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Abstract: We consider a sovereign wealth fund that invests broadly in the international financial
markets. The influx to the fund has stopped. We adopt the life cycle model and demonstrate that
the optimal spending rate from the fund is significantly less than the fund’s expected real rate of
return. The optimal spending rate ensures that the fund will last “forever”. Spending the expected
return will deplete the fund with probability one. Moreover, this strategy is inconsistent with optimal
portfolio choice. Our results are contrary to the idea that it is sustainable to spend the expected return
of a sovereign wealth fund.

Keywords: optimal spending rate; endowment funds; expected utility; risk aversion; EIS; recur-
sive utility
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1. Introduction

We consider optimal investment strategies and the associated optimal extraction from
an endowment fund consistent with the life cycle model. We demonstrate that the optimal
spending rate is strictly smaller than the expected rate of return. The difference is far from
negligible, and amounts to several percentage points in most real situations.

The basic explanation is: If the fund is managed by diversification, this means that risk
aversion, consumption substitution and impatience are essential in the optimal portfolio
choice problem. Then, to be consistent, the spending rate must also reflect this. Accordingly,
the expected real rate of return is typically not an optimal spending rate, since this criterion
would normally be associated with risk neutrality.

We take the security market as given—it is assumed to be in equilibrium—and in-
troduce a price taking agent in this market. In this setting we reconsider the problem of
optimal consumption and portfolio selection. In the context of an endowment fund, the
results from analyzing this more general problem can immediately be utilized in order to
determine an optimal spending rate. We have considered both expected utility, in which
case risk aversion plays a prominent role, and recursive utility, in which case consumption
substitution is separated from risk aversion and is also important.

When the investment opportunity set is deterministic, there exist explicit and closed-
form solutions for optimal extraction. Rather than depending upon the expected rate of
return, the optimal extraction rate is a convex combination of the impatience rate and the
certainty equivalent rate of return. The latter quantity is significantly smaller than the
expected rate of return. This is normally true also for the impatience rate, and thus for the
convex combination.

For a stochastic investment opportunity set, we present formulas herein which we
believe are original. First and foremost, these solutions are demonstrated to result in smaller
values than the expected real rate of return on the endowment fund, for plausible values
of the preference parameters and the other parameters of the problem. The difference is
significant in most cases.
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If the extraction rate is the one of expected return, this normally means that the agent
is risk neutral at the level of spending, and must then, to be consistent, be risk neutral
at the level of optimal portfolio selection as well. However, the consequence of such an
investment strategy is rarely advocated by anyone responsible for an endowment fund,
whatever its purpose.

We demonstrate that a popular and much advertised extraction policy, the expected
real rate, is not consistent with a sustainable spending rate, and will with probability one
eventually deplete any fund that is managed by diversification.

Most endowments have the perspective that they should last “forever”. Conse-
quently, there is a trade-off between current spending and future spending opportunities.
Tobin (1974) develop sustainable spending rules in a deterministic world. It can be argued
that it is sustainable to spend the real interest rate within this setting.

Uncertainty complicates this picture. Some would argue that it is sustainable for
an endowment to spend the expected return; see, e.g., Campbell (2012), who considered
university endowments. Moreover, this idea motivates the current 3% fiscal rule that
applies to the 1 trillion USD Norwegian sovereign wealth fund.

Our article is concerned with optimal extraction from endowment funds in general,
and has in particular been motivated by the Norwegian “Government Pension Fund
Global”, which in the past was called the Norwegian Oil Fund or just the Norwegian
Sovereign Wealth Fund, which we consider as an example of the general theory. This is
illustrated on several occasions below.

Related Literature

Dybvik and Qin (2019) considered a fund with normal iid log-returns. The authors
found that for the fund to last “forever”, spending must not exceed the expected return
subtracted by half the variance. The discrepancy between the fund’s expected return and
sustainable spending is far from negligible.

The two key decisions of an endowment fund that invests in the financial market are
how much risk to take and how much to spend. From a theoretical point of view, the two
decisions are closely related and must be determined jointly. To examine the questions
one must, we claim, address the issue of the objective function by which optimality is to
be measured. Merton (1971) presented optimal portfolio and consumption rules for an
investor who maximizes expected, additive and separable utility with constant relative risk
aversion in a continuous-time world, where risky asset returns are iid. Recursive utility
is a more generalized framework where the investor’s risk aversion and consumption
substitution are disentangeld; see, e.g., Epstein and Zin (1991).

Campbell and Sigalov (2020) adopted the Merton model and Epstein–Zin preferences,
and assumed that there is a constraint on the spending rule. The authors examined two
alternative constraints: (i) spending the expected return; and (ii) the maximum sustainable
spending following the assumption of Dybvik and Qin (2019). The authors found that the
former constraint induces increased risk taking (referred to as “reaching out for yield”).

In Merton (1990), optimal investment strategies for university endowment funds were
analyzed. The objective was maximization of expected utility, related to several activities
consistent with the purposes of the university. They limited the scope to how much to
optimally spend in the numeraire unit of account, which is a purely financial question.
How much to spend on each of several activities we consider a political issue.

One purpose of this study is to compare the optimal spending with the conventional
wisdom of spending the expected return, or any other ad hoc rule, under various assump-
tions. For this purpose, we adopt the life cycle model used by Merton (1971). We also
consider the recursive utility framework in the setting of continuous time. We find that
for realistic parameter values, the endogenously determined optimal spending is less than
the fund’s expected return. For most cases, the discrepancy is far from negligible. We also
consider a more general situation where the investment opportunity set is stochastic and
derive analytical results that to our knowledge are new. We find that the insights from a
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deterministic investment opportunity set carries over to a more general setting where the
investment opportunity set is stochastic.

The paper is organized as follows: The basic continuous-time model is presented
in Section 2. Section 3 analyzes the problem of the agent having standard additive and
separable expected utility. We present examples in Sections 3.3–4. In Sections 3.5–6 we
look at the asymptotic behavior of the wealth as time goes to infinity under the two
extraction rules. Section 3.7 deals with a stochastic investment opportunity set. In Section 4
we introduce recursive utility and analyze the problem, first with a stochastic investment
opportunity set, and then (in Section 4.5) with a deterministic one. In Section 4.6 we analyze
the asymptotics of the wealth for the two types of spending rates with recursive utility.
Section 4.7 deals with a particular example, the Norwegian SWF Government Fund Global.
In Section 5 we discuss the role of a state owned sovereign wealth fund where there is
additional consumption in society, and Section 6 concludes.

2. The Basic Model

We consider the optimal consumption and portfolio selection problem using the life
cycle model. We have an agent represented by the pair (U, e), where U(c) is the agent’s
utility function over consumption processes c, and e is the agent’s endowment process.
The problem consists of maximizing utility, subject to the agent’s budget constraint:

supc,ϕU(c) subject to E
( ∫ T

0
πtctdt

)
≤ E

( ∫ T

0
πtetdt

)
:= w, (1)

where ϕ are the optimal fractions of wealth in the various risky investment possibilities
facing the agent, and w is the current value of the agent’s wealth. The quantity πt is the
state price deflator at each point in time t—i.e., the Arrow–Debreu state prices in units of
probability. The horizon is T ≤ ∞.

The consumer takes as given a dynamic financial market, consisting of N risky securi-
ties and one riskless asset, the latter having rate of return rt, a stochastic process. The agent’s
actions do not affect market prices of the risky assets, nor the risk-free rate of return rt.

3. Optimal Consumption and Portfolio Choice

Herein we consider two different specifications of utility: (i) the standard model with
separable and additive expected utility, and (ii) recursive utility of the Duffie–Epstein type
with a Kreps–Porteus specification of the associated certainty equivalent, the latter being
derived from expected utility.

We consider a continuous-time framework. In case (i) the agent’s preferences are
represented by standard expected additive and separable utility of the form

U(c) = E
( ∫ T

0
u(ct, t)dt

)
. (2)

u(c, t) is the agent’s felicity index, which we assume to be of the CRRA-type, meaning that
the real function u(x, t) = 1

1−γ x1−γe−δt, where γ is the agent’s relative risk aversion and δ
is the agent’s impatience rate (the utility discount rate).

It follows from optimal consumption and portfolio choice theory that the optimal
consumption per time unit, c∗t , and the optimal wealth at time t, W∗t , are connected. The
starting point for this derivation is the following formula for the market value of current
wealth Wt.

W∗t =
1

πt
Et

{ ∫ T

t
πsc∗s ds

}
. (3)

Et(X) = E(X|Ft) is the conditional expectation of any random variable X given the
information by time t, where Ft is the information filtration, 0 ≤ t ≤ T and πt is the state
price deflator. Under the assumption of no arbitrage possibilities, it is given by

πt = e−
∫ t

0 (ru+
1
2 η′uηu)du−

∫ t
0 ηudBu (4)
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where rt is the risk free rate of return at time t, ηt is the market price of risk and Bt is a
standard d-dimensional Brownian motion, which generates the information set Ft for all
t ∈ [0, T].

The financial market consists of N risky assets, where η′tηt = λ′t(σtσ
′
t)
−1λt, and the

vector λt = (µ1(t)− rt, µ2(t)− rt, · · · , µN(t)− rt)′ represents the risk premiums of the risky
assets, i.e., the excess expected returns of the risky assets over the riskless returns at any time
t ∈ [0, T]. The quantity µn(t) is the rate of return on asset n at time t; n = 1, 2, · · · , N; and
prime signifies the transpose of a vector (or matrix). The matrix σtσ

′
t is the instantaneous

variance/covariance matrix of the risky assets in units of prices. All these quantities may
be stochastic processes. For simplicity of exposition we assume that d = N.

3.1. Optimal Consumption and Extraction with Expected Utility: A Deterministic Investment
Opportunity Set

The agent’s optimal consumption and portfolio choice is determined next. First we
give a representation of the optimal consumption c∗t at any time t ∈ [0, T]. By employing
Kuhn–Tucker and the saddle point theorems, we find that the optimal consumption is
given by

c∗t = π
− 1

γ

t (αeδt)−
1
γ , (5)

where α is the Lagrange multiplier, ultimately determined by equality in the budget
constraint. This gives the following dynamics for the optimal consumption.

dc∗t
c∗t

= µc(t) dt + σc(t) dBt, (6)

where,

µc(t) =
1
γ
(rt − δ) +

1
2

1
γ
(1 +

1
γ
) η′tηt

and
σc(t) =

1
γ

ηt.

Let It = (rt, ηt, λt) signify the investment opportunity set. We can write the optimal
wealth in Equation (3) of the agent in terms of the optimal consumption as follows.

W∗t = c∗t Et

{ ∫ T

t
e

1−γ
γ [
∫ s

t ((ru+
1
2 η′uηu)− δ

1−γ )du+
∫ s

t ηudBu ]ds
}

, (7)

where we have used the dynamics for the state price deflator in (4) and for the optimal
consumption in (6).

In this expression the conditional expectation is in general a random variable (process),
in which case the volatility of W∗t is not the same as the volatility of c∗, and the instantaneous
correlation coefficient between these two processes is not unity. We want to compute the
conditional expectation, and consider two cases: (i) where the investment opportunity set
is deterministic, and (ii) where the set It is stochastic.

We start with (i). Clearly this assumption involves some loss of generality. We treat
the situation (ii) later. In Section 3.7 (for expected utility) and in the section about general
recursive utility, aside from the obvious main result of the paper which is of an applied
nature, the theoretical contributions of the paper can be found.

Now, by the Fubini theorem and the moment generating function of the normal
distribution, we can write the above equation as follows.

W∗t = c∗t
∫ T

t
e[

1−γ
γ (r+ 1

2 η′η)− δ
γ +

1
2 (

1−γ
γ )2η′η](s−t) ds. (8)
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The optimal consumption to wealth ratio is then

c∗t
W∗t

= kT(t) a.s. (9)

where kT(t) is an estimate of the optimal extraction rate at the present time t, where
0 ≤ t < T. The expression for kT(·) can be written as

kT(t) =
k

1− e−k(T−t)
, (10)

where the k is a constant for all t by our above assumption (i), and is given by

k = r− r
γ
+

δ

γ
− 1− γ

2γ2 λ′(σσ′)−1λ. (11)

Provided that k > 0, the function kT(t)→ k as T → ∞ for any fixed value of t.1

The result that k is non-random and time invariant follows from our assumption about
a deterministic investment opportunity set. For example, it has as the consequence that
the volatility of W is the same as the volatility of c. If the investment opportunity set is
stochastic, naturally this is no longer true. However, in order to focus on the essential
questions raised in this paper, we make this simplification here. We analyze the situation
with a stochastic investment opportunity set in Section 3.7 below.

