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Abstract: This paper investigates performance attribution measures as a basis for constraining port-
folio optimization. We employ optimizations that minimize conditional value-at-risk and investigate
two performance attributes, asset allocation (AA) and the selection effect (SE), as constraints on
asset weights. The test portfolio consists of stocks from the Dow Jones Industrial Average index.
Values for the performance attributes are established relative to two benchmarks, equi-weighted
and price-weighted portfolios of the same stocks. Performance of the optimized portfolios is judged
using comparisons of cumulative price and the risk-measures: maximum drawdown, Sharpe ratio,
Sortino—Satchell ratio and Rachev ratio. The results suggest that achieving SE performance thresholds
requires larger turnover values than that required for achieving comparable AA thresholds. The
results also suggest a positive role in price and risk-measure performance for the imposition of
constraints on AA and SE.
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1. Introduction

How well a portfolio performs is always the major concern for investors, and is
usually the major metric reflecting investor confidence in the portfolio’s management. In
common terms, a good portfolio delivers satisfactory return with low risk. Attribution
analysis provides measures for how well an portfolio is being managed. Paraphrasing from

jrfm14050201 Bacon (2008), performance attribution is a technique used to quantify the excess return

(relative to a benchmark) of a portfolio and explain that performance in terms of investment
strategy and market conditions. From a management perspective, attribution analysis has
been used to monitor performance, to identify early indications of underperformance, and
gain investor confidence by demonstrating a thorough understanding of the performance
drivers. As far as we are aware, performance attribution measures are currently used
exclusively as a diagnostic, in the sense that if today’s attribute values underperform, then
changes are implemented in the portfolio with the goal of improving tomorrow’s attribute
values. In this work, we investigate the imposition of performance attribute constraints to
guarantee that tomorrow’s portfolio achieves the required attribute values.

Following the fundamental work on performance attribution by Brinson and Fachler (1985)
and Brinson et al. (1986), we decompose excess return into two quantities that reflect in-
vestment strategy: asset allocation (AA), which measures the contribution of each asset
class in a portfolio to total performance of the portfolio, and the selection effect (SE), which
measures the impact of choice of assets within each class in the portfolio. As is apparent
from their definitions in the next section, AA and SE measure the differences between mean
performance of asset classes in a managed portfolio and those of a market benchmark,
and are therefore ‘blind’ to volatility effects, i.e., to tail-risk. Motivated by this and by the
work of Biglova and Rachev (2007) and Rachev et al. (2009), we investigate the impact
Attribution (CC BY) license (https.//  OT) portfolio optimization using AA and SE as additional constraints on asset weights as
creativecommons.org licenses /by / a method of combining performance and tail-risk control. We apply this methodology
10/). to a test portfolio of stocks comprising a major market index; specifically the Dow Jones
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Industrial Average. Optimization is performed by minimizing conditional value-at-risk
(CVaR) at a specified quantile level, a. For the required market benchmark we consider two
options, an equi-weighted portfolio and a price-weighted portfolio, comprised of the same
assets. Performance of the resulting optimal portfolios is measured in terms of cumulative
portfolio price and standard risk-measures.

Section 2 of the paper discusses performance attribution, the constrained CVaR portfo-
lio optimizations and the risk-measures employed to gauge their performance. Section 3
presents the results of the methodology applied to the test portfolio. Section 4 summarizes
our conclusions.

2. Description of the Approach

Consider a managed portfolio p comprised of N assets, consisting of M asset classes
with n; assetsin class i; i = 1,..., M, such that Zf\i 11; = N. Let b denote a benchmark
portfolio composed of Q assets comprising the same M asset classes, with g; assets in class
i;i=1,...,M, such that Ef\ﬁlqi = Q. Let the index pair, ij; i = 1,...,M; j=1,...,n;
identify portfolio asset j in class 7, with the analogous identification for benchmark assets.
Denote the daily closing price of an asset as S;;(t) and its corresponding log-return as
rij(t) = In(S;;(t)/Sij(t — 1)). For brevity, we will suppress the time variable for most of
(p) ()

the discussion in this section. Let w, i denote the weight of asset ij in portfolio p, and w; j

denote asset weight in the benchmark. We assume all weights are non-negative; that is, all
(b)
ij
represent the total weights of the assets in class i in the portfolio and benchmark respectively.
Note that for any portfolio fully invested in its component assets (which we assume is the
case in this study), Zf\il wi(p) = Zf\il wlgb) =1

