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Abstract: Investment decisions usually involve the assessment of more than one financial asset or
investment project (real asset). The most appropriate way to analyze the viability of a real asset is not
to study it in isolation but as part of a portfolio with correlations between the input variables of the
projects. This study proposes an optimization methodology for a portfolio of investment projects
with real options based on maximizing the Omega performance measure. The classic portfolio
optimization methodology uses the Sharpe ratio as the objective function, which is a function of
the mean-variance of the returns of the portfolio distribution. The advantage of using Omega as an
objective function is that it takes into account all moments of the portfolio’s distribution of returns
or net present values (NPVs), not restricting the analysis to its mean and variance. We present an
example to illustrate the proposed methodology, using the Monte Carlo simulation as the main tool
due to its high flexibility in modeling uncertainties. The results show that the best risk-return ratio is
obtained by optimizing the Omega measure.

Keywords: risk-return; real options; Monte Carlo simulation; portfolio optimization; Omega measure

1. Introduction

In the financial literature, it is well known that investors seek to maximize the return
on their investments while minimizing the associated risk as much as possible. Markowitz
(1952) developed the basis of the investment portfolio optimization theory, and he proposed
the mean-variance model. According to his theory, investors can identify all optimal
portfolios by constructing an efficient frontier, which is the geometric locus with the best
possible combination of assets in the portfolio, corresponding to the lowest level of risk
(standard deviation) for a given level of return. Therefore, investors should focus on
selecting portfolios that lie along this frontier.

The classical mean-variance theory assumes that an investor’s risk preference is
a quadratic utility function. Therefore, only the first two moments are important in the
distribution of returns, the expected return and the variance, which are sufficient to describe
a normal distribution. Thus, although Markowitz’s (1952) theory is easy to apply and
effective in determining the portfolio’s composition, it does not take into account the actual
characteristics of the distribution, as it can be observed that the returns of most financial
assets have non-Gaussian distributions.

When a portfolio is composed of investment projects (real assets), its evaluation
becomes more complex since, strictly speaking, there are no historical records of returns
to calculate the moments. In addition, future investment management decisions, such
as the best time to start investing, expanding, reducing operations, or to stop investing,
can also impact the outcome and value of the project. These managerial flexibilities allow
the firm to change operating strategies as new market information is revealed, have the
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characteristics of options, and they are known as real options because they apply to real
assets.

The most widely used performance measure to assess portfolio performance, the
risk-return ratio, is the Sharpe index (Sharpe 1966), derived from Markowitz’s (1952)
modern portfolio theory. Another performance measure that is more consistent with the
distribution of returns observed in practice, i.e., non-normal distributions, is the Omega
(Ω) measure, introduced by Keating and Shadwick (2002). This measure, called “universal”
by its creators, has a coherent and intuitive conception, as it considers the real shape of the
distribution of returns.

In building the portfolio of investment projects, it is contemplated that the input
variables can be correlated. In this paper, we propose a methodology to optimize a portfolio
of investment projects by maximizing the Omega performance measure, considering the
inclusion of real options in the projects. This methodology has two main advantages, the
Omega measure as the objective function, thus ensuring that the empirical net present
value (NPV) distribution of the projects will be considered, and the inclusion of real options,
which makes the modeling more efficient realistic.

The article is organized as follows. After this introduction, in Section 2, we present a
literature review on investment project portfolios and real options, and in Section 3, we
describe the main performance measures used to evaluate a portfolio, focusing on the
Omega measure. Section 4 presents the proposed methodology for optimizing investment
project portfolios with real options, and Section 5 illustrates the methodology with a
numerical application. Finally, in Section 6, we conclude.

2. Literature Review

The Project Management Institute (PMI) is the leading international association that
sets standards for managing investment projects. According to PMI (2017), a portfolio
is a set of projects, programs, and sub-portfolios managed as a group to achieve certain
strategic objectives. PMI focuses its efforts on setting standards for the implementation
phase of projects rather than conducting in-depth studies on selecting and prioritizing
projects in portfolios.

In academia, however, there are several studies for project selection in portfolios.
Heidenberger and Stummer (1999), Carazo et al. (2010), and Mansini et al. (2014) summa-
rized the main available methodologies. These include methods that combine qualitative
and quantitative criteria, such as comparative methods and methods based on scores or
rankings, economic indicators, and group decision-making techniques. There are also more
analytical methodologies in which mathematical programming is used to select projects,
such as Hassanzadeh et al. (2014b), Modarres and Hassanzadeh (2009), Bhattacharyya et al.
(2010), and Medaglia et al. (2007) that evaluate research and development projects. The last
two introduce random variables into the optimization program. In turn, Hassanzadeh et al.
(2014a) explored nonlinear and multi-objective programming.

With regard to real options portfolios, there is Brosch (2001) described the interactions
that may exist among options and their correlations, especially in projects that are executed
in stages; Anand et al. (2007) conducted a theoretical review of real options within a
portfolio, and recognized that there are significant effects when there is interdependence
between options and correlation between expected asset returns; Smith and Thompson
(2008) analyzed a portfolio of sequential options in an exploration project using a mathe-
matical approach to assess how options affect portfolio value; Van Bekkum et al. (2009)
investigated the effect on funding in outcome-conditioned R and D projects, when the
manager is responsible for deciding whether to focus on projects that produced good
results or to diversify into others; Magazzini et al. (2016) assessed the case of a portfolio of
R and D projects in pharmaceutical companies; Maier et al. (2020) analyzed an extensive
portfolio of options (deferment, staging, mothballing, abandonment) under conditions of
exogenous and endogenous uncertainties, developing an algorithm based on simulation
and stochastic dynamic programming.
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Regarding the Omega (Ω) measure, proposed by Keating and Shadwick (2002), after
its creation, several works were developed that focused mainly on finding more adequate
solutions to the optimization problem—which is not the scope of this paper—such as
Mausser et al. (2006), Kane et al. (2009), Kapsos et al. (2014), Goel and Mehra (2021), and
Bernard et al. (2019). On the other hand, one of the parameters of the Omega measure, the
minimum acceptable return (L), is analyzed by Vilkancas (2014), who assessed the effects
that variations in this parameter have on the performance of portfolios optimized with the
Omega measure.