With a very long horizon T, it is optimal for the agent to consume a fraction of the
remaining wealth at any time t. In reality, this fraction is a stochastic process. Here it is a
deterministic function slowly increasing in t, and when the horizon approaches, it increases
sharply (see, e.g., Figure 1 below). If the horizon is unbounded at the outset, the fraction k
is consumed forever.

3.2. The Real Rate of Return versus the Optimal Extraction Rate

Recall the dynamics of the wealth portfolio Wt. It is given by the following stochastic
differential equation.

dWt = [Wt(ϕ′tλt + rt)− ct]dt + Wt ϕ′tσtdBt, W0 = w. (12)

We do not use control theory explicitly in our exposition. In the language of optimal control
theory, in order for the wealth W to remain nonnegative, any admissible control (c, ϕ) has
ϕt = 0 and Wt = ct = 0 for t larger than the stopping time inf{s : Ws = 0}. Thus, nonzero
investment and spending are ruled out once there is no remaining wealth.

The problem (1) of maximizing utility subject to the agent’s budget constraint results in
both the optimal fractions in the various securities, and the associated optimal consumption,
see Mossin (1968); Samuelson (1969) and Merton (1969, 1971) for the earliest treatments of
this joint problem). With a deterministic investment opportunity set, the optimal portfolio
weights at any time t are given by

ϕt =
1
γ
(σσ′)−1λ for all t. (13)

We want to compare the optimal extraction rate k given Equation (11) with the (conditional)
expected real rate of return on the optimal wealth portfolio W∗t , which is the solution to the
stochastic differential equation (Equation (12)) with ct = c∗t , the optimal consumption and
the portfolio fractions given in Equation (13). The (simple) return in the time interval dt is
dRt, where

dRt =
dW∗t + c∗t dt

W∗t
. (14)
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With this interpretation, Equation (14) is a standard expression for the real return with
dividends.

Accordingly, from (14), Equation (12) and the optimal portfolio rule in Equation (13),
the t-conditional expected real rate of return of the wealth portfolio is given by the follow-
ing expression:

Et
(
dRt
)
/dt = r +

1
γ

λ′(σσ′)−1λ. (15)

The optimal extraction rate k may be rewritten as follows.

k =
δ

γ
+
(
1− 1

γ

)(
r +

λ′(σσ′)−1λ

2γ

)
. (16)

We then have the following result.

Proposition 1. Assuming a deterministic investment opportunity set, the optimal extraction rate
k is a constant and depends on the return from the fund only via the certainty equivalent rate of
return, and can be written as

k =
δ

γ
+
(
1− 1

γ

)(
r +

1
2

γϕ′(σσ′)ϕ
)
. (17)

Proof. Starting with the risk premium,

1
γ

λ′(σσ′)−1λ =
1
γ

λ′(σσ′)−1(σσ′)(σσ′)−1λ =

γ
1
γ

λ′(σσ′)−1(σσ′)
1
γ
(σσ′)−1λ =

γ(
1
γ
(σσ′)−1λ)′(σσ′)

1
γ
(σσ′)−1λ) = γϕ′(σσ′)ϕ,

where we have used (13). From this result it follows that the quantity

1
2

γϕ′(σσ′)ϕ

can be recognized as relative certainty equivalent for “proportional risks”, since ϕ′σ is the
volatility of the wealth portfolio (see Equation (12)).2

One basic comparison is between the expected real rate of return on the wealth
portfolio given in (15) and the optimal extraction rate k. Assuming an infinite horizon for
now, the inequality

k ≤ r +
1
γ

λ′(σσ′)−1λ (18)

holds if and only if

r ≥ δ− λ′ϕ
(1 + γ

2γ

)
. (19)

Since the second term on the right-hand side is negative, this inequality is true for reason-
able values of the parameters of this problem.3

Alternatively, using the certainty equivalent and the representation for k given in
Equation (16), the inequality (19) is equivalent to

1
2

γϕ′(σσ′)ϕ ≥ (δ− r)
1 + γ

. (20)
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That is, when half the expected excess return on the fund over the risk-free rate is larger
than the right-hand side of (20), then the extraction rate is lower than the expected rate of
return on the wealth portfolio.

Again, for reasonable values of the parameters of the problem, this can be seen to hold
true. A very simple case occurs when δ ≤ r, in which case the inequality is obviously true,
a fact which can be recognized from the inequality (19) as well.

Typically, the real risk-free rate close to 1% is consistent with US-data (see Table 1
below). Additionally, a reasonable value for the impatience rate is around 1%.4 In this case
the risk premium of the fund is certainly positive, about 6% for the data of Table 1, so the
inequality (20) holds with a significant margin.

We conclude that for plausible values of the parameters, the optimal extraction rate is
strictly smaller than the expected real rate of return on the wealth portfolio.

It can be seen that when the extraction rate k equals the expected rate of return on the
fund W, then the expected value E(Wt) = W0 for any horizon t, and Wt can be shown to
be a martingale. Seen from time 0, the end wealth of the agent corresponds to the random
variable Wt, not the sure amount W0. Considered from the beginning of the period, a
risk-averse agent would prefer the W0 to the random wealth Wt. A claim that the agent
considers the random future value Wt as equivalent to the plain expected value as of time
zero thus rests on an implicit assumption that the agent is risk-neutral.

To use the expected return on the endowment fund as the extraction rate is, on the
other hand, consistent with investing “everything” in the single risky asset, or group of
assets, with the largest expected return(s) one can find, and completely ignoring risk.5 Few
responsible agents would recommend this “optimum portfolio selection strategy” for an
endowment fund.

This is, however, what Campbell (2012) seems to claim, where the author recommends
that k is set equal to the real expected rate of return. In the author’s own words:

“The sustainable spending rate of an endowment, which is the amount spent as a fraction
of the market value of the endowment, must equal the expected return in order to achieve
immortality.”

This is called “vigorous immortality” by the author. As we have just demonstrated, this
policy is a little bit too vigorous to be rational and consistent, and implies the above-
mentioned contradiction. This policy will eventually deplete the fund with probability 1,
to be shown in the Section 3.5.

Can the policy advocated by Dybvik and Qin (2019), also considered in Campbell
and Sigalov (2020), be consistent with the optimal spending rule outlined in the above?
A little analysis shows that this requires r = δ and γ = 0, but the latter is not allowed in
our model. Accordingly, the criterion of the expected return subtracted by half the variance
is not optimal for valid values of the preference parameters.

3.3. An Example of a Typical Fund

We now illustrate the above theory by the use of real data. We assume that the agent
takes the US market as given, where we let the risky part of our fund be represented by the
S&P-500 index. This corresponds to one of the best functioning securities market in the
world, and should be representative in the construction of the underlying market quantities.
The relevant data are given as follows.

Table 1 represents the summary statistics of the data used by Mehra and Prescott (1985).6

By σcM(t) we mean the instantaneous covariance rate between the return on the index S&P-500
and the consumption growth rate. Similarly, σMb(t) and σcb(t) are the corresponding covariance
rates between the index M and government bills b and between aggregate consumption c and
Government bills, respectively.7
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Table 1. Key US-data for the time period 1889–1978. Continuous-time compounding.

Expectation Standard dev. Covariances

Return S&P-500 6.78% 15.84% σ̂Mb = 0.001477
Government bills 0.80% 5.74% σ̂cb = −0.000149
Equity premium 5.98% 15.95%
Consumption growth 1.81% 3.55% σ̂Mc = 0.002268

3.4. Examples Based on Expected Additive and Separable Utility

As an example, consider a wealth fund described by the three upper rows of Table 1.
The consumption data in Table 1, the fourth row, has to do with society at large, which is
not under consideration here.

Let us assume a relative risk aversion of γ = 2.5, and an impatience rate δ = 0.01.
For the market structure of Table 1, we obtain that the expected rate of return on the
wealth portfolio is 0.065 and the certainty equivalent rate of return is 0.037, corresponding
to the optimal portfolio selection rule ϕ = 0.95. The optimal extraction rate under our
assumptions is k = 0.026, corresponding to T = ∞. The drawdown rate is seen to
be significantly lower than the expected rate of return on the portfolio for these rather
reasonable parameters of the preferences of the agent.

In Figure 1 we present graphs with a finite time horizon of T = 300 years using the
expected utility model explained above, with the parameters of this example. The optimal
long run extraction rate k is the lower horizontal (blue) line in Figure 1. The expected return
on the wealth portfolio is the upper horizontal (green) line in the figure. As the horizon
approaches, there is a sharp increase in the rate of consumption. After about 200 years,
the rate kT(200) = 0.028, a modest increase from the steady state value of 0.026.

Figure 1. The optimal drawdown rate vs. expected return. T = 300.

The optimal consumption in this case has the expected growth rate given by the formula

µc =
1
γ
(r− δ) +

1
2

1
γ
(1 +

1
γ
)λ′(σσ′)−1λ.

As in the proof of Proposition 1, we can alternatively write this as

µc =
1
γ
(r− δ) +

1
2
(1 +

1
γ
)γϕ′(σσ′)ϕ. (21)

This term is estimated as 0.039, and the estimate of the volatility σc is 0.1510, which equals
the estimate of σW = ϕσ. According to our assumption about a deterministic investment
opportunity set, this implies that these two volatilities must be equal—i.e., ϕσ = 0.1510.
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As noticed, the optimal extraction rate k can be written as an arithmetic mean of
the impatience rate and the certainty equivalent return rate, with weight 1/γ. We may
calculate how large the impatience rate must be in order to have an extraction rate equal
to the expected return. The answer is δ = 0.108. This level is rather unrealistic as an
impatience rate.

In Figure 2 these aspects are illustrated. The increasing curve is the drawdown rate
k(δ, 2.5); the lower horizontal line is the certainty equivalent, ce(γ), at γ = 2.5; and the
upper horizontal line is the expected return, er(γ), at γ = 2.5—all as functions of δ. As we
can see, the drawdown rate may exceed the expected return, but at a rather unrealistically
high value of the impatience rate. For this data set, when the impatience rate is 0.0367, then
k(0.0367) = 0.0367 = ce(2.5). An impatience rate above this level is hardly sustainable.
At this level of spending, the optimal spending rate 0.0367 should be compared to the
expected rate of return 0.065.

Figure 2. The drawdown rate k(δ, γ) as a function of δ when γ = 2.5.

From the inequality (19) we can notice that when the impatience rate δ is large enough,
the extraction rate may become larger than the expected rate of return. A high enough
degree of impatience may then deplete the fund at a finite time in the future. This is usually
not what politicians or owners of colleges and universities have in mind when deciding on
an optimal drawdown rate from a fund or an endowment.

Failure to realize this may have negative consequences for the beneficiaries of the fund.
If k is too large, equal to the expected rate of return from the fund, for example,8 then the
fund will not last “forever” (see Section 3.5 below).

In Figure 3 we show a graph of the fraction ϕ of the risky asset as a function of γ
(the falling curve) for the data in Table 1. In this situation the S&P-500 is a proxy for the
risky asset, so here N = 1 with one risk-free asset, and ϕ is one-dimensional. When γ is
larger than about 2.4 in this example, the agent does not borrow risk-free, since ϕ is then
smaller than 1.

Figure 3. ϕ as a function of γ.
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Figure 4 shows a graph of of the optimal extraction rate k(γ) as a function of γ
(the lowest curve) for the data of Table 1. The upper curve is a graph of the certainty
equivalent return ce(γ) = r + 1

2 γϕ′(σσ′)ϕ. We notice that k(γ) < ce(γ) < r + γϕ′(σσ′)ϕ,
where the latter quantity is the expected return, not shown in the figure.