The quantities AA and SE for asset class i are defined as follows (Biglova and Rachev 2007): !

portfolios considered take long-only positions. Let wl.(p ) = 2}11 wg’ ) and wfb) = 2;7;1 w

e (o) (R0, »
SEZ' — wz(b) (Rip) _ Rz(b)>’ (2)
where

o (p) () -

ni W 9 w.. M 4
RV =Y B[], RY =) B[], RO =YY alBlnl, 0

& () &~ 0 ==

j=1 wl j=1 wl i=1j=1

and E[-] denotes expected value. In (3), the ratio wl(jp )/ wi(p) represents the fractional weight
held by asset j in class 7 in portfolio p. (That is Z}i1 (wfjp )/ wl(p)) =1.) Thus Rl(p) (similarly

ngb)) represents an expected log-return for asset class i considered as a fully-invested
portfolio by itself. In contrast, R(?) represents the usual expected log-return for the entire

benchmark portfolio.2 From (3) we have R(®) = Zf\il wi(b)Rl(b). Similarly we have the usual
expected log-return for portfolio p,

M n;
R =3 3wl B[] @

M
_ (P) p(p)
= w; Ri .

The excess return, S = R(P) — R(?)

management. From (1) through (4),

, can be viewed as the value added by portfolio

M
S=) (AA;+SE;+1;) = AA+SE+],

i=1
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1
tively, the total asset allocation, total selection effect, and total interaction terms for portfolio
p. The contribution to the total value added to the excess return, S, from asset class i is AA;,
while SE; represents the contribution to S determined by the choice of assets within class i.
To understand these interpretations, consider first the sign of the value of AA; in (1).

where [; = (wl(p ) _ w§b)) (R(p ) _ Rl(b)) is an “interaction” term. AA, SE and I are, respec-

o If Rl(b) — R®) > 0, the expected return from asset class i in the benchmark is outper-

forming the total expected return for the benchmark. Therefore if wl(p ) wlgb) > 0, the
weight of asset class 7 in portfolio p is larger than in the benchmark, capitalizing further
(p) _ ,,®

on the better return from class i. Otherwise, if w;"” —w;’ < 0, the class i weighting
in portfolio p is hurting the potential performance of that class (as determined by
the benchmark).

o If Ri(b) — R®) < 0, the expected return from asset class i in the benchmark is under-

performing the total expected return for the benchmark. Therefore if wi(p) - wl(b) <0,

the weight of asset class i in portfolio p is smaller than in the benchmark, further

suppressing the poorer return from that class. Otherwise, if wfp - wl.(b) > 0, the class

i weighting in portfolio p is overweighting the poor performance of that class.

Thus, a positive sign for the value of AA; indicates a “correct” decision in the man-
agement of portfolio p relative to the benchmark while a negative sign indicates a “poor”
decision. The magnitude of AA; quantifies how good or poor the decision is.

Similarly, as we assume?® wl(b) >0;i=1,...,M, apositive sign for the value of SE;
in (2) indicates that the expected return from the choice of assets in class 7 in portfolio
p is outperforming that class in the benchmark, while a negative sign indicates that the
expected return from the choice of assets in class i in portfolio p is under-performing.

The interaction term, I;, captures the part of the excess return unexplained by asset

allocation and selection effect. Written as

AA; SE;

) (6)
)

it can be viewed as the product of the asset allocation and selection effect contributions of
class i to portfolio p compared to the weighted excess return of class 7 in the benchmark b.