The optimization program presented here was inspired by the programs described in
Sefair and Medaglia (2005) and Castro et al. (2020). The former considered the possibility of
a project being started in a time interval, and the projects were chosen in a binary manner;
that is, a given project is included in its entirety in the portfolio, or it is not included at all.
This is an important characteristic when constructing a portfolio of investment projects
since it is not possible to partially include a project. In turn, the optimization program
uses the Omega performance measure as the objective function, as proposed in Castro
et al. (2020), in which portfolios formed by Standard and Poor’s 500, NASDAQ Composite,
and some crypto assets were evaluated. Furthermore, with the help of the Monte Carlo
simulation, the future values of projects and real options in a portfolio with correlated
input variables are modeled.

The proposed methodology follows the spirit of the integrated risk analysis process
for a portfolio of projects and real options described in Mun (2020). He begins his analysis
by selecting a potential set of projects that meet the business’s strategic objectives, and
then he models the stochastic variables and adds real options. In the end, he performs the
stochastic optimization of the group of projects and options, maximizing an index that
relates a return measure (NPV, PV) and a risk measure (volatility, VaR). Additionally, we
consider that the distribution of possible future values of an investment project (present
value) is obtained through the Marketed Asset Disclaimer (MAD) assumption—described
in Copeland and Antikarov (2003)—based on Samuelson (1965). MAD considers that,
although the stochastic components that determine the cash flows (such as prices, costs,
and market indices) can follow various stochastic processes, the resulting project’s present
value (PV) without real options can be modeled as if it were a marketable security. Thus,
the stochastic paths for the expected PV values of the projects in the portfolio can be
simulated over time through the geometric Brownian motion (GBM) and correlated, giving
the possibility of including and valuing real options. This would be the essence of the
methodology developed in this study.

3. Portfolio Performance Analysis (Risk-Return)
3.1. Sharpe Index

Sharpe (1966) formulated this index, and it has gained wide acceptance among aca-
demics and financial market professionals. It is based on Markowitz’s (1952) modern
portfolio theory and identifies points on the capital market line corresponding to optimal
portfolios. The Sharpe Index (SI) is defined as

SI =
E
[
Rp
]
− r f

σp
, (1)

where E[RP] and σP, respectively, represent the expected return and the standard deviation
(volatility) of the portfolio P, and rf is the risk-free interest rate.

The mean-variance theory identifies the portfolios with the maximum expected return
for a given level of risk, which, if plotted, forms the so-called efficient frontier. The
portfolios with the highest SI lie on the capital market line when the line tangents the
efficient frontier.
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3.2. The Omega Performance Measure

It is generally accepted as an empirical fact that the returns on investments do not
follow a normal distribution. Higher-order moments (in addition to mean and variance)
are therefore needed to better describe a distribution. The Omega performance measure,
proposed by Keating and Shadwick (2002), allows these higher-order moments to be taken
into account. This is formulated according to Equation (2):

Ω(L) =

∫ b
L [1− F(x)] dx∫ L

a F(x)
=

∫ b
L (x− L) f (x)dx∫ L
a (L− x) f (x)dx

=
E[max(X− L; 0)]
E[max(L− X; 0)]

, (2)

where F(x) is the cumulative distribution function of the returns x; a and b, respectively,
are the lower and upper bounds of the f(x) distribution of returns, and L is a threshold
rate of return that separates gains from losses in Equation (2). Among researchers and
practitioners, this return is also called “target return” or “minimum acceptable return”
since the investor can thus express the investment objectives and risk tolerance (Vilkancas
2014), and it is stipulated exogenously by the investor.

The right-hand side of Equation (2) is an alternative formulation developed by Kazemi
et al. (2004), which turns out to be more conceptually intuitive (in the formula, X is a
stochastic variable representing returns). The numerator is the expected value of the excess
return (X − L) for positive outcomes, and the denominator is the expected value of the
losses (L − X) for negative outcomes. In this way, Omega is a division between a return
measure and a risk measure, that is, a performance measure. By taking into account the full
distribution of returns, Omega has a significant advantage over the Sharpe index, which
uses only the first two moments.

4. Methodology to Optimize a Portfolio of Investment Projects with Real Options

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4.1. Step I: Information Modeling

Project variables whose behavior is uncertain are called risk variables. Uncertainty
can essentially be classified into two types, economic uncertainty and technical uncertainty.
The first uncertainty comes from general movements in the economy, over which there
is almost no control (for example, GDP, exchange rate, the sale price of a commodity),
and these are the source of the market risk associated with the project. Only economic
uncertainty is revealed over time. On the other hand, technical uncertainty depends on
actions taken by the company to reduce it. It is the source of private risk associated with the
project, such as discovering the volume of oil or mineral fields reserves. The quality of this
information will be directly proportional to the amount invested in exploration studies.

Therefore, the first step is to identify the risk variables present in the project and model
their future behavior to include them in the projected cash flow. A simple approach is to
assume that the variable follows some known function, such as a normal, lognormal, or
triangular function. Another possibility is econometric modeling, which is more sophis-
ticated and mainly uses simple or multiple regression models. Stochastic processes can
also be used. The most commonly used are the geometric Brownian motion (GBM) and
mean-reverting processes (Dixit and Pindyck 1994). This study addresses the modeling of
variables with economic uncertainties using stochastic processes.