Figure 4. k(γ) and ce(γ) as functions of γ; δ = 0.01.

The function k(γ) is falling in γ when the risk aversion is larger than about 1.4 in the
figure. It may be surprising that it does not decrease over the whole range of γ-values, but
this can be attributed to the two, sometimes conflicting, roles that this parameter plays.
In this model the elasticity of intertemporal substitution (EIS) in consumption ψ = 1/γ.
Later we will separate these to properties of an individual using recursive utility, in which
case we denote ρ = 1/ψ. The parameter ρ, called the marginal utility flexibility parameter
by R. Frisch, is a measure of the individual’s resistance against substituting consumption
across time (in a deterministic world). When this parameter increases, the agent will be
inclined to extract more from the fund. Since ρ = γ here, this explains the shape of the
left part of the graph of k. We demonstrate later that with recursive utility, where the
parameters ρ and γ are separated, the function k(ρ) is strictly increasing in the parameter
ρ, under plausible conditions.

A few other scenarios will be discussed next. When γ = 2.0 and δ = 0.01, then the
optimal extraction rate is k = 0.027. Hence, the expected rate of return on the wealth
portfolio is 0.079 and the certainty equivalent rate of return is 0.044, corresponding to an
optimal portfolio strategy of ϕ = 1.19. Furthermore, σc = 0.19, µc = 0.05. Now the agent
takes on more portfolio risk, since the risk aversion has decreased.

When γ = 2.0 and δ = 0.03, then the optimal extraction rate is k = 0.037. Now the
agent takes on about the same portfolio risk, but the extraction rate has increased because
of increased impatience.

From the expression (16) we notice that when γ = 1, the optimal extraction rate equals
δ, the impatience rate of the agent.

As a numerical example, when γ = 1 and δ = 0.02, then k = 0.02. Thus, the expected
rate of return on the wealth portfolio is 0.15 and the certainty equivalent rate of return is
0.079, corresponding to an optimal portfolio strategy of ϕ = 2.38. Furthermore, σc = 0.38
and µc = 0.13.

In theory reported in textbooks, we often see examples where gamma is both 1/2
(square root utility) and 1 (the Kelly Criterion), but it seems that such values are a bit too
low in the present context, since they lead to positions that appear to be both risky, and
sometimes rather odd.

Next we formulate our main findings related to the theme of the paper. Under our
assumptions about the investment opportunity set It, the following holds.
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Proposition 2. When (i) the objective is to maximize utility and (ii) we consider a particular fund
in isolation, the optimal spending rate will be significantly lower than the expected real rate of
return on the fund, for any reasonable levels of the impatience rate and the relative risk aversion.

For an endowment fund with a well-defined owner, this analysis may be general
enough to answer the question of optimal extraction from an endowment. The situation
where consumption in society at large is considered as well is treated in the last section of
the paper.

3.5. The Asymptotic Behavior of a Sovereign Wealth Fund

When the optimal spending rate k is a constant, as in the above model, the wealth Wt
is a geometric Brownian motion with dynamics

Wt = W0e
∫ t

0 [µW− 1
2 ϕ′(σσ′)ϕ]ds+

∫ t
0 ϕ′σdBs , (22)

where

µW =

{
0, if k = r + γϕ′(σσ′)ϕ;
1
2 (1 + γ)ϕ′(σσ′)ϕ + 1

γ (r− δ), if k is optimal.
(23)

In other words, when the spending rate k is equal to the expected rate of return, then µW = 0
and Wt is a martingale. When k is optimal, given in (17), then either Wt is a submartingale
or a supermartingale depending on the size of the impatience rate δ. In general, when
W0 > 0, then Wt ∈ (0, ∞) for all t.

Note that the optimal portfolio rule ϕ is the same in both lines in (23). It can be shown
that if k is set to be equal to the expected real return, ex ante, and optimization is only in
the variable ϕ, the optimal portfolio rule remains the same as in the standard approach.
This is most easily demonstrated by use of dynamic programming.

If µW > 0, the process Wt is a submartingale, in which case Et(Ws) ≥Wt for all s ≥ t;
if µW < 0, the process Wt is a supermartingale, in which case Et(Ws) ≤ Wt for all s ≥ t.
We have the former, µW > 0, if δ < 1

2 (1 + γ)γϕ′(σσ′)ϕ + r, and the latter, µW < 0, if
δ > 1

2 (1 + γ)γϕ′(σσ′)ϕ + r.
Of some interest here is that we can also conclude about the asymptotic behavior of

the wealth process from the sign of µW − 1
2 σ′WσW . Since here σ′WσW = ϕ′(σσ′)ϕ, by the

law of the iterated logarithm for Brownian motion and Feller’s test for explosions, the
following results hold (see, e.g., Karatzas and Shreve 1987; Feller 1952, 1954):

(i) If µW <
1
2

ϕ′(σσ′)ϕ, then limt→∞Wt = 0, and sup0≤t<∞Wt < ∞ a.s. (24)

(ii) If µW >
1
2

ϕ′(σσ′)ϕ, then limt→∞Wt = ∞, and inf0≤t<∞Wt > 0 a.s. (25)

Thus, when µW = 0—i.e., when spending equals the expected return, as advocated by, e.g.,
Campbell (2012)—the martingale property gives that E(Wt) = W0 for all t ≥ 0, but despite
this, the wealth eventually converges to zero with probability 1, by the above result.

Moreover, using (23) when k is optimal and given in (17), we see that (24) is satisfied
when δ > r + 1

2 γ2 ϕ′(σσ′)ϕ, and (25) materializes when δ < r + 1
2 γ2 ϕ′(σσ′)ϕ. The right-

hand side of this inequality is larger than or equal to the certainty equivalent rate of return
when γ ≥ 1. Thus, for example, when δ is smaller than or equal to the certainty equivalent
rate of return, then Wt converges to infinity as time t→ ∞, provided γ ≥ 1, and the wealth
never hits zero with probability 1.

These results are is not so surprising as they may seem at first, since it is well known
that neither convergence to L1, nor almost sure convergence, implies the other. When Wt is
not uniformly integrable, as here, this may typically be the case.
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As we have argued above, it is reasonable that δ is smaller than, or at the most equal
to, the certainty equivalent rate of return. It follows that the impatience rate will satisfy this
requirement provided γ ≥ 1. Hence, the prospects for a long-term sustainable management
of a sovereign wealth fund are promising using the optimal spending rate k as outlined above.

Finally, if δ = r + 1
2 γ2 ϕ′(σσ′)ϕ when k is optimal, then

Wt = W0e
∫ t

0 ϕ′σdBs ,

in which case
E(Wt) = W0e

1
2
∫ t

0 ϕ′(σσ′)ϕds → ∞ as t→ ∞. (26)

In this situation inf0≤t<∞Wt = 0, and sup0≤t<∞Wt = ∞, a.s.
We summarize the most essential findings as follows

Theorem 1.
(i) With the optimal spending rate k, the fund value Wt goes to infinity as t→ ∞ as long as

the impatience rate δ is smaller than or equal to the certainty equivalent rate of return on the fund,
assuming γ ≥ 1.

(ii) If the spending rate is set equal to the expected rate of the return on the fund, then the fund
value goes to 0 with probability 1 as time goes to infinity.

The transversality condition for the infinite horizon case turns out to be the following:
θ > 0 where

θ =
δ− r(1− γ)

γ
− (1− γ)λ′(σσ′)−1λ

2γ2 ,

(see Merton (1971)). Notice that our condition in Theorem 1 (i) is that γ ≥ 1 for the optimal
spending rate. Thus the transversality condition holds for our optimal spending rate k.
This means that the expected wealth grows at a slower rate than the impatience rate δ as
t→ ∞.

We also have the following corollary:

Corollary 1. With the optimal spending rate k we have the following:
(i) Wt → ∞ almost surely as t → ∞ provided δ < r + 1

2 γ2 ϕ′(σσ′)ϕ, in which case Wt is
also a submartingale.

(ii) Wt → 0 almost surely as t → ∞ provided δ > r + 1
2 (1 + γ)γϕ′(σσ′)ϕ, in which case

Wt is also a supermartingale.

We can also say something about the expected time till the wealth process Wt reaches
a certain value; or more precisely, if the wealth process today satisfies a < W0 < b, we can
calculate the conditional expected time to the process W reaches a for the first time, say,
given that a is reached before b. This is of course a topic of interest in the present model,
and is what we consider next.

3.6. A Conditional First Exit Expectation Result

Consider a Feller process X(t) on an interval F in the real line, and let τ∗(J) =
inf{t : X(t) /∈ J}, J = (a, b), [a, b] ∈ F, (see for example Breiman (1968)). Suppose
Px[τ∗(J) < ∞] = 1, x ∈ J and let p+(x, J) = Px[X(τ∗(J)) = b], and p−(x, J) = 1− p+(x, J).
Then the following result holds (Aase (1977)):

Ex{τ∗(J)|X(τ∗(J)) = b} = 1
p+(x, J)

Ex

{ ∫ τ∗(J)

0
p+(X(t), J)dt

}
.
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In the same paper we find the following application of this result to a geometric Brownian
motion: For a diffusion where F = (0, ∞), µ(x) = µ · x, σ2(x) = σ2 · x2, where µ, σ2 are
two constants, and J = (a, b), 0 < a < b < ∞. Let c = 1− (2µ/σ2), it follows that

Ex{τ∗(J)|X(τ∗(J)) = b} =


2

σ2c

{(
ln b

a

)
bc+ac

bc−ac −
(

ln x
a

)
xc+ac

xc−ac

}
, c 6= 0;

1
3σ2

{(
ln b

a

)2
−
(

ln x
a

)2}
, c = 0.

A similar result holds for the boundary a by use of p−(x, J) = 1− p+(x, J). Notice that
here p+(x, J) = xc−ac

bc−ac .
Since we have a geometric Brownian motion process, where X(t) = Wt, these results

are immediately applicable to our situation, which we explore below.
In the example related to Figure 1 above, we calculate the conditional expected time

to the fund leaves a given interval. Consider the interval (a, b) where a = (1/10)W0
and b = 1.5W0. In this scenario and with the optimal spending rate, the parameters are
µW = 0.03881, σW = 0.1584 and the constant c = −2.09. The first exit probabilities are
p+(W0, J) = 0.995 and p−(W0, J) = 0.005, so it is much more likely that the first exit takes
place at the upper level b than at the lower a. We obtain that EW0{τ∗(J)|X(τ∗(J)) = b} = 14
years while EW0{τ∗(J)|X(τ∗(J)) = a} = 65 years.

In the situation where the spending rate is the expected rate of return, µW = 0 and
c = 1 while σW = 0.1584 remains the same. The first exit probabilities have changed to
p+(W0, J) = 0.64 and p−(W0, J) = 0.36, so it is still more likely that the first exit takes
place at the upper level b than at the lower level a, but much less likely than above. Here
EW0{τ∗(J)|X(τ∗(J)) = b} = 22 years and EW0{τ∗(J)|X(τ∗(J)) = a} = 85 years. Yet we
know that in this situation Wt will eventually end up as zero, although it may take a long
time, whereas in the former case with optimal extraction in place this does not ever happen
with probability 1.

3.7. The Investment Opportunity Set Is Allowed to Be Stochastic

We now turn to the more general case with a stochastic investment opportunity set.
As we now demonstrate, this can be made surprisingly simple. Starting with the optimal
wealth given in Equation (7), we condition on the vector stochastic process It = (rt, ηt, λt)
and use the following iterated expectation result:

E
{

e
∫ t

0 θsdBs
}
= E

{
E
(

e
∫ t

0 θsdBs |θ
)}

= E
{

e
1
2
∫ t

0 θ′sθs ds
}

.

It is valid for θ an adapted (vector) process satisfying standard conditions. This result
follows since the stochastic integral

∫ t
0 θsdBs has an expectation of zero and variance

E
( ∫ t

0 θ′sθsds
)
, and is conditional on the process θ that the stochastic integral is normally

distributed, so we can use the moment generating function for the normal distribution,
which gives the last equality in the above.

Using this and the Fubini theorem, from Equation (7) we obtain the following.