Alternatively, written as
w?
I =|—-—1]SE @)
1 (b) 17
w

i

it can be interpreted as the product of the asset selection effect and the over- or under-
weighted part of asset class i. The relationship (7) between I; and SE; reveals a simple form
for the sum of the selection effect and interaction terms,

SE; := SE; + I, = w” (pr) - Rf”)). ®)

Equation (8) provides a way to incorporate a constraint on the sum of the selection
and interaction effects for class i; however, we will not consider such a combined constraint
in this study.

Portfolio optimizations that maximize return while minimizing risk (subject to ad-
ditional constraints) require specification of a proxy measure for risk. Common ex-
amples of risk proxy include: the variance of the portfolio (Markowitz 1952); value-
at-risk (VaR) (JP Morgan 1996); expected tail loss (ETL); conditional value-at-risk (CVaR)
(Rockafellar and Uryasev 2000);* and mean absolute-deviation (Konno and Yamazaki 1991).
Measures, such as VaR and CVaR, that focus on tail-risk became very popular as the
result of the need to understand exposure to loss under ‘extreme’ market events. (See
Gava et al. (2021) for a recent study demonstrating that consideration of tail risk can suc-
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cessfully reduce sharp losses in multi-asset portfolios). However VaR has undesirable
mathematical characteristics; except when the underlying random process is Gaussian,
VaR is not a coherent risk measure as it lacks the properties of subadditivity and convexity
(Artzner et al. 1999). As a risk measure, CVaR is coherent (Pflug 2000); its use as a standard
has grown to the point that the Basel III regulatory framework for banks requires it. We
therefore use CVaR as the risk measure for our portfolio optimizations.

The random return Y of a portfolio is expressed as realizations, y, of a profit(+) -
loss(—) function f(w, r) of the (column vectors of) asset weights w and returns r. Let p(r)
denote the probability density function determining the daily asset returns r. For any fixed
value of w, the cumulative distribution of the daily portfolio return is given by

P(w,Y <y) = F(w,y) = /ﬂw o P ©)

The value-at-risk is®
VaRy(w) = inf{y € R | F(w,y) > a}, (10)

where a € (0,1) is a prescribed tail risk probability; equivalently 1 — « is a prescribed
quantile level, typically having value of 1 — a = 0.95,0.99 or 0.995. Assuming F(w,y) is
continuous, conditional value-at-risk can be expressed as®

CVaR, (w) = 1

' dr. 11
a /f(w,f)ﬁ\/aRa(w)f(w r)p(r)dr (11)

Rockafellar and Uryasev (2000) show that the function”

RGwm) =7 [ (v flw,n) pr)ar 12

where (x)* = max(x,0), has the following properties: (1) for fixed w, v = VaR,(w)
minimizes Fy(w, v); (2) Fx(w, VaRy(w)) = CVaRy(w); and (3) Fx(w, ) is convex in 7y (and
convex with respect to (w, ) if f(w,r) is convex in w).

When evaluated for a portfolio consisting of a finite sample of asset returns, r(t),t = 1,
..., T, with f(w,r) = w'r, the discrete form of (12) results in the following minimiza-
tion problem,

T
rr11‘i7n CVaR,(w) = rgvugl{'y - ociT L (v— w/r(t))+ } (13)

The approach by Rockafellar and Uryasev proceeds by converting (13) to a linear
objective function by introducing the variable y; > v — w'r(t) > 0. This conversion is
particularly appropriate if all constraints are also linear, in which case the constrained
minimization problem can be solved by linear programming. As we will be dealing with
nonlinear constraints, we leave the objective function in the form (13) and solve using
nonlinear optimization.