After modeling the risk variables, their correlations must be calculated. It is assumed
that there are Z risk variables (RV1, RV2, . . . , RVZ) with their respective historical real-
izations over time. The Pearson correlation coefficient (ρzz′ ) is calculated according to
Equation (3):

ρzz′ = Cov(RVz, RVz′)/
√

Varz ×Varz′ , (3)
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where Cov(RVz, RVz’) is the covariance between the RVz and RVz’ risk variables, and
Varz and Varz’ are the variances. A coefficient value of −1 indicates a perfect negative
correlation between the variables, 1 a perfect positive correlation, and 0 that the variables
do not linearly depend on each other. These correlations should be considered when
simulating the risk variables’ possible paths over time in projected project cash flows.

4.2. Step II: Portfolio Optimization without Real Options

The present value of each project (PV) is calculated based on the cash flow (CF)
structure. Brealey et al. (2016) presented a cash flow structure model that may be used as a
reference, although each project has its particularities that must be taken into account when
preparing the CF. The risk variables identified in the previous step are included in the CF
and will have realizations that are a function of the adopted model and the correlations
with the other risk variables. A large number of simulations must be performed for the
risk variables to obtain an expected value of the projects’ cash flows.

Let the project life horizon j have τj periods, t = 0, 1, . . . , τj, with a CF for each t. The
PV is obtained by adding the CFs of each simulation duly discounted by the project’s cost
of capital (µj). It is also considered that N simulations of realizations of the risk variables
will be performed. Therefore, the present value of project j in a given simulation i = 1, . . . ,
N is given by Equation (4):

PVij =

τj

∑
t=0

CFij(t)(
1 + µj

)t , (4)

where CFij(t) is the value of the cash flow of project j in simulation i in periods t = 0, 1, . . . ,
τj. The net present value (NPV) of project j in simulation i (NPVij) is calculated from PVij,
according to Equation (5):

NPVij = PVij − Ij, (5)

where Ij is the initial investment in the period when the project starts.
Let P be the portfolio of projects, and L be the minimum acceptable NPV desired by

investors in portfolio P. The objective function is given by Equation (6):

max
P

Ω(L) =
ECP(L)
ELP(L)

, (6)

where

ECP(L) = E[max(NPVP − L; 0)] is the expected chance of portfolio P, and
ELP(L) = E[max(L− NPVP; 0)] is the expected loss of portfolio P.

NPVP is the NPV distribution function of portfolio P. The NPVP at a given simulation
i (NPVP, i) is the sum of the NPV0s of the J projects in portfolio P, as in Equation (7):

NPVP,i =
J

∑
j=1

t+

∑
t′=t−

wjt′ × NPV0ijt′ . (7)

The variable wjt’ is binary and equals 1 when project j starts at a certain time t’ within
the interval [t−, t+], where t− is the minimum period in which the investment project
can be started, and t+ is the maximum period to start. Both t− and t+ must be defined in
advance for each project. The project can only be started at a specific t’. The restriction in
Equation (8) therefore applies.

t+

∑
t′=t−

wjt′ ≤ 1. (8)

Since the risk variables follow random paths over time, and these determine the CF
values, depending on the time at which project j starts (t’), the NPV will be different. So,
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let NPVijt’, the NPV of project j in simulation i when it starts at t’ є[t−, t+], be in a manner
analogous to Equation (5), this is defined as Equation (9):

NPVijt′ = PVijt′ − Ijt′ , (9)

where Ijt’ is the initial investment of project j in simulation i when it starts at t’.
In Equation (7), NPV0ijt’ is the discounted NPVijt’ at time t = 0. Thus

NPV0ijt′ = e−r f t′NPVijt′ , (10)

where rf is the risk-free rate. Note that NPVijt’ is discounted t’ periods at the risk-free rate.
Between t = 0 and t’, the project has not yet started and does not have the same level of
risk (µj) as when it is underway. Another option would be to discount this waiting time by
an opportunity cost that the firm would incur by not starting the project. Here, we have
chosen to use the risk-free rate, which the investors would earn by investing their money
in a risk-free investment.

After N simulations, the distribution of NPVP,i is obtained (Equation (7)). The expected
value of this distribution, E[NPVP], is calculated according to Equation (11):

E[NPVP] =
N

∑
i=1

NPVP,i × N−1. (11)

On the other hand, if we choose to optimize the portfolio according to Markowitz’s
(1952) mean-variance methodology, we would have to maximize the ratio of the expected
return divided by the standard deviation (similar to the Sharpe index), where the ex-
pected return would be the average NPV of the portfolio (Equation (11)), and the standard
deviation of the portfolio, σP, is defined by Equation (12):

σP =

√
E
[
(NPVP,i − E[NPVP])

2
]
. (12)

In short, in this step, the optimization program determines the coefficients wjt’ values,
which indicate the period in which each project j must be started.

4.3. Step III: Portfolio with Real Options

The expected present value of a project j can be calculated as Equation (13):

E[PV]jt′ =

t′+τj

∑
t=t′

E[CF]jt(
1 + µj

)t−t′ , (13)

where E[CF]jt is the expected cash flow value of project j in period t = t’, t’ + 1, . . . , t’ + τj
discounted by the risk-adjusted rate (µj), and t’ is the period in which the project starts.
The volatility (σ) of PV is estimated as the standard deviation of the return between the
initial period and the subsequent period, as done in Smith (2005) and Brandão et al. (2005).

