
����������
�������

Citation: Leistikow, Dean, Yi Tang,

and Wei Zhang. 2022. Dynamic

Conditional Bias-Adjusted Carry

Cost Rate Futures Hedge Ratios.

Journal of Risk and Financial

Management 15: 12. https://doi.org/

10.3390/jrfm15010012

Academic Editor:

Shigeyuki Hamori

Received: 23 November 2021

Accepted: 29 December 2021

Published: 3 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

Dynamic Conditional Bias-Adjusted Carry Cost Rate Futures
Hedge Ratios
Dean Leistikow, Yi Tang * and Wei Zhang

Gabelli School of Business, Fordham University, 140 West 62nd Street, New York, NY 10023, USA;
leistikow@fordham.edu (D.L.); wzhang167@fordham.edu (W.Z.)
* Correspondence: ytang@fordham.edu; Tel.: +1-646-312-8292

Abstract: This paper proposes new dynamic conditional futures hedge ratios and compares their
hedging performances along with those of common benchmark hedge ratios across three broad asset
classes. Three of the hedge ratios are based on the upward-biased carry cost rate hedge ratio, where
each is augmented in a different bias-mitigating way. The carry cost rate hedge ratio augmented with
the dynamic conditional correlation between spot and futures price changes generally: (1) provides
the highest hedging effectiveness and (2) has a statistically significantly higher hedging effectiveness
than the other hedge ratios across assets, sub-periods, and rolling window sizes.
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1. Introduction

The goal of futures hedging is to reduce the firm’s risk and increase its value. A key
consideration for a futures hedger is the ratio of futures assets to short over the number
of spot assets long, i.e., the futures hedge ratio. Not surprisingly, a large literature has
evolved regarding the best hedge ratio estimation technique, i.e., that which is expected to
reduce the hedger’s risk the most. Wang et al. (2015) empirically tested many hedge ratio
estimation methods and found that they fail to beat the naïve hedge ratio.

This paper examines dynamic conditional futures hedge ratios. It focuses on: (1) the
economics-based carry-cost rate hedge ratio introduced in Leistikow et al. (2020) and
employed in Leistikow and Chen (2019), (2) a hedge ratio based on the Engle (2002)
statistics-based dynamic conditional correlation model, and (3) three bias-adjusted versions
of the carry-cost rate hedge ratio, one of which incorporates the Engle (2002) dynamic
conditional correlation model. It compares the hedge ratios’ hedging performances across
three broad asset classes to those of each other and those of two common benchmark hedge
ratios. The carry-cost rate hedge ratio when augmented with the dynamic conditional
correlation between the spot and futures price changes generally (1) provides the highest
hedging effectiveness and (2) has a statistically significantly higher hedging effectiveness
than either that of the common benchmark hedge ratios or the other approaches across:
assets, sub-periods, and rolling window sizes. Moreover, it explains why the carry-cost
rate hedge ratio, when augmented with the dynamic conditional correlation between the
spot and futures price changes, performs better than the naïve hedge ratio.

Section 2 of the paper discusses the hedge ratios studied. Section 3 specifies the data
employed. Section 4 presents statistics regarding the hedge ratios, where the hedge ratios
are calculated using a 1008 trading day (i.e., 4 years) rolling window. Alternative rolling
window sizes (of 2 and 6 years) are analyzed and found to yield similar results; these
results are available in Appendices that will be provided upon request from the authors.
Section 5 shows the hedge ratios’ hedging performances and relative hedging performances.
Section 6 concludes the paper.
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2. Risk-Minimizing Hedge Ratio Estimation

For each unit of the spot asset, the hedge ratio (h) for the one-unit futures contract that
minimizes the future period’s risk is:

h =
ρσs

σF
, (1)

where: σs is the standard deviation of the spot price change (∆S)1, σF is the standard
deviation of the futures price change (∆F) and ρ is the correlation between ∆S and ∆F. In
this section, we discuss alternative empirical hedge ratio measures.

2.1. The Traditional Hedge Ratio

The traditional way to estimate the risk-minimizing hedge ratio on day d is to run the
ordinary least square regression:

∆Sd = a + ht∆Fd + εd, (2)

where the slope coefficient of ∆F, ht, is the “traditional” hedge ratio. In this study, we
estimate Equation (2) on day d using a rolling-window out-of-sample procedure, where
∆Sd and ∆Fd are daily spot and future price changes over the past 1008 trading days (i.e.,
day d-1007 to day d), respectively.2 The 1008-trading days, i.e., 4-year, rolling window
is updated daily. Moreover, we use the same 1008-trading days rolling window when
estimating alternative models (discussed below) for the hedge ratio estimated on d to
ensure that they are compared on an equal basis. This “traditional” hedge ratio is discussed
in mainstream textbooks, e.g., Hull (2018) and has traditionally been used as the benchmark
for alternative hedge ratios that have been proposed over the last 40 years.