We describe our approach for solving (13) with a general constraint here, and discuss
the specific constraints below. Consider optimization of (13) under the constraint ¢; (w) < 0.
If, for any day t, the feasible set to the constrained optimization is null, the constraint is
removed and replaced for that day by a quadratic penalty term in (13),

T
n}vinCVaRa(w) = rguliﬂy{'y - ociT 1(7 - w’y(i&))Jr +B ((cl(w))+)2}. (14)
S =

The coefficient B can be set by the user. If k constraints need to be removed, they are
replaced in (14) by the sum B Y5 ((c;(w)) ™).
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We consider four portfolio optimization problems, P’;, k=0,...,3, based upon con-
strained minimization of (13) or, in case of a null feasible set, (14):
P): (a) w§]P) >0, 5, wfj") = 1;and (b) TO < Cro
Pl (a) wfjp) >0, Y wfj") —1; (b) TO < Cro; and (c) a; < AA < by.
P2 (a) w§f> >0, ¥ wf].”) —1; (b) TO < Cro; and (d) a < SE < by.

Py (@) w) >0, oy =1;(0) TO < Cro; () a1 < AA < by;and (d) a < SE < by,

Here TO < Cyp is a turnover constraint,

To—1%i|w(”>(t)—w(”>(t_1)| <cC (15)

used as a proxy to control transaction costs. The ‘base case’ portfolio P considers no
performance attribute constraints and is therefore independent of the benchmark portfolio.
Optimization problems P} through P2, successively add further performance attribute
constraints to the long-only, fully invested, CVaR,-minimized base portfolio.

The constants a;, b; can be user-specified to meet particular goals. For example, the
constraint AA > 0 requires that, on average, the asset classes in the optimized portfolio p
equal-or-outperform those in the benchmark. A constraint SE; > 0 requires that the weights
of the portfolio assets in class i be adjusted to perform as well as, or better than, class i in
the benchmark. Since individual asset weights can be zero, this is equivalent to choice of
assets in the class. The constraint SE > 0 requires that this be true averaged over classes.

As pr) (t) involves the ratio wfjp ) (t)/ wfp ) (t), constraints involving SE; terms are nonlinear.

In contrast, constraints involving terms AA; and SE; are linear.® Our implementation is
done in MatLab using the constrained, nonlinear multivariate function fmincon() and the
solver sqp().

Performance of these four optimized portfolios, relative to each other, will be judged based
upon cumulative price and four common risk measures. Let wfjp ) t),i=1,....M,j=1,...,n,
t =1,..., T denote daily weights obtained from one of these optimizations.” Recalling that rij(t)
is the log-return based upon the closing price of asset ij on day t, the portfolio log-return'” and
cumulative price are r(P) (1) = yM, 27;1 wl.(].p) (t)rij(t) and S (t) = Spexp (2221 r(p) (s))
The four measures used are:

1. maximum drawdown (MDD),
MDD(T) = sup lsup (8P (s) — S(m(t))] ,
te[0,T] [ s€[0,4]

which characterizes the maximum loss incurred from peak to trough during the time
period [0, T|;
2. Sharpe ratio (Sharpe 1994),
E[rP)(t) —re()]o,1) _ #lpn
JvarlrO () = re(D]gr

Sharpe(T) =

01

where rf(t) is a risk-free rate, and 1, and 0, are the expected mean and standard
deviation of the portfolio’s excess return, r(P) (t) — r £(t);
3. Sortino—Satchell ratio (Sortino and Satchell 2001),

ORI - () o
S = 100 = () o)
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and
4. Rachev ratio (Rachev et al. 2008),

~ CVaRg(rs(t) — rP)(t))
~ CVaR, (V) (1) — (1))’

Rachevy , (T)

which represents the reward potential for positive returns compared to the risk poten-

tial for negative returns at quantile levels defined by the user. In our analysis, we set

B=v=0.95

The choice of these reward-to-risk ratios was influenced by the work of
Chertido and Kromer (2013) who classified reward-to-risk measures and considered their
properties relative to monotonicity, quasi-concavity, scale invariance and whether distribution-
based. Their stance was that every performance measure should be at least monotonic (a
measure of “more” is better than a measure of “less”) and quasi-concave (the measure prefers
averages to extremes and encourages diversification of risk rather than concentration). The
(most commonly used) Sharpe ratio does not guarantee monotonicity; perhaps the most
critical property a risk-measure should have. The Rachev ratio, used by hedge funds which
seek excessive returns and insure against big losses, does not guarantee quasi-concavity. The
Sortino-Satchell ratio guarantees both.