With the distributions of the projects’ present values (Equation (4)), the correla-
tion coefficients ρjj′ between two PVs of projects j and j’ are calculated according to
Equation (14):

ρjj′ = Cov
(

PVj, PVj′
)

/
√

Varj ×Varj′ . (14)

In Equation (14), each project j starts at time t’ determined in Step II (Equation (6)).
Based on the Marketed Asset Disclaimer—MAD—assumption (Copeland and An-

tikarov 2003), PVs can be modeled as tradable (risk-neutral) assets following a GBM,
according to Equation (15):

PVj,t′+∆t = E[PV]jt′ exp[(ϕj−σ2
j /2)∆t+σj

√
∆tN(0,1)], (15)
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where PVj,t′+∆t is the present value of simulated project j in period t’ + ∆t, ϕj = rf − δj is
the risk-neutral deviation or trend (δj is the dividend rate), σj is the volatility of project j,
and N(0,1) is an i.i.d. normal distribution.

The MAD assumption considers that the distribution of PVs is log-normal, and
therefore, it is sufficient mainly to calculate the expected present value and volatility to
perform the simulations. In step 2 of the methodology, the starting time of each project
was determined through optimization by the Omega measure, which takes into account
all the moments of the NPV distribution. Thus, the portfolio with the best risk-return
ratio (expected chance/expected loss) was obtained. Equation (15) facilitates the modeling
over time of managerial flexibilities, or real options, that could increase the NPV of the
optimized portfolio without real options.

The simulations start at t = t’, the period in which the project must be started, with
the value of E[PV]jt′ , and a path of values is generated until t = t’ + τj (τj is the pro-
jected lifetime of the project). Real options are inserted along the paths simulated by
Equation (15) and evaluated according to the option type. In general terms, the value of a
real option is the project value considering the real option minus the project value without
the real option in a given period. In Trigeorgis (1996), the different types of real options
and the way to calculate their values are specified.

When performing N simulations of possible paths to E[PV]jt′ , in the time in which
the real options are inserted, the resulting PV is calculated for each of the management
flexibilities considered, in addition to the PV without any option. For each simulation,
the PV with the highest value will be chosen. We will use the term PV+ to refer to the PV
that considers the highest PV between exercising any option or not exercising it. Thus,
after N simulations, N PV+ values will be obtained, and so will the PVs without options.
The real option value (RO) will be the difference of PV+ − PV. In the limiting case that
the managerial flexibilities have a value lower than the PV without options, PV+ will be
equal to PV, which indicates that the real option has no value. The various values that RO
will take at each simulation will generate a distribution of values (zeros and/or positive),
assuming that they were evaluated at time t = t+, where t’ < t+ ≤ t’ + τj, these should be
discounted at rf to date t’. Then, the mean of the RO values at t’ is calculated for each
project j, which we denote as E[RO]jt′ . This expected value represents the consolidated
value of the various real options included, which can be positive or zero, the latter case
indicating that the flexibilities considered do not add any value to the original situation.

Thus, the expected present value of project j (starting at t’), including the real options,
represented by E[PV]+jt′ , is calculated as in Equation (16):

E[PV]+jt′ = E[PV]jt′ + E[RO]jt′ . (16)

The minimum value of E[PV]+jt′ is E[PV]jt′ when real options have no value. It is
worth noting that path simulations for E[PV]jt′ are done simultaneously for all projects in
the portfolio, using the correlation matrix between PVs (Equation (14)).

From these, we can compute the expected NPV of the portfolio with real options. Let
us call E[NPV0]+j the expected NPV of project j considering the real options, discounted at
time t = 0. It is calculated according to Equation (17):

E[NPV0]+j = er f t′
(

E[PV]+jt′ − Ijt′
)

. (17)

In Equation (17), the initial investment of project j started at t’ (Ijt’) is subtracted from
E[PV]+jt′ , and the result is discounted to period t = 0 using rf. Thus, the expected NPV of

portfolio P with real options is the sum of all the projects’ E[NPV0]+j (J in total), as shown
in Equation (18):

E[NPVP]
+ =

J

∑
j=1

E[NPV0]+j . (18)
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Additional constraints to the optimization program in Equation (6)—which deter-
mined the start dates of each project in the portfolio—may be included, such as budget
constraints, mandatory projects or mutually exclusive projects, or other constraints that
better reflect the particularities of the portfolio.

5. Numerical Application

Consider a soybean production company with three soybean fields, F1, F2, and F3, and
three soybean oil production plants, P1, P2, and P3. Basic information about the projects
is given in Tables 1 and 2, which represent commonly typical values in companies of this
type, depending on the scale of production.

Table 1. Basic information about soy field projects.

Description Unit F1 F2 F3

Initial production (soybean) MM tons 5 6 7
Production increase rate (year 2 to 3) % Per year 4% 7% 6%

Soybean price (SP) at t = 0 US$/ton 510 530 525
Variable operating cost (VOC) at t = 0 US$/ton 420 443 440

Fixed costs USD MM/year 85 87 105
Profit sharing % Per year 25% 25% 25%
Investment (I) US$MM 750 880 1100

Maximum time to start the project years 2 2 2
Project lifetime (τ) years 8 8 8

Table 2. Basic information about soybean oil production plant projects.

Description Unit P1 P2 P3

Initial production (soybean oil) MM tons 0.5 0.6 0.4
Production increase rate (year 2 to 4) % Per year 5% 6% 8%

Soybean oil price (OP) at t = 0 US$/ton 1200 1230 1225
CBOT soybean price (PC) at t = 0 US$/ton 550 550 550

Variable operating cost at t = 0 % Of PC 160% 155% 170%
Fixed costs USD MM/year 25 30 28

Profit sharing % Per year 25% 25% 25%
Investment (I) US$MM 160 180 130

Maximum time to start the project years 2 2 2
Project lifetime (τ) years 8 8 8

5.1. Step I: Information Modeling

There are two risk variables (RV) in soybean production projects, the variable operating
cost (VOC) and the soybean selling price (SP). The risk variables for soybean oil production
plant projects are the CBOT soybean price (PC) (the internationally traded price on the
Chicago Board of Trade is the basis for calculating the plants’ variable operating cost) and
the soybean oil selling price (OP). We consider that the risk variables (RV) follow a GBM,
whose characteristic parameters are specified in Table 3.