2.2. The “Dynamic Conditional” Hedge Ratio

Equation (2) is often considered a static model in that the historical data are assumed
to be equally informative about future realizations. In this subsection, we relax this assump-
tion by estimating an autoregressive-based model that allows more recent observations
to be weighted more heavily. Our rationale is that if the dynamics of the underlying
variable are indeed time-varying, an appropriately chosen dynamic conditional model is
likely to outperform the static model. Engle (2002) proposes a new class of multivariate
models called dynamic conditional correlation (DCC) models that are used to predict the
time-varying correlations between two financial assets. These models have the flexibil-
ity of univariate GARCH models coupled with parsimonious parametric models for the
correlations.3 Following Engle (2002), we estimate the conditional covariance between ∆S
and ∆F:

∆Sd = α∆S
0 + ε∆S,d, (3)

∆Fd = α∆F
0 + ε∆F,d, (4)

Ed

[
ε2

∆S,d+1

]
≡ σ2

∆S,d+1 = β∆S
0 + β∆S

1 ε2
∆S,d + β∆S

2 σ2
∆S,d, (5)

Ed

[
ε2

∆F,d+1

]
≡ σ2

∆F,d+1 = β∆F
0 + β∆F

1 ε2
∆F,d + β∆F

2 σ2
∆F,d, (6)

Ed[ε∆S,d+1ε∆F,d+1] ≡ σ∆S∆F,d+1 = ρ∆S∆F,d+1 · σ∆S,d+1 · σ∆F,d+1, (7)

ρ∆S∆F,d+1 =
q∆S∆F,d+1√q∆S∆S,d+1 · q∆F∆F,d+1

, (8)

q∆S∆F,d+1 = ρ∆S∆F + a1 · (ε∆S,d · ε∆F,d − ρ∆S∆F) + a2 · (q∆S∆F,d − ρ∆S∆F) (9)

In the above system of equations, ∆Sd and ∆Fd denote the daily spot and futures price
changes over the past 1008 trading days up to day d, respectively, and Ed[.] denotes the
expectation operator conditional on day d information. σ2

∆S,d+1 is the day-d expected condi-
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tional variance of daily spot price changes (∆S), σ2
∆F,d+1 is the day-d expected conditional

variance of daily futures price changes (∆F), and σ2
∆S∆F,d+1 is the day-d expected conditional

covariance between ∆S and ∆F. ρ∆S∆F,d+1 = q∆S∆F,d+1/√q∆S∆S,d+1 · q∆F∆F,d+1 is the day-d
expected conditional correlation between ∆S and ∆F; ρ∆S∆F is the unconditional correlation
between ∆S and ∆F. To ease the parameter convergence, we follow Bali and Engle (2010)
and Bali et al. (2017) and use correlation targeting, assuming that the time-varying correla-
tion mean reverts to the sample correlation, ρ∆S∆F. For each day d + 1, the DCC hedge ratio
is defined as the ratio of Equations (6) and (7): hdcc = σ∆S∆F,d+1/σ2

∆F,d+1. Therefore, hdcc is
purely out-of-sample, estimated using the information available up to the formation of the
hedged portfolio (i.e., day d).

2.3. The Simple Carry-Cost-Rate Hedge Ratio

Unfortunately, the traditional hedge ratio ignores the economic connection between
the spot and futures prices. Leistikow et al. (2020) derived a hedge ratio that incorporates
the carry-cost hypothesis that links spot and futures prices as follows:

S(1 + c)T = F, (10)

where c is the annualized spot asset’s carry-cost rate (hereinafter CCR) to the futures’
maturity,4 T is the years to the futures contract’s maturity, and S and F are the asset’s
contemporaneous spot and futures prices, respectively.

From the carry-cost hypothesis, it follows that ∂S
∂F = (1 + c)−T ; thus, σ∆S

σ∆F
= (1 + c)−T .

Assuming ∆S and ∆F are perfectly correlated, the day d instantaneous hedge ratio (hccr) is
derived as5:

hccr = (1 + c)−T (11)

Therefore, hccr is calculated quickly and simply, since it only requires knowledge of c
and T on day d.

2.4. The Augmented Carry-Cost-Rate Hedge Ratios

The simple CCR-based hedge ratio discussed in the previous subsection is easier to
implement and has a firmer economic foundation than the statistics-based approaches
discussed earlier. However, hccr is biased upward because the correlation between ∆S and
∆F is almost certainly less than its assumed level of one.6 In this subsection, we introduce
several ways to augment hccr to correct its upward bias.

First, we augment hccr with the dynamic conditional correlation between ∆S and
∆F. It was estimated as part of the dynamic conditional hedge ratio discussed earlier in
Section 2.2. We calculate this hedge ratio, denoted hccr_dcc, on day d as:

hccr_dcc = hccr·ρdcc, (12)

where ρdcc comes from Equation (8) based on daily data over the period from d-1007 to day
d.

Second, we augmented hccr with the correlation (ρ) between daily ∆S and ∆F over the
period from d-1007 to day d. We calculated this hedge ratio, denoted hccr_corr, on day d as:

hccr_corr = hccr·ρ (13)

Finally, we use the Leistikow et al. (2020) BAM bias-adjusted hccr on day d, denoted
hccr_bam:

hccr_bam = hccr·BAM (14)

where BAM is the bias-adjustment multiplier, defined as the average ratio of the average
daily ht and average hccr for each futures contract employed in the hedges over the 1008 trad-
ing days between day d-1007 to day d. In this way, each of the three bias-adjustment factors:
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ρdcc, ρ, and BAM, proxy hccr’s bias based on the same amount of data, 1008 trading days
for now.

2.5. The “Naive” Hedge Ratio

Despite the widespread acceptance of ht and the development of more complex
statistical variants of it, Wang et al. (2015) find that ht and its more complex statistical
variants do not reduce risk better than does the “naive” hedge ratio of 1 (h1). Therefore, we
use h1 as well as the regression-based hedge ratio (ht) as benchmarks.