3. Application to a Test Portfolio

To illustrate portfolio optimization under performance attribution constraints, we
consider a specific portfolio comprised of stocks from the Dow Jones Industrial Average
(DJIA). As a limited-information index of the performance of the U.S. stock market, the
DJIA consists of the weighted stock price of 30 large, publicly-traded companies. The
stock composition of the DJIA and their weights in the indeXx, as of 1 February 2021, are
presented in Table Al of Appendix A. To preserve a sufficiently long trading history, our
test portfolio comprises 29 of the 30 stocks from the DJIA.!! Daily closing price data for all
29 stocks were available'? covering the period 19 March 2008 through 1 February 2021. We
grouped the stocks in our test portfolio into six classes based upon their weighted value
in the DJIA. Class composition and their total weight in the DJIA are presented in Table 1.
As is apparent from Equations (1)—(7), results from an attribution analysis depend on the
choice of benchmark. We separately consider two benchmarks. For ease of assignment to
asset classes, both benchmarks comprise the same assets as the test portfolios13 but one
benchmark (EQW) is equi-weighted while the other (PW) is price-weighted. The 10-year
U.S. Treasury yield curve rate was used as the risk-free rate.

Table 1. Breakdown of the asset classes in the test portfolio.

Class Stock Ticker Class Weight in DJIA (%)
1 UNH, GS, HD, AMGN, MSFT 29.59

2 CRM, MCD, V, BA, HON 22.35

3 CAT, MMM, DIS, JNJ, WMT 18.13

4 TRV, NKE, AAPL, JPM, PG 14.52

5 IBM, AXP, CVX, MRK, INTC 9.97

6 VZ, WBA, KO, CSCO 4.29

Daily return data for the stocks covered 3240 trading days. Using a standard rolling-
window strategy for optimization with a window size of 1008 days (four years), optimized
portfolio weights were computed for an in-sample period of T = 2233 days. The historic
return sample distribution in each window was used for the computation of CVaR,. We
optimized at two separate quantile levels, « € {0.95,0.99}. Daily turnover constraints
were set to one of three values: Cyp = oo (no turnover constraint), 4% and 0.4%. For
the attribution constraints in optimizations P}, P2 , and P2, we set the lower bounds
a1 = ap = 0 and set no upper bounds (b; = bp = o). Thus, for example, optimization ch
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minimizes CVaR, for the long-only portfolio while requiring that, on average, its asset
classes outperform the benchmark.

If the constrained optimization problem resulted in a null feasible set for day ¢, con-
straints were replaced by penalty terms in the following order.

PY: The turnover constraint was replaced by a penalty term.

Pl: The turnover constraint was replaced by a penalty term. If the feasible set was still
null, the asset allocation constraint was then additionally replaced by a penalty term.

P2: The turnover constraint was replaced by a penalty term; if necessary, the selection
effect constraint was also replaced.

P3: The order of additional conversion to penalty terms was turnover constraint, selection
effect, and finally asset allocation.

If the feasible set was still null after all indicated hard constraints were converted to
penalty terms for day ¢, the optimized weights obtained for day t — 1 were used for day ¢.

For the optimization of CVaR( g5 when the PW benchmark was used to determine
values for AA and SE, Table 2 summarizes the frequency of conversion of a ‘hard’ constraint
to a penalty term. For example, for optimization of P} - under the turnover constraint
Cro = 4%: 45.54% of the timesteps resulted in a feasible solution to the fully constrained
problem; 19.03% of the timesteps required converting the turnover constraint to a penalty
term; 34.39% of the timesteps required converting both the turnover and SE constraints
to penalty terms; 1.03% of the timesteps required conversion of turnover, SE and AA
constraints; and there were no timesteps for which a null feasible set was never obtained
under this rubric. The results when the EQW benchmark was used differ from those in
Table 2 by only a few percent.

Table 2. Frequency of conversion of hard constraints to penalty terms.