W∗t = c∗t Et

{ ∫ T

t
e

1−γ
γ [
∫ s

t ((ru+
1
2 η′uηu)− δ

1−γ )du+
∫ s

t ηudBu ]ds
}

(27)

= c∗t
∫ T

t
Et

(
e
∫ s

t (
1−γ

γ (ru+
1
2 η′uηu)− δ

γ +
1
2 (

1−γ
γ )2η′uηu)du

)
ds.

Let us define the integrand in exponent by −ku, that is,

ku :=
δ

γ
+ ru(1−

1
γ
)− 1− γ

2γ2 λ′u(σuσ′u)
−1λu, (28)
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where η′tηt = λ′t(σtσ
′
t)
−1λt as before. By Jensen’s inequality we then have

W∗t = c∗t
∫ T

t
Et

(
e−
∫ s

t kudu
)

ds ≥ c∗t
∫ T

t
e−Et(

∫ s
t ku du) ds. (29)

We now assume first-order stationarity of the investment opportunity set. By Fubini’s
theorem we then get

W∗t
c∗t
≥
∫ T

t
e−
∫ s

t Et(ku)duds =
∫ T

t
e−
∫ s

t k̄tduds =
∫ T

t
e−k̄t(s−t) ds,

where k̄t = Et(ku) does not depend on u ≥ t by our stationarity assumption. This gives
that

c∗t
W∗t
≤ k̄T(t), (30)

where

k̄T(t) =
k̄t

1− e−k̄t(T−t)
.

It is still the case that the following convex representation holds:

kt =
δ

γ
+ (1− 1

γ
)(rt +

λ′t(σtσ
′
t)
−1λt

2γ
).

However, we can no longer claim that the last term represents the certainty equivalent rate
of return in the meaning of Proposition 1. The optimal portfolio weights ϕt are not given
by the simple formula (13) with a stochastic investment opportunity set. It will contain an
additional term that adjusts for the randomness in the market price of risk process ηt, rt
and the other quantities in It.

The comparison of interest is then between the optimal expected spending rate and
the expected real rate of return on the wealth portfolio given by rt + ϕ′tλt.

First we must find the relevant portfolio weights ϕt when the investment opportunity
set is stochastic. This problem has been discussed in great detail by, e.g., Karatzas and
Shreve (1998), but no explicit formula seems to exist. Here we choose another path and go
back to Equation (27) and write it as

W∗t = c∗t FT
t ,

where

FT
t = Et

[ ∫ T

t

(
e
∫ s

t (
1−γ

γ rv+
1
2

1−γ

γ2 η′vηv)− δ
γ )dv)

ds
]
. (31)

When γ = 1 we notice that FT
t is deterministic, so no additional term arises. This corre-

sponds to logarithmic utility, in which case the solution is known, and is quite generally
given by the first term in (32) below, where both σt and λt are allowed to be stochastic pro-
cesses.

The function FT
t is seen to be Ft-measurable by definition, and by Itô’s representation

theorem there exists a process fT(t, u) with u ≤ t such that9

FT
t = E(FT

t ) +
∫ t

0
fT(t, u)dBu.

By the Clark–Ocone formula we know that

fT(t, u) = Eu[Du(FT
t )],

where Du(FT
t ) is the Malliavin derivative of FT

t at u ≤ t.
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From the stochastic differential equation for the optimal wealth given in (12) we then
obtain by the product rule and diffusion invariance that

ϕt =
1
γ
(σtσ

′
t)
−1λt + (σtσ

′
t)
−1σtEt[Dt(FT

t )]/FT
t . (32)

The expression for the optimal portfolio has two terms. The first is identical to the optimal
portfolio for a constant investment opportunity set, except that here σt and λt are allowed
to be stochastic. The second term adjusts for the time and state variations of the investment
opportunities, referred to as the intertemporal hedging term, and is seen from (31) and (32)
to be forward-looking. The first term ignores these variations, is certainly not forward-looking
and is called myopic for that reason (see Mossin (1968)).

The random term Et[Dt(FT
t )]/FT

t can be connected to the parameters of the problem
via the Malliavin derivative of FT

t . We have the following.

fT(t, u) = Eu[Du(FT
t )] = Et

[ ∫ T

t

(
e
∫ s

t (
1−γ

γ rv+
1
2

1−γ

γ2 η′vηv)− δ
γ )dv

∫ s

t

{1− γ

γ
Du(rv) +

1
2

1− γ

γ2 (η′vDu(ηv) + Du(η
′
v)ηv)

}
dv
)

ds
]
. (33)

Therein we have used the “chain rule” and other rules of this calculus (see, e.g., Di Nunno et al.
(2008)). The Malliavin derivatives Du(rv) and Du(ηv) can be further broken down by specify-
ing the types of model for r and η. For example, if the spot interest rate follows a diffusion
process of the Ornstein–Uhlenbeck model, or Vasicek type of the form

rv = r0 +
∫ v

0
µr(w)dw +

∫ v

0
σr(w)dBw

where µr(w) and σr(w) are deterministic, and σr(w) = αew−v, then Du(rv) = αe−veu > 0,
for α a d-vector of positive constants.

When the relative risk aversion γ > 1, we notice from (33) and the subsequent
discussion that the second term in (32) typically is a vector of negative portfolio weights.
This seems intuitive, since a risk-averse agent will invest less in the risky assets when
confronted with a stochastic investment opportunity set. This term can be seen to hedge
against the unanticipated changes in the variables in the investment opportunity set. The
opposite conclusion follows if γ < 1, but as we have indicated before, this case is not very
intuitive with expected utility because of the two different interpretations of the parameter.

With an infinite horizon, the extraction rate is smaller than the real rate of return when
the inequality kt ≤ rt + ϕ′tλt holds, which is equivalent to

kt ≤ rt +
1
γ

λ′t(σtσ
′
t)
−1λt +

1
F∞

t
f∞(t, t)′ηt, (34)

assuming that σt is invertible. This inequality holds for all t if and only if

rt

γ
≥ δ

γ
− 1

γ
λ′t(σtσ

′
t)
−1λt

(1 + γ

2γ

)
− 1

F∞
t

f∞(t, t)′ηt. (35)

We then have the following result:

Proposition 3. With a stochastic investment opportunity set, provided the inequality | 1
F∞

t
f∞(t, t)′ηt|

< 1
γ λ′t(σtσ

′
t)
−1λt

(
1+γ
2γ

)
holds, the optimal extraction rate is strictly smaller than the real rate of

return on the fund, unless the impatience rate δ is unreasonably large.
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Proof. From the inequality (35) we notice that the second and third terms on the right-hand
side add up to something negative under the condition of the proposition. Thus, if rt ≥ δ
the inequality then holds, and the conclusion follows.

How reasonable is the assumption of the proposition in practice? Unless the inequality
holds, the investment policy more or less prescribes short-selling most of the risky assets
in the portfolio, which is unheard of in real life portfolio choices of the type that we are
studying here.

Further insights from the analysis involving a stochastic investment opportunity set
can be gained from inspection of the expression in Equation (33). For example, the optimal
portfolios are seen to depend on the impatience rate δ and the horizon T, neither of which
is present in the standard expression with a deterministic investment opportunity set.

In other words, impatience has a direct impact on the optimal portfolio, and the
dependence on T has a potential to address the horizon problem. There is, however, nothing
in the model that indicates that the investments in the risky assets should decrease when t
approaches the horizon T (see, e.g., Aase (2017) for a treatment of this problem).

The application of the results of this section to the data in Table 1 is by and large
similar to the illustrations given in Section 3.4, since the data, like the data in Table 1, are
based on estimates, assuming stationarity (or some kind of ergodicity), and are therefore
estimates of the expected value k̄t. However, the margin between the optimal extraction
rate and the expected rate of return may have diminished, depending upon the stochastic
structure of rt and ηt.

4. Recursive Utility

This preference structure is known to give far more reasonable results than the ex-
pected utility model when it comes to calibrating to real data; see, e.g., Aase (2016a, 2016b),
where the celebrated equity premium puzzle is solved using recursive utility, among
other things.

We use the framework established by Duffie and Epstein (1992a, 1992b) and Duffie
and Skiadas (1994) which elaborates the foundational work by Kreps and Porteus (1978)
of recursive utility in dynamic models. Recursive utility leads to the separation of risk
aversion from the elasticity of intertemporal substitution in consumption, within a time-
consistent model framework.

The recursive utility U : L→ R is defined by two primitive functions: f : R×R→ R
and A : R→ R. The function f (ct, Vt) corresponds to a felicity index, and A corresponds
to a measure of absolute risk aversion of the Arrow–Pratt type for the agent. In addition
to current consumption ct, the function f also depends on future utility Vt at time t,
a stochastic process with volatility σ̃V(t) := Zt at each time t.

The utility process V for a given consumption process c, satisfying VT = 0, is given by
the representation

Vt = Et

{ ∫ T

t

(
f (cs, Vs)−

1
2

A(Vs) σ̃V(s)′σ̃V(s)
)
ds
}

, t ∈ [0, T]. (36)

If, for each consumption process ct, there is a well-defined utility process V, the stochastic
differential utility U is defined by U(c) = V0, the initial utility. The pair ( f , A) generating
V is called an aggregator.

The utility function U is monotonic and risk-averse if A(·) ≥ 0, and f is jointly concave
and increasing in consumption.

As for the last term in (36), recall the Arrow–Pratt approximation of the certainty
equivalent of a mean zero risk X. It is − 1

2 A(·)σ2, where σ2 is the variance of X, and A(·) is
the absolute risk aversion function.

In the discrete time world the starting point for recursive utility is that future utility
at time t is given by Vt = g(ct, m(Vt+1)) for some function g : R×R → R, where m is a
certainty equivalent at time t (see, e.g, Epstein and Zin (1989)). If h is a von Neumann–
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Morgenstern index, then m(V) = h−1(E[h(V)]). The passage to the continuous-time
version in (36) is explained in Duffie and Epstein (1992b), and in a direct form from the
discrete time analog, by Svensson (1989).

Unlike expected utility theory in a timeless situation, i.e., when consumption only takes
place at the end, in a temporal setting where the agent consumes in every period, derived
preferences have been claimed not to satisfy the substitution axiom (e.g., Mossin (1969);
Kreps (1988)). In Aase (2021) this claim is demonstrated to be incorrect.

4.1. The Specification

We work with the Kreps–Porteus utility, where the aggregator has the following
CES specification:

f (c, v) =
δ

1− ρ

c(1−ρ) − v(1−ρ)

v−ρ and A(v) =
γ

v
. (37)

The parameter δ ≥ 0 is the agent’s impatience rate; ρ ≥ 0, ρ 6= 1 is what we referred
to earlier as the marginal utility flexibility parameter; and γ ≥ 0, γ 6= 1, is the relative
risk aversion. The parameter ψ = 1/ρ is the elasticity of intertemporal substitution in
consumption, referred to as the EIS parameter. The higher the value of the parameter
ρ, the more aversion the agent has towards consumption substitution across time in
a deterministic world. The higher the value of γ, the more aversion the agent has to
consumption fluctuations, due to the different states of the world that can occur. Clearly
these two properties of an individual’s preferences are different. In the conventional
Eu-model, however, ρ = γ.

It can be shown that this specification is the continuous-time analogue of the one used
by Epstein and Zin (1989, 1991) in discrete time.

Using the notation Z(t) = VtσV(t), the dynamics of the utility process are

dVt =
(
− δ

1− ρ

(c∗t )
1−ρ −V1−ρ

t

V−ρ
t

+
1
2

γVtσ
′
V(t)σV(t)

)
dt + VtσV(t) dBt, (38)

for 0 ≤ t ≤ T, where VT = 0. This is the backward stochastic differential equation, where
a solution consists of the pair (V, Z). For the particular Kreps–Porteus version that we
consider, the standard Lipschitz condition in Duffie and Epstein (1992b) is not satisfied,
but existence and uniqueness are shown for this version in Duffie and Lions (1992) under
certain conditions. See also Schroder and Skiadas (1999) for uniqueness and existence of
solutions of such equations, in particular their Theorem A2.