3. Data

We study the S&P500, Japanese Yen (JY), and gold since they represent a broad cross
section of asset classes, their carry-cost rates are known and objectively calculable, and
their spot and futures markets trade actively. All data are downloaded via a Bloomberg
terminal, which are updated daily during our sample period.

CME e-mini S&P500 futures contracts mature on the 3rd Friday of their maturity
month and have been the most liquid equity futures since about 2000 when they overtook
the regular S&P500 futures. We study their March, June, September, and December contract
maturities because they are the most liquid contract maturities and are very liquid (except
when they are far from and very near to their maturities). These futures contract maturity
months are alternatingly used as the hedging instrument where the hedging instrument
is the near maturity futures contract until it is one week to its maturity at which point it
switches to the second near maturity futures contract. The JY futures contracts mature two
business days before the 3rd Wednesday in the maturity month. For liquidity reasons, the
near futures maturity contract is used as the hedging instrument for the IMM Japanese
Yen, until the 1st Friday of the maturity month. For COMEX gold, we use the liquid
February, April, June, August, October, and December futures contract maturities and roll
the hedging instrument from the near to the second near futures maturity two weeks earlier
than for the JY due to gold’s earlier liquidity shift from the near to the second near futures
due to gold futures’ delivery options. The gold futures mature the 3rd last business day of
the maturity month.

The S&P500 data begins with the Mar ’98, while the JY data begins with the Mar ’97,
and the gold data begins with the Feb ’91 futures contract as the hedging instrument. The
Jun ’20 futures is the last futures used as the hedging instrument for all the assets.

The carry-cost rate is the US risk-free short-term interest rate7 minus the S&P500
dividend yield, the excess of the US over the JY risk-free short-term interest rate, and the
US risk-free short-term interest rate, for the S&P500, JY and gold, respectively.

4. Statistics for the Hedge Ratios and Their Differences from the Benchmarks

In this section, we provide statistics for the various daily profit hedge ratios (and their
differences from the benchmark hedge ratios) discussed in Section 2. After the first 4 years
(given the 4 years rolling window), for each subsequent S&P500 and JY futures contract an
average hedge ratio is calculated based on the 252/4 trading days that the contract is the
hedging instrument since their contracts follow a quarterly rotation. The corresponding
gold average hedge ratio is calculated based on the 252/6 trading days, since gold futures
contracts follow a bimonthly rotation. These futures’ average hedge ratios represent the
underlying data for the Table 1 statistics. Table 1A reports the descriptive statistics for
the average hedge ratios for the S&P500 in Panel A, JY in Panel B, and gold in Panel C.8

In each panel, the first column presents the results of the traditional regression hedge
ratio (ht), which serves as Table 1A’s benchmark hedge ratio. Columns 2–6 represent the
descriptive statistics for the differences between ht and the: dynamic conditional hedge
ratio (hdcc), the simple carry-cost-rate hedge ratio (hccr), and, finally, the carry-cost-rate
hedge ratio augmented with (i) the dynamic conditional correlation estimated from the
DCC model (hccr_dcc), (ii) the simple correlation between the daily spot and futures price
changes (hccr_corr), and (iii) the bias-adjustment multiplier (hccr_bam), respectively.
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Column (1) of Table 1A shows that the mean traditional hedge ratios (ht) for the
S&P500, JY, and gold are between 0.8975 and 0.9568. Their standard deviations are very
small, ranging from 0.0151 to 0.0469. Thus, as expected, their daily hedge ratios are highly
persistent since they are estimated using 1008 trading-days rolling windows.

Table 1. The Benchmark Hedge Ratios and Differences from them.

A. The Benchmark Hedge Ratio and Differences from it When ht is the Benchmark.

Panel A. S&P500

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9568 0.0073 0.0441 0.0133 0.0153 −0.0012

std 0.0151 0.0323 0.0156 0.0164 0.014 0.0144

count 74 74 74 74 74 58

t-stat 1.9382 24.3608 6.9605 9.3919 −0.614

signif lev 10% 1% 1% 1%

Panel B. JY

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9554 −0.01 0.0423 0 −0.0065 −0.0036

std 0.018 0.0389 0.0177 0.0232 0.0208 0.0162

count 78 78 78 78 78 62

t-stat −2.2673 21.1487 0.0174 −2.757 −1.7318

signif lev 5% 1% 1% 10%

Panel C. Gold

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.8975 0.0112 0.0982 0.0233 0.0098 0.0058

std 0.0469 0.0582 0.0483 0.0387 0.0189 0.0287

count 153 153 153 153 153 129

t-stat 2.3805 25.1193 7.4559 6.3829 2.3166

signif lev 5% 1% 1% 1% 5%

Panel D. HR Differences Aggregated across Assets

hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.0002 0.0715 0.0123 0.0084 0.0015

std 0.0429 0.0451 0.0238 0.0215 0.0156

count 222 222 222 222 174

t-stat 0.0775 23.619 7.6897 5.8467 1.2684

signif lev 1% 1% 1%

The count is the number of futures contracts used as hedge instruments, or, alternatively, the number of hedges since each hedge
has a single hedging instrument. For each futures, the “average hedge ratio” is determined from the ≈252/4 dynamic daily hedge
ratios calculated for a quarterly maturing futures contract (e.g., as for the S&P500 and JY, whereas for gold there are ≈252/6
dynamic daily hedge ratios since the futures maturities are bimonthly). Since the BAM is calculated from 4 years of futures
contracts, the hccr_bam count is 4 × 4 (6 × 4) for the quarterly futures contract maturities of the S&P500 and JY (bimonthly
maturities of gold).