Portfolio All ‘Hard’ TO TO+AA TO+SE TO+SE+AA no Solution for ¢

TO < o0
P8.95 100.00% 0.00%
P(l)i95 100.00% 0.00% 0.00%
P§‘95 44.11% 55.84% 0.04%
Pj o5 54.90% 42.99% 1.93% 0.18%
TO < 4%
P8.95 99.87% 0.13% 0.00%
P(ll95 98.61% 1.39%  0.00% 0.00%
Pé.% 41.24% 12.58% 46.13% 0.04%
P8.95 45.54% 19.03% 34.39% 1.03% 0.00%
TO < 0.4%
P8495 78.15% 21.85% 0.00%
Pé.% 51.68% 48.32% 0.00% 0.00%
P§ o5 6.85% 87.51% 5.64% 0.00%
Pg.% 6.76% 90.06% 3.00% 0.18% 0.00%

The results in Table 2 provide support for the TO, SE, AA order of conversion of hard
constraints to penalty terms. Note that, when the turnover constraint is not imposed or is
‘relatively mild’ (i.e., Cto = 4%), a large percentage of the time the SE constraint had to be
converted to a penalty term in optimizations P 45 and P} ;.. However, when the turnover
constraint is 0.4%, the TO constraint needed to be converted essentially every 9 of 10 days
in order to produce a feasible solution, and conversion rates for the SE constraint dropped
to a few percent. Note, in all optimizations, frequency of conversion of the AA constraint
never exceeds 2%.

Figure 1 displays the box-whisker plot summaries of the distribution of TO, AA, and
SE values observed in the resulting optimized portfolios when the EQW benchmark was
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used to determine values for AA and SE. For the base portfolio P 4+ (with similar results
for PJ oq), 58% of the daily AA values were negative, while 93% of the daily SE values were
negative. Thus imposition of the constraints AA > 0 and SE > 0 are ‘strong’ requirements.
As we saw from Table 2, the AA constraint was achieved ‘easily’; this is confirmed in
Figure 1 (plots labeled P} 45 and P} 4¢), which show 100% of the daily AA values to be
non-negative. However achieving the SE constraint requires softening of either the daily
turnover constraint or the SE constraint itself. For the value Cto = 0.4%, as indicated in
Table 2'* and summarized in Figure 1, 88% of the daily TO values for P2 required softening.
As a result, less than 6% of the SE values remained negative in Pé.% and P%_gg. For Pg’(,
less than 0.2% of the AA values were negative, while fewer than 3% of the SE values
were negative.

%101

+ 21 4
+ b4 +
o L i A i .
¥ 1 - .L . —
05 . ; i == = = B2 =]
H if !
+
1 1 l l -2 - ' ]
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Figure 1. Box-whisker plots of the observed distributions of (a) TO, (b) AA, and (c) SE values for the
optimized portfolios P) through P3.

Figure 2 shows the price performance of the base portfolios, P8.95 and P8.99, under
change of turnover constraint. We note the relative insensitivity of price performance of
PJ 45 to the changing TO constraint. The price performance is more sensitive at the a = 0.99
quantile level.

Price
Price

1 : : : : : ‘ 1 : : : : : ‘
03/19/12 09/10/13 03/04/15 08/25/16 02/16/18 08/10/19 02/01/21 03/19/12 09/10/13 03/04/15 08/25/16 02/16/18 08/10/19 02/01/21

(a) P8.95 (b) P8.99
Figure 2. Cumulative price performance of the P8‘95 and P8.99 portfolios under changing TO constraint level.

Figure 3 shows the cumulative price performance of each of the performance attribute
constrained, CVaR g5 minimized portfolios under changing TO constraint level computed
using both the EQW (left plots) and PW (right plots) benchmarks to determine AA and
SE values. As with the base portfolio, the price performance of the AA-constrained
portfolio P} s is relatively insensitive to changing the TO constraint level. Much greater
sensitivity is seen in the price performance of the SE-constrained portfolio P o5 for the
EQW benchmark. In contrast, the price performance is relatively insensitive to Cyo for
P2, computed with the PW benchmark. Since the SE constraint affects the sensitivity
of the total excess return to the weighting of assets within each individual asset class we
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Price

Price

Price

Price

1

ascribe this sensitivity difference as due to the difference in asset weighting between the
EQW and a PW benchmark portfolios. The sensitivity of P3 to changing the TO constraint
level reflects a “compromise” between the sensitivity of the AA-constrained P} and the SE
constrained P2. For both & = 0.95 and & = 0.99, the result is that the price performance of
the doubly constrained portfolio improves under tighter daily TO constraint.

