074 1.000 0.431 0.622
SPLRCL 0.393 0.060 -0.308 -0.801 -0.339 0.781 -0.425 -0.338 0.439 0.393 -0.115 0.649 0.795 0.431 1.000 -0.127
SPLRCU -0.592 0.492 0.226 0.152 -0.356 -0.457 0.621 0.178 -0.677 -0.497 -0.159 0.351 -0.459 0.622 -0.127 1.000
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Appendix B. p-Values for Partial Correlation Estimates

J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 18 of 24 
 

 

Appendix B. p-Values for Partial Correlation Estimates 

Time scale 3 

 

Time scale 6 

 

Time scale 8 

 
  

HGU1 0.001 0.001 0.001 0.001 0.57 0.001 0.029 0.001 0.001 0.001 0.066 0.735 0.001 0.004 0.682 0.001
SPLRCD 0.001 0.001 0.001 0.001 0.313 0.046 0.537 0.001 0.001 0.001 0.256 0.097 0.014 0.032 0.713 0.012
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SPLRCT 0.001 0.001 0.001 0.001 0.849 0.001 0.001 0.001 0.001 0.001 0.41 0.001 0.001 0.001 0.001 0.001
SPLRCM 0.001 0.001 0.001 0.001 0.001 0.001 0.114 0.001 0.001 0.001 0.038 0.137 0.001 0.001 0.001 0.001
BV1 0.066 0.256 0.001 0.763 0.002 0.382 0.001 0.006 0.41 0.038 0.001 0.007 0.004 0.15 0.006 0.001
SPLRCREC 0.735 0.097 0.281 0.615 0.782 0.001 0.002 0.217 0.001 0.137 0.007 0.001 0.002 0.001 0.799 0.001
ZIU1 0.001 0.014 0.001 0.234 0.258 0.001 0.022 0.209 0.001 0.001 0.004 0.002 0.001 0.174 0.477 0.053
SPLRCS 0.004 0.032 0.417 0.002 0.219 0.001 0.001 0.001 0.001 0.001 0.15 0.001 0.174 0.001 0.001 0.001
SPLRCL 0.682 0.713 0.001 0.003 0.002 0.017 0.018 0.482 0.001 0.001 0.006 0.799 0.477 0.001 0.001 0.001
SPLRCU 0.001 0.012 0.246 0.001 0.579 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.053 0.001 0.001 0.001

HGU1 SPLRCD SPNY SPSY NGU1 ZGQ1 SPXHC SPLRCI SPLRCT SPLRCM BV1 SPLRCREC ZIU1 SPLRCS SPLRCL SPLRCU
HGU1 0.001 0.001 0.034 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.365 0.001 0.001 0.001 0.001
SPLRCD 0.001 0.001 0.001 0.001 0.085 0.124 0.009 0.001 0.001 0.255 0.001 0.001 0.001 0.001 0.001 0.001
SPNY 0.034 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.655 0.001 0.001 0.001
SPSY 0.001 0.001 0.001 0.001 0.494 0.001 0.001 0.001 0.001 0.001 0.001 0.273 0.001 0.001 0.023 0.537
NGU1 0.001 0.085 0.001 0.494 0.001 0.001 0.794 0.027 0.001 0.001 0.001 0.807 0.001 0.001 0.001 0.028
ZGQ1 0.001 0.124 0.002 0.001 0.001 0.001 0.306 0.001 0.001 0.001 0.104 0.001 0.001 0.001 0.001 0.010
SPXHC 0.001 0.009 0.001 0.001 0.794 0.306 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001
SPLRCI 0.001 0.001 0.001 0.001 0.027 0.001 0.001 0.001 0.001 0.001 0.001 0.646 0.953 0.001 0.487 0.001
SPLRCT 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.577 0.001 0.001 0.001
SPLRCM 0.001 0.255 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.013 0.001 0.001 0.001 0.001
BV1 0.001 0.001 0.001 0.001 0.001 0.104 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.018 0.238
SPLRCREC 0.365 0.001 0.001 0.273 0.807 0.001 0.001 0.646 0.001 0.013 0.001 0.001 0.888 0.001 0.001 0.001
ZIU1 0.001 0.001 0.655 0.001 0.001 0.001 0.003 0.953 0.577 0.001 0.001 0.888 0.001 0.790 0.001 0.069
SPLRCS 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.790 0.001 0.001 0.001
SPLRCL 0.001 0.001 0.001 0.023 0.001 0.001 0.001 0.487 0.001 0.001 0.018 0.001 0.001 0.001 0.001 0.001
SPLRCU 0.001 0.001 0.001 0.537 0.028 0.010 0.001 0.001 0.001 0.001 0.238 0.001 0.069 0.001 0.001 0.001

HGU1 SPLRCD SPNY SPSY NGU1 ZGQ1 SPXHC SPLRCI SPLRCT SPLRCM BV1 SPLRCREC ZIU1 SPLRCS SPLRCL SPLRCU
HGU1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SPLRCD 0.001 0.001 0.049 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.153 0.001
SPNY 0.001 0.049 0.001 0.001 0.001 0.755 0.001 0.001 0.001 0.433 0.001 0.001 0.935 0.039 0.001 0.001
SPSY 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.659 0.001 0.001 0.001 0.001 0.001 0.001
NGU1 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001
ZGQ1 0.001 0.001 0.755 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SPXHC 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.008 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001
SPLRCI 0.001 0.001 0.001 0.001 0.001 0.001 0.008 0.001 0.001 0.001 0.001 0.074 0.137 0.195 0.001 0.001
SPLRCT 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SPLRCM 0.001 0.001 0.433 0.659 0.001 0.001 0.001 0.001 0.001 0.001 0.028 0.039 0.001 0.001 0.001 0.001
BV1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.028 0.001 0.001 0.001 0.001 0.006 0.001
SPLRCREC 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.074 0.001 0.039 0.001 0.001 0.001 0.001 0.001 0.001
ZIU1 0.001 0.001 0.935 0.001 0.003 0.001 0.001 0.137 0.001 0.001 0.001 0.001 0.001 0.077 0.001 0.001
SPLRCS 0.001 0.001 0.039 0.001 0.001 0.001 0.001 0.195 0.001 0.001 0.001 0.001 0.077 0.001 0.001 0.001
SPLRCL 0.001 0.153 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.006 0.001 0.001 0.001 0.001 0.002
SPLRCU 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001
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Appendix C. Silhouette width Analysis
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Appendix D. Cluster Formations for Time Scales 3, 4 and 5 Using Daily Observations
for the Period: 1 May 2019–8 July 2021
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