The “aggregated across assets” count is equal-weighted. It uses the most recent differences for each asset for roughly the same
period as the e−mini S&P500 (since its data series is the shortest). Since the gold futures data started earlier and there are 50% more
gold futures maturities/years, a little less than the 1st half of the gold futures contract results do not enter into the aggregation
across assets.
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Table 1. Cont.

B. The Benchmark Hedge Ratio and Differences from it When h1 is the Benchmark

Panel A. S&P500

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 1 −0.0359 0.0009 −0.0299 −0.0279 −0.0396

std 0 0.0321 0.0024 0.0058 0.0054 0.0106

count 74 74 74 74 74 58

t-stat −9.6302 3.3772 −44.7285 −44.1444 −28.4181

signif lev 1% 1% 1% 1% 1%

Panel B. JY

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 1 −0.0546 −0.0023 −0.0446 −0.0511 −0.0431

std 0 0.0391 0.0025 0.0156 0.0132 0.0123

count 78 78 78 78 78 62

t-stat −12.3317 −8.2224 −25.2679 −34.2633 −27.5771

signif lev 1% 1% 1% 1% 1%

Panel C. Gold

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 1 −0.0913 −0.0043 −0.0791 −0.0927 −0.0913

std 0 0.0671 0.0039 0.0385 0.0465 0.0362

count 153 153 153 153 153 129

t-stat −16.8137 −13.8224 −25.4034 −24.6593 −28.6446

signif lev 1% 1% 1% 1% 1%

Panel D. HR Differences Aggregated across Assets

hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean −0.0721 −0.0008 −0.06 −0.0639 −0.0694

std 0.059 0.0024 0.0368 0.039 0.0422

count 222 222 222 222 174

t-stat −18.2127 −4.9113 −24.2818 −24.4085 −21.6855

signif lev 1% 1% 1% 1% 1%

The count is the number of futures contracts used as hedge instruments, or, alternatively, the number of hedges since each hedge
has a single hedging instrument. For each futures, the “average hedge ratio” is determined from the ≈252/4 dynamic daily hedge
ratios calculated for a quarterly maturing futures contract (e.g., as for the S&P500 and JY, whereas for gold there are ≈252/6
dynamic daily hedge ratios since the futures maturities are bimonthly). Since the BAM is calculated from 4 years of futures
contracts, the hccr_bam count is 4 × 4 (6 × 4) for the quarterly futures contract maturities of the S&P500 and JY (bimonthly
maturities of gold).

The “aggregated across assets” count is equal-weighted. It uses the most recent differences for each asset for roughly the same
period as the e−mini S&P500 (since its data series is the shortest). Since the gold futures data started earlier and there are 50% more
gold futures maturities/years, a little less than the 1st half of the gold futures contract results do not enter into the aggregation
across assets.

Columns 2–6 of Table 1A show that the mean differences between the other hedge
ratios and ht are small (<0.0233 in absolute value across the assets); except for the upward-
biased hccr; its maximum mean difference is 0.0982 (for gold). Therefore, the bias adjust-
ments to the CCR hedge ratio largely mitigate the simple CCR hedge ratio’s upward bias.
Similar to hccr, both hccr_dcc, and hccr_corr are larger than ht and the difference is significant
at the 1% level; however, this does not hold for the JY. The paper’s statistical significance
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tests are two-tailed tests, except for the one-tailed hccr − ht test in that hccr is upward biased
relative to ht.

Table 1A, Panel D has equal-weighted, roughly contemporaneous, aggregated across
asset results that end with the assets’ June 2020 futures contracts. To generate these results,
since the S&P500 data/results start later than the other assets’ (starting with the Mar
2002 futures), all of its results are included but only the contemporaneous JY (starting
with the Mar 2002 futures) and roughly contemporaneous gold results are included in
the aggregation (starting with the April 2008 futures). The gold results included in the
equal-weighted aggregation begin later, since gold has 50% more futures maturities/years
than the others and therefore gets the same number of futures contracts in 2/3 the time.
The aggregated across assets mean hccr − ht was above 0.07, while the means for the other
differences were not more than 0.0123 in absolute value. Hedge ratios hccr, hccr_dcc, and
hccr_corr are all larger than ht at the 1% significance level.

Table 1B below is the same as Table 1A, except that Table 1B’s benchmark hedge ratio
is h1. The other hedge ratios’ means, except for the S&P500 hccr, are significantly less than
1 at the 1% confidence level for all assets. For the Panel D, aggregations across assets,
while hccr’s mean is barely below 1, the other hedge ratios’ means are between 0.06 and
0.0721 below 1. All of the hedge ratio means are below h1 at the 1% significance level.
The fact that, for this study period and these assets, the upward biased hccr is significantly
below 1 portends poor h1 hedging performance; this conjecture is strongly supported by
the results in the next section.