4.2. The Optimal Consumption and Portfolio Rule

As with the standard EU-model, we will need the optimal consumption of an agent.
Here the agent is one with recursive utility (U, e) who takes the market as a given and
shifts his endowment e in each period from the given et to the optimal one c∗t using the
financial markets. In each period the agent decides how much to consume and how much
to invest in the given opportunity set for future consumption. Thus these two problems
are intimately connected.

4.2.1. The First Order Conditions

By properly extending Pontryagin’s maximum principle to a stochastic environment,
we can solve for the basic version of recursive utility as follows.10 The first-order conditions
can be written as

α πt = Y(t)
∂ f
∂c

(c∗t , Vt) a.s. for all t ∈ [0, T]. (39)

Here Y(t) is an adjoint variable. Notice that the first-order condition depends on the future
utility Vt. This means, among other things, that the agent is in general not myopic (in the
sense of Mossin (1968)).
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4.2.2. The Optimal Consumption

It has been shown in Aase (2016b) that the answers to these two problems are given as
follows: The stochastic representation for the optimal consumption growth rate is given by

dc∗t
c∗t

= µc(t) dt + σc(t) dBt, (40)

where,

µc(t) =
1
ρ
(rt − δ) +

1
2

1
ρ
(1 +

1
ρ
) η′tηt −

(γ− ρ)

ρ2 η′t σV(t)

+
1
2
(γ− ρ)γ(1− ρ)

ρ2 σ′V(t)σV(t), (41)

and
σc(t) =

1
ρ

(
ηt + (ρ− γ)σV(t)

)
. (42)

VtσV(t) = σ̃V(t). The latter appears in the definition (36) of recursive utility. Both σV and
Vt exist as solutions to a backward stochastic differential equation for V. The quantity ηt is
the market price of risk vector, and η′tηt corresponds to our previous λ′t(σtσ

′
t)
−1λt.

For recursive utility in discrete time it is known that the consumption to wealth ratio
is equal to

ct

Wt
=

1− β

(Vt
ct
)1−ρ

,

where β = e−δ. It is seen that this ratio is a constant only when ρ = 1, in which case our
model is not valid. Thus the consumption to wealth ratio is, in general, a stochastic process.
However, in the continuous-time model this is a bit different, as a constant consumption
to wealth ratio is possible without requiring that ρ = 1. We treat this special case below.
With a stochastic investment opportunity set as we have assumed here, this ratio is not
constant. This means that the volatility of consumption σc is not equal to the volatility of
wealth σW = ϕσ.

It is shown in Aase (2016a) in the context of equilibrium that the wealth of the agent
may be internalized as follows:

σW(t) = (1− ρ)σV(t) + ρσc(t). (43)

This is really an equilibrium result. We may “invert” this relationship when ρ 6= 1 to obtain

σV(t) =
1

1− ρ

(
σW(t)− ρσc(t)

)
. (44)

where the volatility of utility, one of the primitives of the model, is connected to “observable”
quantities. Combining this with (42), we find that

σc(t) =
1− ρ

ρ(1− γ)
ηt −

γ− ρ

ρ(1− γ)
σW(t). (45)

With expected utility γ = ρ, and σc(t) = 1
γ ηt. This formula is, however, not possible

to reconcile with aggregated data in society, unless γ is disproportionately large. The
result (45) on the other hand, can be used to explain market and consumption data with
reasonable values for the two preference parameters ρ and γ (see Aase (2016b)).

By taking account of the expression (45) for σc(t), the formula for σV(t) in (44) can
alternatively be written as

σV(t) =
1

1− γ

(
ϕ′tσt − ηt

)
. (46)
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4.2.3. The Conditional Optimal Portfolio Selection Strategy

Turning to optimal portfolio choice in the life cycle model, where the agent is not
necessarily the “representative agent”, this problem has been treated in detail by Schroder
and Skiadas (1999).

Here we pursue a slightly different route. Given that the covariance rate between of
the optimal consumption and the market is known, the optimal portfolio fractions in the
risky assets associated with this are given by the following formula:

ϕ(t) =
1− ρ

γ− ρ
(σtσ

′
t)
−1λt −

ρ(1− γ)

γ− ρ
(σtσ

′
t)
−1(σtσ

′
c∗(t)), (47)

assuming γ 6= ρ.11 This formula follows from (42) and (44) by noticing that σW(t) = ϕ′tσt,
and must be interpreted as a consistency result, given the covariance rate (σtσ

′
c∗(t)). Formula

(47) can not be directly compared to the result for expected utility in Equation (32), but is
nevertheless useful in what follows.12 In the next sections we establish an optimal spending
rate based on (47), and also a formula for ϕ(t), which can indeed be compared to (32).

4.3. The Optimal Spending Rate versus the Real Rate of Return with Recursive Utility

With these preparations, we now turn to the spending rate with general recursive
utility in a model with a stochastic investment opportunity set. The analysis is analogous to
the analysis in Section 3.7 for the standard EU-model, with the exception that we utilize the
expression in (47) for the optimal portfolio weights, which calls for some care in interpreting
the results. We have found the optimal consumption path c∗t given an optimal portfolio
strategy, and consequently the optimal wealth, is given by the formula

W∗t =
1

πt
Et

{ ∫ T

t
πs c∗s ds

}
.

First observe that the optimal consumption can be represented as

c∗s = c∗t exp
{ ∫ s

t
(µc(u)−

1
2

σ′c(u)σc(u))du +
∫ s

t
σc(u)dBu

}
,

where µc is given in (41) and σc in (42). With the expression for the state price deflator π
given in (4) we can write πsc∗s in terms of πtc∗t for any t ≤ s ≤ T, since we can write the
state price deflator as follows:

πs = πt exp
{
−
( ∫ s

t
(ru +

1
2

η′uηu)du +
∫ s

t
ηudBu

)}
.

With these preparations, the expression for the optimal wealth can be written as

W∗t = c∗t Et

{ ∫ T

t
exp

[ ∫ s

t
(µc(u)−

1
2

σc(u)′σc(u))du−
∫ s

t
(r(u) +

1
2

η′uηu)du (48)

+
∫ s

t
(σc(u)− ηu)dBu

]}
.

Next we condition on σc and η, and obtain the following wealth to consumption ratio (see
Section 3.7 for details):

W∗t
c∗t

=
∫ T

t
Et

{
exp

[ ∫ s

t
(µc(u)−

1
2

σc(u)′σc(u))du−
∫ s

t
(r(u) +

1
2

η′uηu)du

+
1
2

∫ t

s
(σc(u)− ηu)

′(σc(u)− ηu)du
]}

. (49)
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Denoting the integrand in the exponent by −k(u), we have that

k(u) = r(u)− µc(u) + η′uσc(u). (50)

Using (41) and (42), this can be written as a convex combination with weight 1
ρ

k(u) =
δ

ρ
+
(
1− 1

ρ

)(
ru +

ρ− γ

ρ
η′uσV(u)+

1
2

γ(γ− ρ)

ρ
σV(u)′σV(u) +

1
2ρ

η′uηu

)
. (51)

By Jensen’s inequality we then have

W∗t
c∗t

=
∫ T

t
Et
(
e−
∫ s

t k(u)du)ds ≥
∫ T

t
e−Et(

∫ s
t k(u) du) ds. (52)

We now assume first-order stationarity of the investment opportunity set. By Fubini’s
theorem we then get

W∗t
c∗t
≥
∫ T

t
e−
∫ s

t Et(k(u))duds =
∫ T

t
e−
∫ s

t k̄tduds =
∫ T

t
e−k̄t(s−t) ds,

where k̄t = Et(k(u)) does not depend on u ≥ t by our stationarity assumption. This gives
that

c∗t
W∗t
≤ k̄T(t) (53)

where

k̄T(t) =
k̄t

1− e−k̄t(T−t)
.

This result we illustrate below for the data given in Table 1.
The comparison of interest is still between the optimal expected spending rate and the

expected real rate of return on the wealth portfolio. With an infinite horizon, the former is
the smaller of the two whenever

k(u) ≤ r(u) + ϕ′uλu for all u ≥ 0, (54)

where the optimal portfolio weights ϕt are given in (47), consistent with the above optimal
consumption.

With a little algebra, we can see that this inequality can be written as

− µc(u) ≤
1− ρ

γ− ρ
η(u)′η(u)− γ(1− ρ)

γ− ρ
σc(u)′η(u). (55)

We argue that for reasonable values of the quantities µc, σc and η, and for reasonable values
of the preference parameters δ, γ and ρ, this inequality holds.

Concerning the latter, we restrict attention to the following two situations: (i) γ > ρ and
ρ < 1, (ii) γ < ρ and ρ > 1. The former corresponds to the preference for early resolution of
the uncertainty (γ > ρ) and EIS > 1; the latter corresponds to a preference for late resolution
of uncertainty (γ < ρ) and EIS < 1. Both these sets correspond to plausible values of the
parameters, and were also found to explain empirical puzzles well (e.g., Aase (2016a)).

Consider (i): Then the first term on the right-hand side of (55) is positive, and
the second is negative, provided σc(t)′η(t) > 0. Since the consumption growth rate
µc can safely be thought of as strictly positive, the inequality will certainly hold pro-
vided η(u)′η(u) ≥ γσc(u)′η(u) for all u. Just to illustrate numerically, using the data in
Table 1, the left-hand side of the latter inequality is about 0.14, and the right-hand side is
γκc,η · 0.01125. Here κc,η is the correlation coefficient between the consumption growth rate
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and the market price of risk, and thus −1 ≤ κc,η ≤ 1. Suppose γ = 2. Then the inequality
is 0.14 ≥ κc,η · 0.0225, so the inequality holds with a very good margin.

Similarly to case (ii), the signs of the coefficients on the right-hand side of (55) are
again the same as just considered, and the comparison is similar, except that the difference
between the optimal expected spending rate and the expected rate of return is now larger,
since γ has decreased.

The application of the results of this section to the data in Table 1 is by and large
similar to the illustrations given in Section 3.4, since the data, like the data in Table 1, are
based on estimates, assuming stationarity (or some kind of ergodicity), and are therefore
estimates of the expected value k̄t. However, the margin between the optimal extraction
rate and the expected rate of return may have changed, depending upon the stochastic
structure of rt and ηt.

Unit EIS: From (51) it follows that when ρ = 1, then k(t) = δ for all t, a constant. Here
the inequality (55) is reduced to µc(t) ≥ 0, or

rt + ηtσW(t) ≥ δ, for all t.

Since σtηt = λt and σW(t) = ϕ′tσt, this can be written as

rt ≥ δ− λ′t ϕt, for all t (56)

Since λ′t ϕt ≥ 0 for all t, this requirement constrains the impatience rate δ from being too
large.13

The Optimal Portfolio Selection Rule ϕ(t)

We can find the an expression for the portfolio weights ϕt when the investment
opportunity set is stochastic. Although it may not be a simple task to interpret this
formula, it will give some additional insights, and its derivation also addresses a problem
of independent interest. Towards this end write Equation (49) as

W∗t = c∗t GT
t ,

where

GT
t = Et

[ ∫ T

t

(
e
∫ s

t (µc(v)−r(v)−η′vσc(v))dv
)

ds
]
. (57)

When ρ = 1 we notice that GT
t is deterministic, in accordance with the discrete time model,

but recall that this is strictly speaking not an allowed value for ρ in our treatment.
The function GT

t is seen to be Ft-measurable by definition, and by Itô’s representation
theorem there exists a process gT(t, u) with u ≤ t such that

GT
t = E(GT

t ) +
∫ t

0
gT(t, u)dBu.