Price

1 ‘
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Figure 3. Cumulative price performance of each of the CVaRg g5 minimized portfolios under changing TO constraint level;
(left) equi-weighted benchmark, (right) price-weighted benchmark.
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Figure 4 summarizes the cumulative price performance of the CVaRg g5 minimized
portfolios under the TO < 0.4% constraint level for both the EQW and PW benchmarks.
For both benchmark valuations, we see that the AA-constrained portfolio, P(l).%, produces
only slight price performance improvement compared to the base portfolio. For both
benchmarks, the AA and SE constrained portfolio, P} o<, produces strong improved price
performance compared to the base portfolio. For the reason attributed above, the price
performance improvement for the SE-constrained portfolio, P 4, is different between the
EQW and PW portfolios.
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Figure 4. Cumulative price performance of the CVaR( g5 minimized portfolios under the TO < 0.4% constraint level;
(a) equi-weighted benchmark, (b) price-weighted benchmark.

Figure 5 summarizes total time period risk measures for the & = 0.95 portfolios con-
strained by a daily turnover of 0.4%. The reported maximum drawdowns all reflect behavior
related to the onset of the Covid-19 pandemic. Our optimized portfolios all outperform the
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benchmarks in MDD, but only the P3 - portfolio using PW benchmark valuations for SE
outperforms the base portfolio PJ <. Surprisingly, the benchmarks have better Sharpe ratios
than any of the optimized portfolios. However, all of the performance attribute constrained
portfolios outperform the base portfolio. For the EQW benchmark, all optimized portfolios
have better Sortino—Satchell ratios than the benchmarks. For both EQW and PW, the SE-
constrained portfolios also outperform those of the base portfolio. All optimized portfolios
equal or are better than the Rachev ratios of the benchmarks. The SE-constrained portfolio
using PW benchmark valuation also outperforms that of the base portfolio.

PW

I I 0,02
oor 1

EQW EQW PW

[
[
i
1]
1] mop
0.3 -
[
0.25 lr I I
[
0.2 .
L)
'
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BM P1 P2 I’S:Ii‘v’u P1 P2 P32

P3" BM P1 P2 P3 PO

Figure 5. Total time period risk measures for the « = 0.95 portfolios constrained by a daily turnover
of 0.4%. (BM = benchmark; PO = P8.95, etc.).

4. Discussion

It is well-known that no single optimization method can achieve all goals. Compared
with the CVaR optimizations P which impose no performance attribution constraints,
the price and risk measure performances of the three performance-constrained CVaR,
optimizations, each computed at two values of & = 095, 0.99, considered in this study lead
to the following observations.

*  The constraint AA > 0 is easiest to impose in the following sense. The base case had
~60% negative daily AA values, while AA-constrained portfolios achieved essentially
100% non-negative AA values with minimal frequency of “softening” of either the
AA or TO constraint.

¢  The constraint SE > 0 is harder to impose; there was significant coupling between
the turnover and SE constraints. The base case had ~90% negative daily SE values.
Achieving < 5% negative daily SE values required significantly frequent softening of
the daily turnover constraint.

®  Price performance improvement compared to the base portfolio was best achieved by
imposing both AA and SE constraints.

*  The SE-constrained portfolio P2 tended to perform best with respect to the four risk
measures considered.
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Appendix A

Table A1. The 30 companies comprising the DJIA .