5. The Benchmark Hedge Ratios’ Hedging Performances and Hedging Performance
Differences from Those of the Benchmark Hedge Ratios

Next, we calculated each hedge ratio’s out-of-sample hedge effectiveness (HE) and
compared it to those of the two benchmark hedge ratios. The HE is defined as the percentage
profit variance reduction for each contract over our sample period:

HE = 1− Var(hedged profits)
Var(unhedged profits)

(15)

Hedged profit = ∆S− h·∆F (16)

Unhedged profit = ∆S (17)

where Var(.) denotes variance, ∆S and ∆F are, respectively, the daily spot and futures price
changes on day d + 1, and h denotes a hedge ratio on day d calculated from one of the
hedge ratios described in Section 2. Therefore, the HE of a hedge ratio increases with the
risk reduced.

Table 2A reports the hedge effectiveness results, where ht’s HE is the benchmark. Col-
umn 1 is ht’s HE while the remaining columns represent the hedge effectiveness differences
in between those for the various hedge ratios and for ht.

Table 2A, column (1) shows that ht’s average HE for the S&P500, JY, and gold are
between 0.8464 and 0.9388. Their corresponding standard deviations are small, ranging
from 0.0378 to 0.1477. These results indicate that ht’s out-of-sample HE is highly persistent.

The HE for ht is higher than that for either hdcc or hccr. The latter result suggests that
the benefit of hccr through recognizing the economic link between the spot and the future
prices is less than the cost of its upward bias. The finding that hdcc does not outperform ht is
consistent with previous studies that show that complicated time-series hedge ratios do not
yield superior HE performance.9 Therefore, modeling the dynamic conditional hedge ratio
based on spot and futures price changes alone is insufficient to improve hedge effectiveness.

Columns 4–6 of Table 2A compare the augmented hccrs’ HEs with ht’s HE where the hccr is
augmented with the conditional correlation (hccr_dcc), the unconditional correlation (hccr_corr),
and the bias-adjustment multiplier (hccr_bam), respectively. Column (4) shows that the HE
for hccr_dcc is higher than that for ht for each asset, where the difference in HE is generally
statistically significant at the 5% level. When the HE differences are aggregated across assets,



J. Risk Financial Manag. 2022, 15, 12 8 of 17

the HE for hccr_dcc is statistically significantly higher than that for ht at the 1% significant level.
Columns (5) and (6) show that the HEs for hccr_corr and hccr_bam are not typically significantly
different from that for ht. Therefore, the hccr_dcc result suggests that incorporating the economic
relation between the spot and futures prices and properly modeling their time-varying
conditional correlations jointly produce the best hedging performance.

Table 2. The Benchmark HRs’ Hedge Effectiveness and Differences from them.

A. The Benchmark HR’s Hedge Effectiveness and Differences from it When ht is the Benchmark

Panel A. S&P500

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9388 −0.0014 −0.0011 0.0035 0.0003 0.0001

std 0.0378 0.0215 0.005 0.0137 0.0022 0.002

count 74 74 74 74 74 58

t-stat −0.5447 −1.9024 2.1813 1.1068 0.2169

signif lev 10% 5%

Panel B. JY

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9107 −0.0023 −0.0018 0.0003 0.0008 0.0001

std 0.0479 0.0098 0.0051 0.0028 0.003 0.0022

count 78 78 78 78 78 62

t-stat −2.0244 −3.1242 1.0111 2.2843 0.5062

signif lev 5% 1% 5%

Panel C. Gold

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.8464 −0.0184 −0.0115 0.0055 −0.0006 −0.0006

std 0.1477 0.1955 0.026 0.0259 0.0046 0.0071

count 153 153 153 153 153 129

t-stat −1.1639 −5.4726 2.6309 −1.5674 −0.9196

signif lev 1% 1%

Panel D. HE Differences Aggregated across Assets

hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean −0.0023 −0.0085 0.0032 0 0.0001

std 0.0189 0.0197 0.0124 0.0041 0.0022

count 222 222 222 222 174

t-stat −1.8015 −6.4151 3.8774 −0.1053 0.4399

signif lev 10% 1% 1%

B. The Benchmark HR’s Hedge Effectiveness and Differences from it When h1 is the Benchmark

Panel A. S&P500

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9378 −0.0004 −0.0002 0.0044 0.0012 0.0015

std 0.0406 0.0228 0.0005 0.0167 0.003 0.0047

count 74 74 74 74 74 58

t-stat −0.1566 −2.6257 2.2837 3.5766 2.3963

signif lev 5% 5% 1% 5%
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Table 2. Cont.

Panel B. JY

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9087 −0.0003 0.0002 0.0023 0.0028 0.0019

std 0.0492 0.0126 0.0004 0.0057 0.0071 0.0055

count 78 78 78 78 78 62

t-stat −0.1944 4.2624 3.554 3.4394 2.7357

signif lev 1% 1% 1% 1%

Panel C. Gold

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.8343 −0.0063 0.0006 0.0176 0.0115 0.014

std 0.1629 0.1958 0.0011 0.0373 0.0251 0.0219

count 153 153 153 153 153 129

t-stat −0.3963 7.3019 5.8403 5.692 7.2647

signif lev 1% 1% 1% 1%

Panel D. HE Differences Aggregated across Assets

hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.0063 0.0001 0.0118 0.0086 0.0096

std 0.0296 0.0005 0.0249 0.0184 0.0185

count 222 222 222 222 174

t-stat 3.1852 4.0726 7.0864 6.9614 6.8561

signif lev 1% 1% 1% 1% 1%

Table 2B reports the same results; however, h1’s HE is the benchmark. The HE for
h1 is statistically significantly lower (generally at the 1% level) than that for all the other
hedge ratios except for hdcc and, for the S&P500, hccr. Our finding differs from that of
Wang et al. (2015) and neither should be interpreted as a general result. The low HE for h1
was anticipated earlier when we noted that the upward biased hccr was significantly less
than 1. Our low HE for h1 is not a general result since the carry-cost rate varies across assets,
currency denominations, and time; thus, in the very improbable case that the upward
biased hccr exceeded 1 by its bias, the risk minimizing hedge ratio would be h1.