By the Clark–Ocone formula we know that

gT(t, u) = Eu[Du(GT
t )],

where Du(GT
t ) is the Malliavin derivative of GT

t at u ≤ t.
From the stochastic differential equation for the optimal wealth given in (12) we then

obtain by the product rule and diffusion invariance that

ϕt =
1− ρ

ρ(1− γ)
(σtσ

′
t)
−1λt −

γ− ρ

ρ(1− γ)
(σtσ

′
t)
−1σtσW

+ (σtσ
′
t)
−1σtEt[Dt(GT

t )]/GT
t . (58)
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Using that ϕ′tσt = σW , this equation can be written more compactly as

ϕt =
1
γ
(σtσ

′
t)
−1λt +

ρ(1− γ)

γ(1− ρ)
(σtσ

′
t)
−1σtEt[Dt(GT

t )]/GT
t . (59)

The expression for the optimal portfolio has again two terms, where the first is equal to the
optimal portfolio for a constant investment opportunity set, except that now σt and λt are
allowed to be stochastic. The second term is forward-looking, and depends upon both the
horizon T and the impatience rate δ. This term is can be interpreted as a hedge against the
unanticipated changes in the variables in the investment opportunity set.

The premise for interpreting (59) as a formula for ϕt rests on the concept of a solution
to the basic backwards stochastic differential Equation (38). This gives the pair (Vt, Zt), and
consequently the volatility of utility σV(t) = Zt/Vt (see Section 4.5 below).

Alternatively, since σV(t) = (ϕ′tσt − η)/(1− γ), (59) may also be considered as an
equation in ϕ.

The random term Et[Dt(GT
t )]/GT

t can again be connected to the parameters and the
primitives of the model via the Malliavin derivative of GT

t . Using the rules of Malliavin
calculus, involving the chain rule and the product rule, we have the following.

gT(t, u) = Eu[Du(GT
t )] = Et

[ ∫ T

t

(
e
∫ s

t (µc(v)−r(v)−η′vσc(v))dv

∫ s

t

1− ρ

ρ

[
Du(rv) +

ρ− γ

ρ
(Du(η

′
v)σV(v)) + η′vDu(σV(v))+

1
2

γ(γ− ρ)

ρ
(Du(σ

′
V(v))σV(v) + σ′V(v)Du(σV(v))+

1
2ρ

(Du(η
′
v)ηv + η′vDu(ηv))

]
dv
)

ds
]
. (60)

The Malliavin derivatives Du(rv), Du(ηv) and Du(σV(v)) for u ≤ t can, as explained, be
further broken down by specifying the types of stochastics for r η, σc(t) and σW(t).

When γ = ρ we do get the analogous formula for expected utility given in Section 3.7,
so unlike the formula (47), the expression (59) reduces to the standard formula when γ = ρ.

With an infinite horizon, the extraction rate is smaller than the real rate of return when
the inequality kt ≤ rt + ϕ′tλt holds, which is equivalent to

kt ≤ rt +
1
γ

λ′t(σtσ
′
t)
−1λt +

ρ(1− γ)

γ(1− ρ)

1
G∞

t
g∞(t, t)′ηt, (61)

assuming that σt is invertible. This inequality holds for all t if and only if

rt

γ
≥ δ

γ
− 1

γ
λ′t(σtσ

′
t)
−1λt

(1 + ρ

2ρ

)
− ρ(1− γ)

γ(1− ρ)

1
G∞

t
g∞(t, t)′ηt. (62)

We then have the following result:

Proposition 4. With a stochastic investment opportunity set and recursive utility, provided the in-

equality | ρ(1−γ)
γ(1−ρ)

1
G∞

t
g∞(t, t)′ηt| < 1

γ λ′t(σtσ
′
t)
−1λt

(
1+ρ
2ρ

)
holds, the optimal extraction rate is strictly

smaller than the real rate of return on the fund, unless the impatience rate δ is unreasonably large.

Proof. From the inequality (20) we notice that the second and third terms on the right-hand
side add up to something negative under the condition of the proposition. Thus, if rt ≥ δ,
the inequality then holds, and the conclusion follows.

How reasonable is the assumption of the proposition in practice? Unless the inequality
holds, the investment policy more or less prescribes short-selling most of the risky assets



J. Risk Financial Manag. 2021, 14, 425 23 of 35

in the portfolio, which is not what fund managers do when considering a long-term
perspective for the types of funds that we are discussing here.

We round off the treatment of this model with recursive utility by showing some
numerical illustrations from the data in Table 1.

4.4. Numerical Illustrations

We now illustrate the above with numerical examples based on the data in Table 1.
First we consider the situation where the agent has a preference for early resolution of
uncertainty γ > ρ, and the EIS = 1/ρ > 1. First we assume that the agent holds the
market portfolio, and find the preference parameters consistent with the Formula (47)
and the other expressions for the consumption growth rate and consumption volatility
given above, consistent with this. Here this means that ϕt = 1, and this is consistent with
γ = 1.07, ρ = 0.95. Additionally, we set δ = 0.04. The optimal expected extraction rate is
then k̄0 = 0.01. The expected rate of return on the wealth portfolio is 0.07. Furthermore, σc
is smaller than σW , where σW = 0.16. The time horizon T = 300 years.

This is illustrated in Figure 5. We notice that the difference between the optimal
spending rate and the real rate of return is large. If the impatience rate is lowered, so is the
spending rate. For example, the value of k̄0 becomes negative when δ = 0.01, but with a
finite horizon the actual spending rate is of course strictly positive for all values of t ≤ T.

Figure 5. Optimal spending rate vs. expected return; γ > ρ.

By increasing the relative risk aversion, ceteris paribus, the expected real rate of return
decreases and the optimal expected spending rate increases. By increasing the parameter ρ,
ceteris paribus, the optimal expected spending rate increases and the expected real rate
of return decreases (when γ > 1). By increasing the impatience rate δ, ceteris paribus, the
optimal expected spending rate increases, and the expected return is unaffected.

Next we consider the situation where the agent has a preference for late resolution of
uncertainty γ < ρ, and the EIS = 1/ρ < 1. Suppose γ = 0.95, ρ = 1.02 and δ = 0.03.

The upper horizontal line in Figure 6 is the expected real rate of return er(γ, ρ);
the lower horizontal line is the optimal expected spending rate k̄0 corresponding to the
perpetual case; and the curve corresponds to optimal spending with a finite horizon of
300 years.
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Figure 6. Optimal spending rate vs. expected return; γ < ρ.

Here k̄0 = 0.01. The expected rate of return on the wealth portfolio is 0.049, following
from an optimal portfolio strategy of ϕ = 0.108. Additionally, σW = 0.11, strictly larger
than σc.

By increasing the relative risk aversion (when ρ > 1), ceteris paribus, the expected real
rate of return increases, and the optimal expected spending rate decreases. By increasing
the parameter ρ, ceteris paribus, the optimal expected spending rate increases and the
expected real return also increases. By increasing the impatience rate δ, ceteris paribus,
the optimal expected spending rate increases, and the expected return is again unaffected
(see Equation (51) and the inequality in (54)).

For reasonable market quantities and plausible sets of preference parameters, the main
conclusion of the paper holds with general recursive utility: the optimal spending rate is
significantly smaller than the expected rate of return.

When the investment opportunity set It is deterministic and preferences are repre-
sented by recursive utility, this conclusion can be given with the same kind of precision
as for expected utility. This is treated in Section 4.6 below. Next a digression on optimal
portfolio selection.

4.5. The Basic Backward Stochastic Differential Equation (Bsde)

Returning to the BSDE given in Equation (38), suppose we have a method to solve
this equation for the optimal consumption c∗t .14 Then we can find closed-form solutions for
both the optimal consumption to wealth ratio and the optimal portfolio rule in the general
case with a stochastic investment opportunity set.

This problem is addressed in Schroder and Skiadas (1999). They considered the pa-
rameterization of an ordinary equivalent version of recursive utility. This parameterization
was different from the one we used here, so it cannot be directly compared to our version,
except, perhaps, for the most general case. The problem of solving the BSDE was addressed,
which determined jointly Vt and Zt. By doing so, an auxiliary process Jt was introduced for
Vt such that Vt = g(Jt, c∗t ) for some given function g. As in our approach, the consumption
growth rates µc(t) and σc(t) were expressed by the parameters of the problem and by the
two processes Zt and Vt—in our case by σV(t), or equivalently, by Zt and Jt. In particular,
they found that

σc(t) =
1
γ

(
ηt +

ρ− γ

1− ρ

Zt

Jt

)
expressed in our parameter version. In order to demonstrate consistency between this
method and our approach, let us equate this volatility with our corresponding expression
for σc(t) given in (42), which is

σc(t) =
1
ρ

(
ηt + (ρ− γ)σV(t)

)
,
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where σV is given in (46) as

σV(t) =
1

1− γ

(
ϕ′tσt − ηt

)
.

This gives an equation from which we can find the optimal portfolio weights ϕt, and the
solution is

ϕt =
1
γ
(σtσ

′
t)
−1λt + (1 +

1
γ

ρ− γ

1− ρ
)σ−1

t
Zt

Jt
. (63)

This is the same expression for ϕt that appears in Theorem 4 of Schroder and Skiadas (1999).
There is now a BSDE in (J, Z) that can be addressed by standard methods. In the

paper the authors used a method that requires a Markovian structure, which leads to
the introduction of a state variable Y that takes care of the stochastics of the investment
opportunity set. With this structure in place, the authors went on to develop a partial
differential equation which, when solved, determines the pair (Zt, Jt), where JT = 0.

Furthermore, the optimal consumption to wealth ratio was shown to be

c∗t
Wt

=
1

1− ρ

(1− γ

1− ρ

) 1−ρ
ρ 1

Jt
,

which is smaller than the expected rate of return whenever

1
1− ρ

(1− γ

1− ρ

) 1−ρ
ρ 1

Jt
≤ ϕ′tλt + rt 0 ≤ t ≤ τ,

for some τ < T. In order to demonstrate when this inequality holds, we need closed-form
expressions for Jt and Zt, which are not available currently (to our knowledge).

With our expression for the volatility of utility σV(t), once we have the pair (Vt, Zt),
the equation Zt/Vt =

1
1−γ

(
ϕ′tσt − ηt

)
gives an equation from which the optimal portfolio

rule ϕt can be found.

4.6. Recursive Utility: A Deterministic Investment Opportunity Set

In this section we make the same assumptions as in Section 3, except that we now con-
sider recursive utility. In this situation we assume a deterministic investment opportunity
set, in which case σc(t) = σW(t) for all t, and moreover, these are assumed constant in t.

Based on the above results we first find the optimal extraction rate corresponding
to the constant k in Section 3. Optimally, this rate will be a constant here. It is a routine
matter to verify that when σc = σW , it follows that the volatility of utility σV = σc as well.
Furthermore, the optimal fractions in the risky assets are then the same as in the expected
utility model and given by

ϕ(t) =
1
γ
(σσ′)−1λ, (64)

and the optimal consumption satisfies the usual dynamics with optimal expected growth rate

µc =
1
ρ
(r− δ) +

1
2
(1 +

1
ρ
)

1
γ

η′η, (65)

and volatility

σc =
1
γ

η. (66)

Paralleling the analysis for expected utility in Section 3.1, or from the treatment of
recursive utility in the last section, we can deduce directly from (48) and the above special
results that the optimal extraction rate k reduces to the following constant:15

k =
δ

ρ
− 1− ρ

ρ

(
r +

λ′(σσ′)−1λ

2γ

)
, (67)
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when T = ∞. This is also consistent with the more general theory outlined above, under
the special assumptions of this section, where the instantaneous correlation rate κc,W is set
equal to 1. From this expression, it follows that the expected rate of return is larger than or
equal to the extraction rate whenever

r
ρ
≥ δ

ρ
− 1 + ρ

2ργ
λ′(σσ′)−1λ. (68)

Since the second term on the right-hand side is negative, this inequality remains true for
all reasonable values of the parameters, just as in the case of expected utility. Under the
assumptions of this section, we have the following result:

Proposition 5. With recursive utility, assuming a deterministic investment opportunity set,
the optimal extraction rate k is a constant and depends on the return from the fund only via the
certainty equivalent rate of return. It is given by

k =
δ

ρ
+
(
1− 1

ρ

)(
r +

1
2

γϕ′(σσ′)ϕ
)
. (69)

The expected real rate of return on the fund is larger than or equal to the optimal extraction rate
if and only if the inequality (68) holds. For any reasonable set of parameters of this problem, this
inequality is true.