Table 3. Parameters used to model the GBM of risk variables (RV).

RVs–Soybean
Fields Parameters F1 F2 F3 RVs–Oil

Production Plants Parameters P1 P2 P3

Variable operating
cost (VOC)

Drift (αvoc) 4.1% 4.1% 4.1% CBOT soybean
price (PC)

Drift (αpc) 4% 4% 4%
Volatility (σvoc) 10% 10% 10% Volatility (σpc) 24% 24% 24%

Soybean price (SP) Drift (αsp) 3.7% 3.8% 4.1% Soybean oil price
(OP)

Drift (αop) 3.8% 3.4% 3.3%
Volatility (σsp) 18% 24% 23% Volatility (σop) 20% 21% 19%

Table 4 presents the correlation matrix for the risk variables, where SP-Fj (j = 1, 2, 3)
denotes the selling price of soybeans in field Fj, and OP-Pj (j = 1, 2, 3) denotes the selling
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price of soybean oil in plant Pj. VOC is the variable operating cost in the soybean fields, and
PC is the CBOT soybean price. The values shown are approximations that can usually be
considered for the stipulated projects. Thus, one can notice a high correlation between the
PC prices and those negotiated in the fields, SP (usually the CBOT price is a reference), but
these correlations are lower when compared to the variable operational costs (VOC) and
the soybean oil selling prices (OP), which are specific to each company. Strictly speaking, a
more precise calculation would require historical series obtained from real companies, but
the values defined keep coherence with the type of projects exemplified in the portfolio.

Table 4. Correlation matrix for risk variables (RV).

VOC SP-F1 SP-F2 SP-F3 PC OP-P1 OP-P2 OP-P3

VOC 1 0.56 0.56 0.58 0.45 0.25 0.27 0.23
SP-F1 0.56 1 0.82 0.91 0.86 0.35 0.33 0.29
SP-F2 0.56 0.82 1 0.80 0.85 0.38 0.30 0.25
SP-F3 0.58 0.91 0.80 1 0.80 0.36 0.29 0.25

PC 0.45 0.86 0.85 0.80 1 0.52 0.48 0.45
OP-P1 0.25 0.35 0.38 0.36 0.52 1 0.85 0.89
OP-P2 0.27 0.33 0.30 0.29 0.48 0.85 1 0.83
OP-P3 0.23 0.29 0.25 0.25 0.45 0.89 0.83 1

5.2. Step II: Portfolio Optimization without Real Options

For soybean field projects, the cost of capital, µ, is assumed to be 8% p.a., and for
soybean oil plant projects, 9% p.a. The risk-free rate (rf) is 3% p.a. Using the information
in Tables 1 and 2, the expected cash flows are constructed for each project, and the risk
variables are simulated using GBM (with their correlations). Table 5 shows the cash flows
for project F1 starting at t’ = 0.

Row (a) in Table 5 indicates the production level for each year. As shown in Table 1,
the initial production for F1 is 5 MM tons, but from year 2 to year 3, production increases
at a rate of 4%, resulting in levels of 5.20- and 5.41-MM tons, with this last level remaining
constant until the end of the project life. The risk variables (rows (b) and (c)) are simulated
following a GBM. In order to illustrate how these simulations are performed, we present
the formula used for SP, using the parameter values provided for F1 in Table 3:

SPt=i+∆t = SPt=i × exp

((
ln
(
1 + αsp

)
−

σ2
sp

2

)
× ∆t + σsp ×

√
∆t× N∗(0, 1)

)
. (19)

Equation (19) is the equation of a GBM in discrete form. Where ∆t = 1 (year), the drift
(αsp) was transformed in continuous time by applying the function ln(1+ αsp) and N∗(0, 1)
as an i.i.d. Normal correlated with the other risk variables (RV) according to the correlation
coefficients shown in the second column of Table 4. Each simulation N∗(0, 1) will result in
a different value but will be correlated with all risk variables in the portfolio. A practical
way to simulate the correlated risk variables in an Excel spreadsheet is through @Risk’s
RiskCorrmat function, which was used in this paper to run the simulations.

Table 5 presents the expected values for the risk variables. Still exemplifying with
SP, when performing a large number of simulations, the expected values converge to
Equation (20):

SPt=i+∆t = SPt=i × exp
((

1 + αsp
)
× ∆t

)
. (20)

Therefore, when considering expected values for the risk variables, the PVt’=0 of row
(i), calculated according to Equation (4), would be the expected present value for the F1
project. E[PV]t’ = 1847.95. Similarly, the NPV0 of row (l) calculated with Equation (10)
would also be the expected NPV at t = 0, E[NPV0] = 1097.95.

By setting up F1(0) simulated cash flows for the other projects at different starting
dates, we obtain the expected values shown in Table 6 (the largest E[NPV0] for a given t’ in
each project are highlighted in bold).
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Table 5. Expected cash flows for the F1 project started at t’ = 0 (F1(0)) (in US$MM).