Table 3 repeats the HE analyses, except that it analyzes the first and second halves of
our sample period separately to see if the HE and HE difference results are stable across sub-
periods. The only HE difference from the benchmark’s HE that is nearly always statistically
significantly positive across both benchmarks, both halves, and all 3 assets is that for hccr_dcc
and the JY in the 1st half when ht is the benchmark is the main exception. The HEs for
the other two augmented hccrs are statistically significantly higher than those for h1 for 8
of the 12 individual asset results. However, their HEs are not generally higher for those
of ht. Table 3, Panel D, shows for the aggregations across assets that the HE for hccr_dcc
is statistically significantly higher than that for either benchmark in both sub-periods at
the 1% level. The HEs for the other two augmented hccrs are also statistically significantly
higher than those for h1 in both halves at the 1% level.
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Table 3. Stability of the Benchmark HRs’ HEs and Differences from them.

Panel A. S&P500

1st half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9427 −0.0007 0.0003 0.0013 0.0008 0.0001

std 0.0248 0.0045 0.0036 0.0028 0.0017 0.0022

count 37 37 37 37 37 21

t-stat −0.9852 0.493 2.8216 3.0666 0.2467

signif lev 1% 1%

2nd half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9348 −0.002 −0.0025 0.0057 −0.0003 0

std 0.0475 0.0303 0.0058 0.019 0.0026 0.0019

count 37 37 37 37 37 37

t-stat −0.3998 −2.6145 1.8057 −0.6361 0.0712

signif lev 5% 10%

1st half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9429 −0.001 0.0001 0.0011 0.0006 0.0003

std 0.0256 0.0042 0.0003 0.0039 0.0026 0.0037

count 37 37 37 37 37 21

t-stat −1.4123 1.0029 1.6317 1.4325 0.3594

signif lev

2nd half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9327 0.0001 −0.0004 0.0078 0.0019 0.0022

std 0.0513 0.0322 0.0005 0.0229 0.0032 0.0051

count 37 37 37 37 37 37

t-stat 0.0259 −3.9637 2.0694 3.5117 2.5698

signif lev 1% 5% 1% 5%

Panel B. JY

1st half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9072 −0.0019 −0.002 0 0.0008 −0.0002

std 0.0553 0.0117 0.0059 0.0034 0.0036 0.0013

count 39 39 39 39 39 23

t-stat −0.9886 −2.1761 −0.065 1.3773 −0.8266

signif lev 5%
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Table 3. Cont.

2nd half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9142 −0.0026 −0.0015 0.0007 0.0008 0.0004

std 0.0397 0.0076 0.0041 0.002 0.0023 0.0026

count 39 39 39 39 39 39

t-stat −2.1798 −2.3064 2.0882 2.0626 0.8715

signif lev 5% 5% 5% 5%

1st half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9049 0.0004 0.0002 0.0022 0.0031 0.0017

std 0.0574 0.0148 0.0005 0.0067 0.0085 0.0066

count 39 39 39 39 39 23

t-stat 0.1703 2.804 2.0646 2.2411 1.248

signif lev 1% 5% 5%

2nd half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9126 −0.001 0.0002 0.0024 0.0024 0.002

std 0.0398 0.01 0.0003 0.0046 0.0053 0.0049

count 39 39 39 39 39 39

t-stat −0.601 3.7447 3.2522 2.8669 2.6087

signif lev 1% 1% 1% 5%

Panel C. Gold

1st half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9013 −0.0333 −0.0012 0.0053 −0.0001 −0.0007

std 0.155 0.2766 0.018 0.0334 0.0029 0.0051

count 76 76 76 76 76 52

t-stat −1.051 −0.5814 1.3761 −0.2459 −0.9525

signif lev

2nd half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.7922 −0.0036 −0.0216 0.0058 −0.0011 −0.0005

std 0.118 0.0226 0.0286 0.0156 0.0057 0.0082

count 77 77 77 77 77 77

t-stat −1.4157 −6.6423 3.2315 −1.6364 −0.5428

signif lev 1% 1%

1st half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.8993 −0.0313 0.0009 0.0073 0.002 0.0028

std 0.1648 0.2734 0.0014 0.0385 0.0198 0.0108
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Table 3. Cont.