Proof. The fact that the term λ′(σσ′)−1λ/γ equals γϕ′(σσ′)ϕ follows as in the proof of
Proposition 1, since the optimal portfolio rule ϕ is given by the expression in (64) in this
model as well. Again, 1

2 γϕ′(σσ′)ϕ is the certainty equivalent to the stochastic part of the
rate of return of the fund. The rest of the argument follows as in the proof of Proposition 1.
The second assessment of the proposition was explained above.

Again, the logic of extracting the expected real rate of return rests on an implicit
assumption that the agent is risk neutral. In the above derivation, on the other hand,
the agent is strictly risk-averse with relative risk aversion γ > 0, so this would again lead
to the same problems as explained in Section 3.4 for EU.

We notice from the representation of k given in (69) that the difference from the
corresponding result with expected utility is that the “weight” factor 1/γ is replaced by
1/ρ, where ρ is the marginal utility flexibility parameter, the reciprocal of the EIS parameter.
This has several consequences, to be discussed below.

Unit EIS: When ρ = 1 the optimal spending rate is seen to be k = δ, and the
inequality (68) is reduced to r ≥ δ − λ′ϕ. This is the same requirement as for general
recursive utility, see (56)—except that here all the parameters are constants. This criterion
is identical to (19) for expected utility when γ = ρ = 1. Since λ′ϕ ≥ 0 in this model,
for reasonable values of the parameter δ this inequality remainss true.

In Figure 7 we illustrate how k varies with ρ. The increasing curve is k(ρ; γ, δ) as
a function of ρ when γ = 2.5 and δ = 0.02, the lowest horizontal line is the certainty
equivalent ce(γ) and the upper line is the expected return er(γ) for these values of the
relative risk aversion (both these are constant as functions of ρ). When ρ increases, the
extraction rate is seen to increase to the ce(γ) as long as δ ≤ ce(γ), and decrease to ce(γ)
when δ > ce(γ).
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Figure 7. k as a function of ρ.

The extraction rate is a decreasing function of γ for given ρ and δ provided ρ > 1
for this model, just as we found for general recursive utility in the last section. While the
expected rate of return is here constant as a function of ρ, for general recursive utility we
found that this is an increasing function of ρ in this setting, for reasonable values of ρ.

As a function of δ, the extraction rate is again a straight line that crosses the certainty
equivalent at δ = ce(γ).

Let us illustrate our results with a numerical example. Let γ = 2.0, ρ = 0.95 and
δ = 0.02. The optimal extraction rate is then k = 0.019. The expected rate of return on the
wealth portfolio is 0.078 and the certainty equivalent rate of return is 0.043, following from
an optimal portfolio strategy of ϕ = 1.13. Furthermore, σc = σW = 0.19. This example is
illustrated in the Figure 8 below.

Figure 8. Recursive utility. Drawdown rate vs. return; γ > ρ.

The optimal spending rate k(γ, ρ, δ) increases as γ increases, for given values of ρ < 1
and δ ≥ 0, consistent with general recursive utility of the last section. However, the
expected rate of return here decreases with γ regardless of the value of ρ, whereas this
depends on whether ρ < 1, or ρ > 1 for general recursive utility.

We now relate this model to the examples in Section 3.4. First we notice that our
earlier results for γ = 1 are translated to ρ = 1 in the present model. Thus, in the bigger
picture, it is really the condition that EIS = 1 that yields the optimal extraction rate k = δ.
Accordingly, this result is not a “risk aversion-type result”, but rather a result where
consumption substitution plays the main role.

Consider the following example. Suppose ρ = 1/EIS = 1, γ = 2.5 and δ = 0.02.
This gives the optimal extraction rate k = 0.02. The expected rate of return on the wealth
portfolio is now 0.065 and the certainty equivalent rate of return is 0.037. Furthermore,
σc = 0.15, µc = 0.02 and ϕ = 0.95. These results indicate a less risky strategy than in the
corresponding example of Section 3.4 where γ = 1. Part of the explanation is that the agent
is now more risk-averse. Still, the optimal extraction rates are the same and equal to δ.
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The literature does not give clear answers regarding the EIS parameter. In calibrations
to market data, it has been observed that EIS is typically larger than one, and ρ < γ
and ρ < 1 (see, e.g., Aase (2016a, 2016b) or Bansal and Yaron (2004)), which indicates a
preference for early resolution of uncertainty (ρ < γ), or ρ > 1 and γ < ρ. When γ < ρ
the the agent has preference for late resolution of uncertainty, which is not irrational, but it
typically calibrates to the data when also γ < 1, which seems a bit too low for the relative
risk aversion. Guvenen (2009) seemed to think that EIS < 1 is the most natural choice,
although this is not a result, but an assumption.16

To take an example when ρ > 1 and γ < ρ, assume that γ = 0.9, ρ = 1.03 and δ = 0.02.
Then the optimal extraction rate is k = 0.022. The expected rate of return on the wealth
portfolio is 0.17 and the certainty equivalent rate of return is 0.088 with an optimal portfolio
strategy of ϕ = 2.65. Here σc = 0.42, µc = 0.13. Now the agent takes on a much more
risky portfolio strategy due to the rather low relative risk aversion. This gives a rather
large discrepancy between the expected real rate of return from the fund and the optimal
extraction rate (see Figure 9).

Figure 9. Recursive utility. Drawdown rate vs. return; γ < ρ.

The numerical results in this example show a bigger discrepancy between the optimal
spending rate and the expected rate of return than for the corresponding example with
general recursive utility in Section 4.4, see Figure 6.

When γ decreases in this example (ρ > 1), ceteris paribus, the extraction rate increases,
which is also consistent with the result for general recursive utility. This seems natural,
since then the agent becomes less risk-averse. For expected utility, however, this does not
hold; see Figure 4.

As we noticed for the model with expected utility, the spending policy advocated
by Dybvik and Qin (2019) was not consistent with the optimal EU-spending rule. Is that
still the case here? As we have one more parameter in the preferences, our present model
is more flexible. With γ > ρ we do not find a match, but for parameters consistent with
a preference for late resolution of uncertainty, we can find consistency between the two
methods for certain choices of the parameters. An example is γ = 1/2, ρ = 1 and δ = r.
However, this is, of course, rather special.

4.7. The Asymptotic Behavior of a Sovereign Wealth Fund: Recursive Utility

When the optimal spending rate k is a constant, as in the model of the last section, the
wealth Wt is a geometric Brownian motion as in Section 3.5 where we considered expected
utility. The wealth dynamics are

Wt = W0e
∫ t

0 [µW− 1
2 ϕ′(σσ′)ϕ]ds+

∫ t
0 ϕ′σdBs , (70)
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where

µW =

{
0, if k = r + γϕ′(σσ′)ϕ;
1
2 (1 +

1
ρ )γϕ′(σσ′)ϕ + 1

ρ (r− δ), if k is optimal.
(71)

In other words, when the spending rate k is equal to the expected rate of return, then
µW = 0 and Wt is a martingale. When k is optimal, here given in Equation (69), then either
Wt is a submartingale or a supermartingale depending on the size of the impatience rate δ:

If µW > 0 the process Wt is a submartingale if δ < r + 1
2 (1 + ρ)γϕ′(σσ′)ϕ, and if

µW < 0, the wealth process is a supermartingale provided δ > r + 1
2 (1 + ρ)γϕ′(σσ′)ϕ.

Next consider the quantity

µW −
σ′WσW

2
=

{
− 1

2 ϕ′(σσ′)ϕ, if k = r + γϕ′(σσ′)ϕ;
1
2 ((1 +

1
ρ )γ− 1)ϕ′(σσ′)ϕ + 1

ρ (r− δ), if k is optimal.
(72)

Again we can conclude about the asymptotic behavior for a geometric Brownian
motion from the sign of µW − 1

2 σ′WσW . Since here σ′WσW = ϕ′(σσ′)ϕ, by the law of the
iterated logarithm for Brownian motion, the following results hold:

If µW − (1/2)ϕ′(σσ′)ϕ < 0, then Wt → 0 with prob. 1 as t→ ∞; (73)

If µW − (1/2)ϕ′(σσ′)ϕ > 0, then Wt → ∞ with prob. 1 as t→ ∞. (74)

Thus, when µW = 0, where the spending rate is the expected rate of return on the fund, the
martingale property gives that E(Wt) = W0 for all t ≥ 0, but despite of this, by the above
result eventually the wealth converges to zero with probability 1, and with a good margin.

Moreover, using (71) when k is optimal and given in (69), we see that the situation
in (73) happens when δ > r + 1

2 ((ρ + 1)γ− ρ)ϕ′(σσ′)ϕ. The other case in (74) materializes
when δ < r + 1

2 ((ρ + 1)γ− ρ)ϕ′(σσ′)ϕ.
As we have argued above, it is reasonable that δ is smaller than or equal to the certainty

equivalent (ce) rate of return, which holds for γ = 1. For (74) to be true, δ can be larger
than the ce if γ > 1, but must be smaller than the ce when γ < 1.

Hence, the prospects for long-term sustainable management of a sovereign wealth
fund using the optimal spending rate k as outlined above are promising.

Finally, if δ = r + 1
2 ((ρ + 1)γ− ρ)ϕ′(σσ′)ϕ when k is optimal, then

Wt = W0e
∫ t

0 ϕ′σdBs ,

in which case
E(Wt) = W0e

1
2
∫ t

0 ϕ′(σσ′)ϕds → ∞ as t→ ∞. (75)

We summarize as follows for recursive utility:

Theorem 2.
(i) With the optimal spending rate k, the fund value Wt goes to infinity as t→ ∞, as long as

the impatience rate δ satisfies

δ ≤ r +
1
2
((ρ + 1)γ− ρ)ϕ′(σσ′)ϕ.

(ii) If the spending rate is set to be equal to the expected rate of the return on the fund, then the
fund value goes to 0 with probability 1 as time goes to infinity.

We also have the following corollary with recursive utility:
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Corollary 2. With the optimal spending rate k, we have the following:
(i) Wt → ∞ almost surely as t→ ∞ provided

δ < r +
1
2
((ρ + 1)γ− ρ)ϕ′(σσ′)ϕ,

in which case Wt is also a submartingale.
(ii) Wt → 0 almost surely as t→ ∞ provided

δ > r +
1
2
((ρ + 1)γ− ρ)ϕ′(σσ′)ϕ,

in which case Wt is also a supermartingale.

As with expected utility, we can also say something about the expected time till the
wealth process Wt reaches a certain value. This is of course a topic of interest in the present
model as well, and is what we consider in the next section.

First we take closer look at a special sovereign fund, the Norwegian SWF Government
Pension Fund Global, which in daily language is referred to as “the oil fund”.

4.8. The Norwegian SWF Government Fund Global

For this sovereign fund the Norwegian Ministry of Finance set down a commission
in 2016 to consider the asset allocation problem. Table 2 below reflects the commission’s
market view on equity and risky bonds.17

Table 2. The commission’s market view, Norwegian Ministry of Finance (2016).

Expectation Standard Dev. Covariance

Equity 4.72% 16.00% 0.00384
Bonds 0.68% 6.00%
Equity premium 4.04% 14.67%

The commission recommends an equity share of ϕ = 70%. Given a riskless rate of
0.68% and an equity premium with expectation 4.04% and standard deviation 14.67%, this
translates into an implicit risk aversion of γ = 2.68. The expected return and standard
deviation of the fund are then 3.75% and 11.56%, respectively.

The certainty equivalent fund return is ce = 1.87%, which is less than half the expected
rate of return on the fund. Observe that the certainty equivalent fund return is substantially
less than the current fiscal rule, which is 3%.

Suppose for the moment that the utility impatience rate δ = 1.87%. In this case, where
the impatience rate and the certainty equivalent fund returns are equal, the optimal spending
rate k = 1.87%, regardless of the elasticity of intertemporal substitution (EIS = 1/ρ).