Period (Year) t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

(a) Production level (MM tons) 5.00 5.20 5.41 5.41 5.41 5.41 5.41 5.41
(b) Soybean price (SP) (US$/ton) 510.00 528.87 548.44 568.73 589.77 611.60 634.22 657.69 682.02

(c) Operating cost variable (VOC) (US$/ton) 420.00 437.22 455.15 473.81 493.23 513.46 534.51 556.42 579.24
(d) Revenue: (a) × (b) 2644.35 2851.88 3075.69 3189.49 3307.51 3429.88 3556.79 3688.39

(e) Production cost: (a) × (c) + fixed cost 2271.10 2451.76 2647.35 2752.40 2861.77 2975.62 3094.13 3217.51
(f) Operating cash flow: (d) − (e) 373.25 400.12 428.35 437.09 445.74 454.27 462.66 470.89

(g) Profit sharing: 25% × (f) 93.31 100.03 107.09 109.27 111.43 113.57 115.66 117.72
(h) Net cash flow (CF): (f) − (g) 279.94 300.09 321.26 327.82 334.30 340.70 346.99 353.16

(i) Present value (PVt = i to 8) 1847.95 1995.79 1853.12 1677.27 1464.50 1227.61 964.77 674.00 353.16
(j) Rate [FC/VP]t=i: (h)/(i) 0.14 0.16 0.19 0.22 0.27 0.35 0.51 1.00

(k) Investments (It’) 750.00
(l) NPV0 = (PVt’ − It’) × (1 + rf)−t’ 1097.95
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Table 6. Present values (PV) and net present values (NPV) of the projects (in U$MM).

Project It’ E[PV]t’ E[NPV]t’ E[NPV0] Project It’ E[PV]t’ E[NPV]t’ E[NPV0]

F1(0) 750.00 1847.95 1097.95 1097.95 P1(0) 160.00 738.31 578.31 578.31
F1(1) 772.50 1884.26 1111.76 1079.38 P1(1) 164.80 765.53 600.73 583.23
F1(2) 795.68 1920.04 1124.36 1059.82 P1(2) 169.74 793.59 623.85 588.04
F2(0) 880.00 2137.20 1257.20 1257.20 P2(0) 180.00 1030.05 850.05 850.05
F2(1) 906.40 2191.10 1284.70 1247.28 P2(1) 185.40 1052.28 866.88 841.63
F2(2) 933.59 2245.35 1311.76 1236.46 P2(2) 190.96 1074.58 883.62 832.89
F3(0) 1100.00 2879.39 1779.39 1779.39 P3(0) 130.00 471.76 341.76 341.76
F3(1) 1133.00 3016.00 1883.00 1828.16 P3 (1) 133.90 476.02 342.12 332.16
F3(2) 1166.99 3158.22 1991.23 1876.92 P3(2) 137.92 479.82 341.90 322.27

The nomenclature Fj(t’) and Pj(t’) is used to indicate that the project Fj or Pj (j = 1, 2, 3)
starts in period t’ (t’ = 0, 1, 2). So that the different expected values can be compared, they
must be discounted at the risk-free rate rf. Therefore, E[NPV0] = E[NPV]t’ × (1 + rf.)−t’. If
the choice of a project’s start time were based solely on the largest E[NPV0] for each t’ = 0,1,
and 2, there would be no need to optimize the portfolio, thus ensuring the largest E[NPV0]
in the portfolio. However, in doing so, the effect of risk is disregarded. The choice should
be made by optimizing a performance measure that indicates the expected return per unit
of risk taken.

The analysis by the Omega performance measure uses in its calculation the complete
distribution of NPV of all projects in portfolio P, not being restricted to its mean and
variance. The objective function of Equation (6) is then optimized subject to the constraint
of Equation (8), and L = 0 is stipulated, i.e., the investor accepts at least to obtain a NPV = 0,
which pays his cost of capital.

For comparison purposes, the portfolio has also been optimized using Markowitz’s
mean-variance theory. In this case, the optimization program maximizes the expected NPVP
divided by the standard deviation, E[NPVP]/σP (Equations (11) and (12)). In both Omega
and mean-variance optimization, fifty thousand iterations were used to obtain the NPVP
distribution (Equation (7)), necessary for the calculations of the optimized performance
measures.

The results for both optimization models as well as the not optimized portfolio (from
Table 6) are summarized in Table 7.

Table 7. Not optimized portfolio and portfolios optimized by mean-variance and Omega.

Project Initial
Period

Not Opti-
mized

Mean-
Variance

Omega (L
= 0) Project Initial

Period
Not Opti-

mized
Mean-

Variance
Omega
(L = 0)

F1
wF1(0) 1 1 1

P1
wP1(0) 0 0 0

wF1(1) 0 0 0 wP1(1) 0 0 0
wF1(2) 0 0 0 wP1(2) 1 1 1

F2
wF2(0) 1 1 1

P2
wP2(0) 1 0 0

wF2(1) 0 0 0 wP2(1) 0 0 1
wF2(2) 0 0 0 wP2(2) 0 1 0

F3
wF3(0) 0 1 1

P3
wP3(0) 1 0 0

wF3(1) 0 0 0 wP3(1) 0 0 1
wF3(2) 1 0 0 wP3(2) 0 1 0

When wj(t’) = 1, project j must start in period t’. For example, using the mean-variance
methodology, project P2 would be started at period t’ = 2 (wP2(2) = 1), while with the Omega
measure, it would be started at period t’ = 1. Choosing this project by the highest E[NPV0]
(Table 6), i.e., not optimized, P2 would be started at t’ = 0.
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Once the wjt’ have been defined, the NPVP distributions of the portfolios are built with
the results obtained in each methodology, following Equation (7). From these distributions,
the main statistics of the portfolios are calculated, as shown in Table 8.

Table 8. Main statistics for NPVP distributions of not optimized and optimized portfolios.