1st half: HE and HE differences when the benchmark is h1

count 76 76 76 76 76 52

t-stat −0.9975 5.4563 1.6599 0.8745 1.8718

signif lev 1% 10%

2nd half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.7701 0.0184 0.0004 0.0278 0.021 0.0215

std 0.1337 0.0411 0.0006 0.0334 0.0263 0.0242

count 77 77 77 77 77 77

t-stat 3.9315 6.0318 7.3037 6.9998 7.8227

signif lev 1% 1% 1% 1% 1%

Panel D. HE Differences Aggregated across Assets:

1st half: HE differences when the benchmark is ht

hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

Mean −0.0045 −0.0066 0.0011 0.0005 0.0002

std 0.016 0.0189 0.0062 0.0036 0.002

count 111 111 111 111 63

t-stat −2.9776 −3.7015 1.9475 1.3209 0.7654

signif lev 1% 1% 10%

2nd half: HE differences when the benchmark is ht

hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean −0.0001 −0.0103 0.0053 −0.0005 0

std 0.0213 0.0204 0.0162 0.0044 0.0024

count 111 111 111 111 111

t-stat −0.028 −5.3351 3.4564 −1.2058 0.0331

signif lev 1% 1%

1st half: HE differences when the benchmark is h1

hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.0023 0.0001 0.0079 0.0072 0.0082

std 0.0255 0.0003 0.0198 0.0193 0.0165

count 111 111 111 111 63

t-stat 0.931 4.322 4.2188 3.9366 3.9247

signif lev 1% 1% 1% 1%

2nd half: HE differences when the benchmark is h1

hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.0104 0.0001 0.0158 0.01 0.0105

std 0.0329 0.0006 0.0287 0.0174 0.0196

count 111 111 111 111 111

t-stat 3.3385 2.4052 5.7886 6.0397 5.6234

signif lev 1% 5% 1% 1% 1%
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Table 4 directly tests the HE differences across the various bias-adjusted hccr ap-
proaches. The HE is statistically significantly higher for hccr_dcc than it is for the other
bias-adjustment approaches for the individual assets (other than for the JY) and for the
aggregation across assets.

Table 4. Hedge Effectiveness Differences across hccr Bias-Adjustment Methods.

Panel A. S&P500

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0032 0.0038 −0.0001

std 0.0152 0.0164 0.0018

count 74 58 58

t-stat 1.8087 1.7788 −0.4114

signif lev 10% 10%

Panel B. JY

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean −0.0005 0 0.0008

std 0.0037 0.0028 0.0035

count 78 62 62

t-stat −1.1004 0.1176 1.6953

signif lev 10%

Panel C. Gold

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0061 0.0064 0.0001

std 0.0261 0.0254 0.0087

count 153 129 129

t-stat 2.8874 2.8625 0.162

signif lev 1% 1%

Panel D. HE Differences Aggregated across Assets

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0033 0.0036 −0.0004

std 0.0137 0.0141 0.0039

count 222 174 174

t-stat 3.5345 3.3777 −1.5283

signif lev 1% 1%

Table 5 repeats the analyses of Table 4 except that it analyzes the first and second
halves separately to see if the HE difference results are stable across halves. Though the
sample sizes in each half are not large, the HE is generally higher for hccr_dcc than for the
other bias-adjustment approaches across assets and halves (the JY is an exception). While
the HE aggregation across assets for the 1st half is not statistically significant, it is significant
at the 1% level for the 2nd half.
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Table 5. Stability of the HE Differences across hccr Bias-Adjustment Methods.

Panel A. S&P500 1st Half

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0004 0.0007 0.0002

std 0.0025 0.0033 0.0016

count 37 21 21

t-stat 1.0708 0.9055 0.7225

signif lev

S&P500 2nd Half

mean 0.0059 0.0056 −0.0003

std 0.0211 0.0203 0.0019

count 37 37 37

t-stat 1.7108 1.6902 −0.9254

signif lev 10% 10%

Panel B. JY 1st Half

mean −0.0008 −0.0004 0.0014

std 0.0049 0.0039 0.0053

count 39 23 23

t-stat −1.0677 −0.5421 1.2426

signif lev

JY 2nd Half

mean −0.0001 0.0003 0.0004

std 0.0018 0.0019 0.0019

count 39 39 39

t-stat −0.2797 1.0794 1.3287

signif lev 10%

Panel C. Gold 1st Half

mean 0.0053 0.0066 0.0011

std 0.033 0.0346 0.0039

count 76 52 52

t-stat 1.4141 1.3841 2.1034

signif lev 10% 10% 5%

Gold 2nd Half

mean 0.0068 0.0063 −0.0006

std 0.0169 0.0169 0.0107

count 77 77 77

t-stat 3.5346 3.2453 −0.4598

signif lev 1% 1%
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Table 5. Cont.

Panel D. Aggregated across Assets 1st Half

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0007 0.0006 −0.0003

std 0.007 0.0071 0.0048

count 111 63 63

t-stat 1.0398 0.7008 −0.5409

signif lev

Aggregated across Assets 2nd Half

mean 0.0058 0.0053 −0.0005

std 0.0177 0.0166 0.0032

count 111 111 111

t-stat 3.4493 3.3615 −1.6791

signif lev 1% 1% 10%

6. Conclusions

The goal of futures hedging is to reduce the firm’s risk and increase its value. A key
consideration for a futures hedger is the ratio of futures assets to short over the number of
spot assets long, i.e., the futures hedge ratio.

This paper proposes new dynamic conditional futures hedge ratios. It studies: (1) the
economics-based carry-cost rate hedge ratio introduced in Leistikow et al. (2020) and
employed in Leistikow and Chen (2019), (2) a hedge ratio based on the Engle (2002)
statistics-based dynamic conditional correlation model, and (3) three bias-adjusted versions
of the carry-cost rate hedge ratio, where one uses the Engle (2002) dynamic conditional
correlation model to adjust the bias. The hedge ratios’ values and hedging performances
are compared to those of two common benchmark hedge ratios (the traditional and “naive”
hedge ratios) across three broad asset classes, two sub-periods, and three rolling window
sizes.