Ticker Company Inception Weight Ticker Company Inception Weight

Date (%) Date (%)
UNH UnitedHealth 10/16/1984 7.27 TRV Tracviers 11/16/1975 3.01
GS Ggﬁﬁ‘:“ 05/03/1999 5.98 NKE NIKE 12/01/1980 2.96
HD Home Depot  09/21/1981 5.88 APPL Apple 12/11/1980 292
AMGN Amgen  07/16/1983 5.23 JPM J Pcl\,farsgean 03/16,/1990 2.82

. Procter and
MSFT Microsoft ~ 03/12/1986 5.21 PG Comble 01/01/1962 2.81
CRM salesforce.com 07/22,/2004 4.97 IBM Int ﬁ;csﬁness 01,/01/1962 2.63
MCD McDonald’s  07/04/1966 452 AXP ‘Agzgicsas“ 03/31/1972 2.55
\% Visa 03/18,/2008 431 CVX Chevron  01/01/1962 1.88
BA Boeing  01/01/1962 426 MRK Merélg and  01/01/1970 1.68
HON Ho?rfg’lw ell 010171970 425 INTC Intel 03/16,/1980 1.23
CAT Caterpillar ~ 01/01/1962 4.02 VZ verizon - 4120/1983 118

Commun.
MMM 3M 01/01/1970 3.8 DOW Dow 03/20/2019 1.15

. Walgreens
DIS Walt Disney ~ 01/01/1962 3.72 WBA 03/16,/1980 1.06

Boots All.
Johnson and i
INJ Johnson  01/01/1962 3.54 KO Coca-Cola  01/01/1962 1.06
WMT Walmart  08/24/1972 3.03 CSCO Cisco 02/15/1990 0.99
Systems
# From Bloomberg Professional Services, as of 02/01/2021, 19:57 EST.
Notes

1

In the original formulation by Brinson et al. (1986) (see also Chapter 5 in Bacon (2008)), AA; is defined as AA; =
(wl(v) _ wl@)
RI@ — R®) for benchmark class i relative to the entire benchmark return in the definition (1) of AA;. While this
modifies the values for AA; relative to that of the original Brinson et al. formulation, we note that the total value,
AA =YM, <wl(zf) _ wi(b)> <R§h> _ R(b)) =yM, (wl(p) _ wl(b)>Rl(b) M (wl(p) _ wgb))mb) =M (wl(p) _ wlgb)>Rl(b) —0,isin

agreement with the total value of AA in the Brinson et al. approach.

)Rgb). The definition in Biglova and Rachev (2007), which we follow here, uses the excess return

If le, th), R® and rij were simple (i.e., discrete) returns, formulas of the form (3) are exact. However, as they are
log-returns, such formulas are approximate. For example, the formula for R() incurs an error term which, to leading

. 2 _ 2
order in a Taylor series expansion, is 3 {Z{‘ﬁ 15 w"E [rl-]-] - (Z,Ai 1205 wl(f)]E [rij] ) } .

A requirement for class i to be in the portfolio.

If the underlying profit-loss distribution is continuous, then the definitions of ETL (also known as tail conditional
expectation (TCE) or tail value-at-risk (TVaR)) and CVaR (also known as expected shortfall (ES) or average value-at-
risk (AVaR)) coincide. In the general case however, CVaR is a coherent risk measure while ETL is not (Stoyanov 2005).
We adopt the convention that loss is negative valued and that VaR, and CVaR, have negative values in the case
of loss.

see Note 5.

see Note 5.

This assumes that benchmark weight values can be obtained in a timely manner and are not part of the optimization.
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Specifically wfjp) (t) is the optimized weight to be applied to the portfolio at the beginning of (and throughout the
entire) day ¢.

10 see Note 2.

1 We exclude Dow Inc. which was spun off of DowDuPont on 1 April 2019. Its stock, under the ticker symbol “DOW”,
began trading on 20 March 2019. It was added to the DJIA on 2 April 2019.

Bloomberg Professional Services.

13 ThusQ=Nandg;=n;,i=1,..., M.

14 Table 2 shows the results for the PW benchmark; as noted, the results for the EQW benchmark are essentially
the same.
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