Not Optimized Mean-Variance Omega (L = 0)

Mean (US$MM) − E[NPVP] 6015.15 5878.59 5896.36
Standard deviation (US$MM) − σP 16,826.12 14,327.10 14,405.59

Skewness 1.64 1.31 1.34
Kurtosis 8.93 6.79 6.96

Minimum value (US$ MM) −40,518.78 −36,141.76 −36,100.14
Maximum value (US$ MM) 192,802.16 139,294.57 141,104.35

Jarque-Bera test 95,609.19 44,222.03 47,721.30
E[NPVP]/σP index 0.3575 0.4103

Omega 2.8838 3.2804

Table 8 shows that the non-optimized portfolio has the highest expected return, but
its performance measures, both the E[NPVP]/σP and Omega, are inferior compared to
portfolios optimized by mean-variance and Omega (L = 0), respectively. Thus, the best
risk-return ratio does not occur in the non-optimized portfolio. On the other hand, all
portfolios show significant values at moments of skewness and kurtosis, which indicates
that they are not normal distributions. This is reinforced through the Jarque-Bera normality
test (Jarque and Bera 1980), where values very far from zero are obtained. Optimization
by mean-variance does not take into account higher-order moments of the distribution,
limiting its analysis to the first two moments since we see that higher-order moments are
relevant. Optimization by the Omega measure, on the other hand, takes into account the
real shape of the NPVP distribution. Therefore, the results obtained by this methodology
are the ones we will consider.

5.3. Step III: Portfolio with Real Options

According to the optimization done in the previous step (Omega measure), the start
times of each project were determined. Thus, we will consider the following projects in the
portfolio, F1(0), F2(0), F3(0), P1(2), P2(1), and P3(1) (the number in parentheses indicates
the start time t’). The expected present values of these projects, E[PV]t’, and investments
(It’), were calculated in the second step of the methodology (Table 6). The volatilities of the
projects at their respective starting times should also be calculated. For this, we suggest
applying the method described by Brandão et al. (2005) (BDH method), simulating the
cash flows of all projects together to capture the effect of the correlation among the risk
variables. Table 9 summarizes the results of E[PV]t’, It’ and volatilities (σproject(t’)).

Table 9. Expected present value of projects, initial investment (US$MM), and volatilities.

Project(t’) F1(0) F2(0) F3(0) P1(2) P2(1) P3(1)

E[PV]t’ 1847.95 2137.20 2879.39 793.59 1052.28 476.02
It’ 750.00 880.00 1100.00 169.74 185.40 133.90

σproject(t’) 90.03% 112.56% 104.54% 72.54% 69.32% 94.52%

By applying Equation (14), the correlation coefficients among the projects’ PVs are
calculated, and the matrix is shown in Table 10.
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Table 10. Correlation matrix among the projects’ PVs.

PVF1(0) PVF2(0) PVF3(0) PVP1(2) PVP2(1) PVP3(1)

PVF1(0) 1 0.7198 0.8503 −0.4339 −0.4231 −0.5293
PVF2(0) 0.7198 1 0.7030 −0.4013 −0.4492 −0.5731
PVF3(0) 0.8503 0.7030 1 −0.3709 −0.4139 −0.5185
PVP1(2) −0.4339 −0.4013 −0.3709 1 0.8163 0.8720
PVP2(1) −0.4231 −0.4492 −0.4139 0.8163 1 0.8109
PVP3(1) −0.5293 −0.5731 −0.5185 0.8720 0.8109 1

Next, we will include some real options in the projects. Suppose that at t = 5, the
firm has the option to exercise one of three types of real options. These options and their
parameters for each project are shown in Table 11.

Table 11. Real options to be included in projects in year 5.

Real
Options Parameters

Project(t’)

F1(0) F2(0) F3(0) P1(2) P2(1) P3(1)

Option to
expand

Expansion factor 1.2 1.2 1.5 1.4 1.5 1.3
Cost to expand (US$MM) 50 100 130 30 45 25

Option to
contract

Contraction factor 0.85 0.8 0.8 0.8 0.75 0.7
Recovered value (US$MM) 40 70 90 35 30 30

Option to
abandon Salvage value (US$MM) 120 160 200 70 90 60

The real options in Table 11 are mutually exclusive. In year 5, only the option that
results in the highest value of the project in that year can be exercised (or not). Risk-neutral
simulations of the average present value (E[PV]t’) are run simultaneously for the six chosen
projects (Equation (15)), and the indicated real options are inserted in year 5. Table 12
shows how the options in the projects were evaluated using the F1(0) project as an example
in a given simulation (in total, 50,000 simulations were run using @Risk software), taking
into account the parameters of Table 9.

Table 12. Simulated present value paths with options for F1(0) (US$MM).

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

(a)
(CF/PV)t=i

0.00 0.1403 0.1619 0.1915 0.2238 0.2723 0.3531 0.5148 1.00

(b) PVt=i 1847.95 1269.72 750.05 431.90 239.92 154.84 77.42 34.41 11.47
(c) E[PV]t=i 1847.95 1904.23 1686.99 1456.86 1213.69 970.70 727.87 485.17 242.56
(d) E[CF]t=i - 267.10 273.19 279.04 271.68 264.34 257.04 249.78 242.56

E[PV]t’ 1847.95 PV5(E) 96.57 VP5 of expansion
E[RO]t 143.27 PV5(C) 153.98 VP5 of contraction
E[PV]+t′ 1991.22 PV5(A) 154.84 VP5 of abandonment

E[NPV0]+ 1241.22 PV5(N) 127.95 VP5 no options
E[Max(PV5(E); PV5(C); PV5(A); PV5(N)] 1137.16

In Table 12, row (a), rate (CF/PV) comes from row (j) of Table 5. This rate serves to
calculate the expected value of CF (row (d)) when multiplying, in a given year, the value
of row (a) with the value of row (c). The path that was simulated is in row (b), using
Equation (15). In such an equation, let us assume that the dividend rate (δj) has a value
equal to zero and that N(0,1) is an i.i.d. Normal correlated with the other PVs of the
projects, according to the correlation matrix in Table 10. In addition, for each passing year,
before calculating a PVt=i, we must subtract from PVt=i−1 that year’s CF, (CF/PV)t=i−1 ×
PVt=i−1 (annual cash flows are assumed not reinvested). The expected values of PV and
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E[PV]t=i (row (c)), also follow this reasoning. For example, with rf = 3%, E[PV]t=2 is equal
to (E[PV]t=1 − E[CF]t=1) × exp(rf).