The newly proposed economics-based carry-cost rate hedge ratio augmented with the
Engle (2002) dynamic conditional correlation between the spot and futures prices nearly
always (1) provides the highest hedging effectiveness and (2) has a statistically significantly
higher hedging effectiveness than that of the other hedge ratio approaches across assets,
sub-periods, and rolling window sizes.

All of the bias-adjusted carry-cost rate hedge ratios provide statistically significantly
superior hedging performance across assets, sub-periods, and rolling window sizes to that
of the “naive” hedge ratio of 1, h1, advocated by Wang et al. (2015). However, this should
not be interpreted as a general result. The poor hedging performance of h1 is expected
when the upward biased carry-cost rate hedge ratio, hccr, is significantly less than 1 as it
was for these assets and time periods. Nevertheless, the carry-cost rate varies across assets,
currency denominations, and time; thus, in the rare instances that the upward biased hccr is
above 1 by its bias, the risk minimizing hedge ratio would also be h1.

Unlike h1, the statistics-based traditional hedge ratio, though inefficient compared
to hccr, is correlated with the changing carry-cost rate. Of the three augmented carry-cost
rate hedge ratios, only the one augmented with the Engle (2002) dynamic conditional
correlation between the spot and futures prices nearly always provided higher hedging
performance than the traditional hedge ratio.

Overall, our findings suggest that an effective hedge-ratio model needs to consider
both the economic motivation of the model parameters and the dynamic nature of the
correlations between a futures contract and its underlying asset. On the other hand, we
acknowledge that our time-series models are estimated using historical data, which may
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be susceptible to backward bias. In future research, more fruitful work can be done by
incorporating forward-looking data (e.g., options data) as part of the information set into
multivariate time-series models.
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Notes
1 Many attribute this approach to Ederington (1979). Ferguson and Leistikow (1999) show that the ∆S term should be reduced

by the period’s carry-cost. Henceforth, we define ∆S as the carry-cost adjusted spot price change. Ferguson and Leistikow
(1999) further shows that the carry-cost-adjusted spot price change hedge ratio calculation method is similar to, but theoretically
superior to, the ECM hedge ratio advanced and studied by Kroner and Sultan (1993) and Ghosh and Clayton (1996).

2 The 1008 trading days, i.e., 4 years, rolling window size is arbitrary. For a robustness check, we replicate our analyses using 2-
and 6-years rolling windows. Our results remain intact. The results are available upon request.

3 This modeling has been shown to produce superior empirical performance in a variety of situations. See, e.g., Engle (2002),
Chiang et al. (2007), and Baur and Lucey (2010).

4 For a general carry-cost rate discussion, see Brennan (1958).
5 In discrete time hedging, T in Equation (11) is replaced by the hedge lift date’s years to maturity, i.e., T − t.
6 For a more complete discussion of the advantages and disadvantages of the carry cost rate based hedge ratios, see Leistikow et al.

(2020).
7 The goal was to get a long (at least back to 12 July 1990) series for the short term (ideally overnight for the daily data and weekly

for the weekly data) US nearly riskless interest rate. Bloomberg’s US 1-week Repo rate data begins on 23 July 1998 and has several
gaps. Their overnight repo rate data begins at the same time as the 1-week repo rate data but is missing for about 100 more dates.
Surprisingly, the 1-week rate average was about 2.5 basis points less than the overnight rate, but still this seems a minor difference.
From these 2 series, we created a merged 1-week/1-day repo series: it is the 1-week repo rate unless it is unavailable, then it is the
overnight repo rate −2.5 basis points. Bloomberg also has data on two 1-month interest rate series (repo rate and Libor) that go
back farther than the above discussed (preferred, but unavailable) shorter (1-week/1-day) interest rates. The 1-month repo rate
was about 20 basis points lower than the Libor on average. From these two 1-month rates, we created a 1 month merged rate
series—it was the repo rate when available and Libor-20 basis points, otherwise. Finally, we created an overall series from the two
merged series we just created (i.e., the 1-week/1-night series and the 1-month series). Since the merged 1 month series averaged
0.5 basis points less than the merged 1week/1night series, it is the merged 1 week/day repo series unless it is unavailable, in
which case it is the 1 month series +0.5 basis points. This final merged series is the short term nearly riskless US interest rate used
in CCR calculations for the various assets.

8 For the S&P500 and JY, which have quarterly maturities, we lose the first 16 contracts to construct the first 1008-days rolling
window. The gold contracts have bimonthly maturities, so we lose the first 24 contracts to construct the first 1008-days rolling
window. Therefore, in this section, the results of the S&P500, JY, and gold are based on 74, 78, and 153 contracts, respectively.

9 There are more statistics-based hedge ratios such as the GARCH method and its variants (e.g., Sarno and Valente (2000), Shaffer
and Demaskey (2005), Alizadeh et al. (2008), Lee et al. (2009), and Wang et al. (2015). Alexander and Barbosa (2007) find the
GARCH model hedging performance to be inferior to that for ht, while Lien (2009) finds it is inferior except in small samples
under special conditions.
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