Now, suppose instead that the utility impatience rate is δ = 1.5%. In fact, if the EIS
is sufficiently large, the optimal consumption rate k might become zero or even negative,
which clearly must be ruled out in the infinite horizon case but which still makes sense
with a finite horizon. Say, for instance, that the fixed horizon is T = 100 years from now,
and that EIS = 5. Then it follows that the optimal spending rate k ≈ 0% to three decimal
places (k = 0.00027). Does this mean no spending at all? Clearly not. The optimal spending
the first year is 0.0102 of the fund’s value, the optimal spending in year 2 is 0.0103 and the
optimal spending in year 50 is 0.0201. In year 90 it is 0.1001 of the fund’s value, and so
forth (recall Equation (10)).

In Figure 10 this situation is illustrated, where the upper horizontal line is the real
expected rate of return, the next line is the certainty equivalent rate of return, the curve is
the optimal spending rate with T = 100 as the horizon and the horizontal line close to the
origin is the value k = 0.00027.
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Figure 10. Spending rate when k is zero; γ > ρ, 1/ρ = 5.

If we increase the EIS further, the value of k becomes negative. Still, the optimal
spending with a finite horizon is strictly positive, and increasing as the horizon comes
closer, as in Figure 10.

In this situation we can calculate the conditional expected time till the fund leaves
a given interval at a specified level for the first time, treated in Section 3.6. Consider the
interval (a, b) where a = (1/10)W0 and b = 2W0. In this scenario and with the optimal
spending rate, the parameters are µW = 0.02315, σW = 0.1156 and c = −2.46 (the constant).
The first exit probabilities are p+(W0, J) = 0.9972 and p−(W0, J) = 0.0028, so it is far more
likely that the first exit takes place at the upper level b than at the lower level a. From
the results of Section 3.4 we obtain that EW0{τ∗(J)|X(τ∗(J)) = b} = 41.35 years, and
EW0{τ∗(J)|X(τ∗(J)) = a} = 121.42 years. Here EW0{τ∗(J)} = 41.58 years.

In the situation where the spending rate is the expected rate of return, µW = 0 and c = 1;
σW = 0.1156 remains the same. The first exit probabilities have changed to p+(W0, J) =
0.86 and p−(W0, J) = 0.14, so it is still more likely that the first exit takes place at the
upper level b than at the lower level a, but less so than in the optimal case. Now we get
EW0{τ∗(J)|X(τ∗(J)) = b} = 74 years, and EW0{τ∗(J)|X(τ∗(J)) = a} = 184 years. Here
EW0{τ∗(J)} = 132 years, yet we know that in this situation Wt will eventually end up in
zero, although it may take a long time. In the former case with optimal extraction in place,
this does not ever happen with probability 1.

There are several important lessons we can draw from this example. First, for reason-
able parameter values, it is optimal to consume considerably less than the expected rate of
return of the fund. Second, if the utility impatience rate and the certainty equivalent fund
return are equal, the optimal consumption rate equals the two regardless of EIS. Third, if
the utility impatience rate is less than the certainty equivalent fund return, the latter is an
upper bound for the optimal consumption rate.

5. Additional Consumption in Society

The analysis in the preceding sections took place under the assumption that the fund
can be considered in isolation from consumption in the rest of society.

For a fund established by society for the benefits of its inhabitants, it may be of interest to
investigate whether the above analysis is general enough, since the ownership and purpose of
the fund may be more complex. If the fund is owned by a state, the rest of the wealth in society
may matter. Typically, for a sovereign wealth fund owned by the state, the government could
perhaps be inclined to compare the extraction from the fund with consumption in society that
originates from other more common sources. This we now address.

Let us assume that there is a consumption stream in society that does not originate
from the fund, denoted cS

t , and the consumption that originates from the fund is denoted
cF

t , so that total consumption ct = cF
t + cS

t at any time t. The objective is to maximize utility
U(c) subject to the relevant budget constraint. Here we assume U(c) = E(

∫ T
0 u(ct, t)dt)

where u(x, t) is power utility of the kind used in Sections 2 and 3 of the paper.
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In order to discuss this problem, let us return to Equation (3) for the market value of the
optimal wealth. This equation can be expressed as follows under our present assumptions.

Wt =
1

πt
Et

{ ∫ T

t
πscF

s ds
}
+

1
pt

Et

{ ∫ T

t
pscS

s ds
}

. (76)

Here Wt is the total wealth in society at time t and pt is the state price deflator related
to the consumption cS that stems from other sources than the fund, so we can write
Wt = WF

t + WS
t for all t, where WF

t is the optimal wealth from the fund, and where WS
t is

the wealth stemming from other sources than the fund, at any time t ∈ [0, T].
The central planner’s problem is then to solve the following.

supcU(c) subject to E
{ ∫ T

0
(πtcF

t + ptcS
t )dt

}
≤ w,

where w is the present value of wealth in the society.
The Lagrangian of this problem is

L(cF, cS; µ) = E
{ ∫ T

0
u(cF

t + cS
t , t)dt− µ

( ∫ T

0
(πtcF

t + ptcS
t )dt− w

)
dt
}

where µ is the Lagrange multiplier. Using directional derivatives, the first-order condi-
tions are

(cF
t + cS

t )
−γe−δt = µπt, and (cF

t + cS
t )
−γe−δt = µpt, ∀t ∈ [0, T]

where γ is the relative risk aversion and δ is the impatience rate. As a direct consequence
of this, πt = pt for all t, so the two state price deflators must be identical (a.s.).

In the same vein we consider the two wealths. Here we make the bold assumption
that all assets in society are marketed, so that, for example, we can consider labor as a
shadow asset contained in WS. We then get

dWt = dWF
t + dWS

t =
(
WF

t (ϕF
t λF

t + rt)− cF
t
)
dt + WF

t ϕF
t σFdBt

+
(
WS

t (ϕS
t λS

t + rt)− cS
t
)
dt + WS

t ϕS
t σSdBt.

The first-order conditions of optimal portfolio selection, using either dynamic programming
or otherwise, lead in the same manner to the following.

ϕF
t =

1
γ
(σFσ′F)−1λF for all t,

and
ϕS

t =
1
γ
(σSσ′S)−1λS for all t.

The conclusion of this is that an endowment fund, whether owned by the state, by a
university or otherwise, should be managed optimally as a fund, separated from the rest of
the consumption problem in society. This separation principle is also rather intuitive.

A Real Case

Let us discuss a concrete case, and consider again the Norwegian Government Pension
Fund Global, formerly simply the Norwegian Oil Fund, from the perspective of the last
section. The idea of the origins of this fund is that also future generations are supposed
to benefit from the oil exploration of the present generation, not only those who live in
Norway at the present.
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Consider, for example, a situation where the pension liabilities increase in the future
for some limited amount of time, and then returns to a more normal state after this
period. If the fund is supposed to take care of this particular problem, one can simply use
actuarial methods to calculate the relevant extraction rates in the future. This problem
is not connected, or at the best, just vaguely related to the problem analyzed above. In
principal, no utility function is needed for the actuarial calculations involved. Thus we
must make assumptions about both ownership of the fund and the intended purpose of
the fund.

Despite the change in the name of the former Norwegian Oil Fund, the fund is still
normally referred to by its former name (or simply “the oil fund”). The conclusion from
the last section is then to use the separation principle and treat this fund in isolation; an
optimal extraction policy must be consistent with the portfolio selection strategy used.
Since this fund is diversifying its assets through acquiring various government bonds and
real estate, it is clear that this implies risk aversion on the investment side. Consistently
with this, the extraction rate should also take into account risk aversion, consumption
substitution and impatience, as explained in this paper.

This is contrary to the current state of affairs of the Norwegian Government Pension
Fund Global, where the extraction from this fund is determined by a mandate from
Parliament (Stortinget) to be equal to the expected real return on the fund. As we have
shown, this is not the sustainable spending rate and will deplete the fund in the future
with probability one.

6. Conclusions

We have derived concrete formulas for optimal extraction from an endowment fund
consistent with risk aversion, and demonstrated that it can be written as a convex combina-
tion of the impatience rate and the certainty equivalent rate of return on the fund, in the
most basic form of the models considered.

As a consequence, the optimal extraction rate is strictly smaller than the expected
rate of return, provided that the impatience rate is reasonable. The difference is far from
negligible, and amounts to several percentage points in most real situations.

The explanation has to do with the strategy at the portfolio selection stage: If the fund
is managed by diversification, this means that risk aversion, consumption substitution and
impatience are all essential in the optimal portfolio choice problem. Then, to be consistent,
the spending rate must also reflect all these three properties, which is what we have shown.

We have taken a security market as given, assumed to be in equilibrium, and in-
troduced a price taking agent into this market. In this setting we have reconsidered the
problem of optimal consumption and portfolio selection. In the context of an endowment
fund, the results from analyzing this more general problem can immediately be utilized
in order to determine an optimal spending rate. We have considered expected, additive
and separable utility, in which case risk aversion plays a prominent role together with
impatience; and recursive utility, in which case consumption substitution is separated from
risk aversion.

When the investment opportunity set is deterministic, there exist explicit and closed-
form solutions for optimal extraction, which we have rewritten in a form that is easy to
interpret. For a stochastic investment opportunity set, we have developed formulas in the
paper, which we claim to be original. First and foremost, these solutions are demonstrated
to be smaller than the expected real rate of return on the endowment fund, for plausible
values of the preference parameters and the other parameters of the problem. The difference
is significant in most cases.

If the extraction rate is the same as the expected return, this usually goes along
with agent risk neutrality at the level of extraction, and should then, to be consistent,
go along with risk neutrality at the level of optimal portfolio selection as well. However,
the consequence of such an investment strategy is rarely advocated by anyone responsible
for an endowment fund, whatever its purpose.
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We demonstrate that a popular and much advertised extraction policy, the expected
real rate, is not consistent with a sustainable spending rate, and will with probability one
eventually deplete any fund that is managed by diversification.
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Notes
1 The result in (11) can alternatively be derived by dynamic programming, assuming that the horizon is infinite at the outset.

A transversality condition must then be satisfied, which holds if k > 0 (see Merton (1971) for this approach).
2 It is really the Arrow–Pratt approximation of this quantity. In continuous-time models with Brownian-driven uncertainty, this

approximation is in fact exact.
3 Based on about 100 years of US-data, an estimate of the real short rate r is around 1 per cent, which is also the usual suggestion

for the impatience rate δ.
4 Tobin (1974) suggests, in the situation of university endowments, that δ is set equal to 0.
5 “Everything” here includes borrowing risk-free as much as possible. This problem has, of course, no mathematical solution

unless there is a borrowing constraint.
6 The data were adjusted from discrete-time to continuous-time compounding.
7 These quantities were “estimated” directly from the original data obtained from R. Mehra; we used an underlying assumption

about ergodicity, and estimates are denoted by σ̂M,c, etc.
8 This is the value that is recommended by an expert panel for the Norwegian Government Pension Fund Global.
9 This is analogous to the result that the price of a zero-cupon bond is a process of bounded variation in T, but an Itô-process in t.

10 With this method we do not need to go via the ordinally equivalent version with the corresponding A = 0.
11 In this formula, and otherwise throughout, a term such as (σtσ

′
c∗ (t)) is to be interpreted as the covariance rate between the

market for risky securities and the optimal consumption, and not as a mere multiplication of volatilities, which would imply an
instantaneous correlation coefficient of 1.

12 The relationship (47) cannot be put into an equation in ϕt through the use of (42) and (44), since these have already been
used once.

13 Notice that the criterion (56) is identical to the two corresponding criteria (19) and (35) for expected utility when γ = 1.
14 There is a fairly large amount of literature on this topic, which began in the early 1990s.
15 This formula was first derived by Svensson (1989) in his special model of recursive utility in continuous time; he restricted

attention to a deterministic investment opportunity set only.
16 When discussing whether EIS is larger or smaller than 1, many economists implicitly seem to be taking the standard expected

utility model as the “truth”, in which case EIS < 1, since γ > 1 is considered most reasonable (γ = 1/EIS for expected utility).
17 The report uses geometric returns. We translated this into expected continuously compounded arithmetic returns: Equity:

0.0472 = ln(1 + 0.035) + 0.5× (0.16)2; and Bonds: 0.0068 = ln(1 + 0.005) + 0.5× (0.06)2. The covariance reported in the table
stems from the calculation: 0.16× 0.06× 0.4 = 0.00384, where the intertemporal correlation coefficient is 0.4.
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