The results PV5(E); PV5(C); PV5(A); PV5(N) are presented, which correspond to
the project’s present values at t = 5 when exercising the options to expand, contract,
abandon, or continue without exercising any option. The way to calculate the present
values with options depends on the type of option. In the expand option, the expansion
factor is multiplied to the simulated value (without options) of PVt=5, subtracting CFt=5
beforehand, decreasing the cost to expand, and adding the CFt=5. In the contraction option,
the contraction factor is multiplied by the simulated value (without options) of PVt=5,
subtracting CFt=5 beforehand, adding the recovered value, and adding the CFt=5. In the
abandonment option, the salvage value plus CFt=5 is obtained at t = 5.

In the simulation presented, PV5(A) was the highest. Therefore, the option to abandon
is exercised. Thus, PVt=5 (row b) will be equal to PV5(A). The real option value at t = 5, for
the case presented would be PV5(A) − PV5(N) = 154.84 − 127.95 = 26.89. When running a
large number of iterations of the simulation, in some cases, other options will be exercised,
or none will be exercised (in this case, the real option is zero). At the end, a distribution of
values of real options in t = 5 will be obtained Op(PVt=5), values that must be discounted at
the risk-free rate in t = t’, to obtain the distribution in that year Op(PVt′). Thus, to calculate
the expected value of the option in t’ = 0 (E[RO]t′ ) for the F1(0) project, it would be equal to
the expected value of the distribution Op(PVt′), i.e., E[Op(PVt′)]. After 50,000 simulations,
that distribution was obtained and E[RO]t′ = 143.27. Another way to calculate E[RO]t′
is by subtracting the expected value of PV5 without options from the expected values
of PV5 with options. In the example, at each simulation, E[Max(PV5(E); PV5(C); PV5(A);
PV5(N))] offers the highest PV5, averaging at the end resulted in the value of 1137.16. In
turn, E[PV]t=5 = 970.70 (row (c)). Therefore, E[RO]t=5 = 1137.16 − 970.70 = 166.46, and
discounted to t’ = 0, E[RO]t′ = 166.46 × exp(−5rf) = 143.27. On the other hand, E[PV]+t′

and E[NPV0]+ were calculated for each project using Equations (16) and (17), respectively.
By performing path simulations of E[PV] and real options, as done for F1(0) in the

other five designs, we will obtain the results shown in Table 13. It is appreciated that real
options always add value to the projects, and as far as possible, they should be included
when evaluating portfolios of investment projects.

Table 13. Expected PVs and NPVs of projects with and without real options (US$MM).

F1(0) F2(0) F3(0) P1(2) P2(1) P3(1) Portfolio

E[PV]t’ 1847.95 2137.20 2879.39 793.59 1052.28 476.02
E[NPV]t’ 1097.95 1257.20 1779.39 623.85 866.88 342.12
E[NPV0] 1097.95 1257.20 1779.39 588.04 841.63 332.16 5896.36 (E[NPVP])

E[RO]t’ 143.27 218.09 535.27 177.66 221.93 77.55
E[PV]t’

+ 1991.22 2355.29 3414.66 971.25 1274.20 553.57
E[NPV]+ 1241.22 1475.29 2314.66 755.50 1057.09 407.45 7251.21 (E[NPVP]+)

Figure 1 shows the distribution of the NPV of the portfolio without real options
(NPVP), the distribution of real option values (RO), and the distribution of the NPV of the
portfolio with real options NPV+

P .
Note that in Figure 1, the distribution of real options consists exclusively of positive

values, highly concentrated in values below US$1000 MM, which, when added to the
NPVP distribution, results in the portfolio distribution with real options, NPVP

+, clearly
with a higher kurtosis, thus increasing the mean of the portfolio’s NPV distribution from
US$5896.36 MM to US$7251.21 MM.
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6. Conclusions

The correct analysis of risk, return, and performance of a portfolio of investment
projects is of crucial importance in managerial decision-making. The more flexible the val-
uation techniques and models used, the greater the company’s ability to react to favorable
or unfavorable circumstances.

The main objective of this study was to propose a methodology to optimize a portfolio
of investment projects using the Omega measure, considering the possibility of including
real options in the analysis. Among the main contributions of the proposed methodology
are (1) optimization by maximizing the Omega performance measure, which takes into
account all moments of the projects’ NPV distribution instead of only the mean and vari-
ance, and (2) extension of the Marketed Asset Disclaimer—MAD—assumption (Copeland
and Antikarov 2003) from an asset to a set of investment projects taking into account
the existing correlations among the input variables that compose the cash flows, and the
resulting present values of the projects.

The methodology was illustrated with a numerical application for a company with
soybean fields and soybean oil production plants. European, real options were included to
increase the value of the projects. The results show that the best ratio of expected gains to
expected losses was achieved with the optimization methodology proposed here, being a
more realistic approach than simplifying the analysis by mean and variance, as the classic
portfolio selection methodology proposes. Other types could also be considered in relation
to the exemplified real options, such as sequential options, simultaneous options, and/or
temporary interruption of the investment. The real options to be chosen will depend on
the particular characteristics of the investment projects that comprise the portfolio, thus
making the evaluation of investments closer to reality.

The proposed methodology is flexible, as it allows modeling of the risk variables
in different ways. In the present work, we performed the modeling based on stochastic
processes, but other types of modeling could be adopted, such as econometric modeling, if
this approach better reflects the behavior of the risk variable. It will be up to the analyst to
choose the most appropriate way to model a variable.
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